Introductory Computer Science:
The Case for a Unified View

J. Stanley Warford

Computer Science Department
Pepperdine University
Malibu, CA 90265

Introduction

A recent paper by Gibbs and Tucker [1] pointed out the
desirability of new directions in our thinking about the
computer science curriculum. They observe that the

... core curriculum in computer science is frequently
questioned because it seems to be composed of a
collection of different programming and applications
courses and fails to explicate adequately the principles
that underlie the discipline.

Their goal is to incorporate into the curriculum a view of
computer science "as a coherent body of scientific
principles ... rather than allow it to be driven by the needs
and priorities of particular technologies".

The first purpose of this paper is to affirm that Gibbs
and Tucker are correct in their observations. A major
shortcoming of the typical introductory course is its failure
to introduce students to computer science.

The second purpose is to propose an introductory
course structure that helps to achieve the noble goal of
teaching the true fundamentals of our discipline. This
paper proposes that the best framework in which to present
a unified view is the concept of levels of abstraction.

The next section presents the concept of levels of
abstraction as a unified view in the introductory computer
science course. The following section then presents an
implementation of the concept. The implementation has
three components: an introductory computer science course
sequence taught at Pepperdine University, a machine
designed to teach the fundamentals of classical von
Neumann architecture, and a textbook in preparation based
on the course.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed .for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 ACM 0-89791-256-X/88/0002/0044 $1.50 44

Concept

The proposed model for the introductory computer science
course is best illustrated by the typical course in physics, a
much older discipline. Like computer science, physics is a
broad area. The main areas of study include mechanics,
thermodynamics, electromagnetics, and modern physics.

Over the years a traditional introductory physics
course has evolved that is uniform in content from school
to school. Physics educators realize that the first course
should teach some problem solving techniques and should
give the student some laboratory experience. In addition
they realize the importance of introducing the student to all
the main areas of study. In depth mastery of a subfield of
physics is postponed for later courses in which the
instructor can assume that the student has already been
exposed to the main concepts.

Perhaps we computer science educators should consider
the typical first course in physics, as we develop the first
course in computer science.

One striking aspect of the typical introductory
computer science course sequence is its lack of breadth.
Computer science includes among other things a study of
hardware, languages, algorithms, data structures,
architecture, and operating systems. The recent trend is to
incorporate more topics from data structures into the
introductory course. But most introductory courses in
computer science still neglect hardware, languages,
architecture and operating systems.

The physics curriculum generally recognizes that
classical Newtonian mechanics is the foundation on which

~ all the other topics can be presented. Consequently,

introductory physics courses usually present mechanics first
followed by the other topics, which together make up the
entire field of physics. Introductory physics courses rarely
present just mechanics.

Similarly, the introductory computer science course
should begin with algorithm design in a high order
language, but not be confined to it. Students should get a
better overall picture of the discipline of computer science.
Indeed, if they do not get a unified picture of the discipline
in their introductory course, where will they get it later?

The thesis of this paper is that a unified view of the
discipline of computer science should be presented in the

-

i

f!

[
L
(.
i
|

introductory course, and that the unified view should based
on the concept of levels of abstraction. In particular, our
beginning students should learn computer systems based on
the level structure of Figure 1. The main idea is that
computers operate at several levels of abstraction.
Programming in Pascal at a high level of abstraction is

only part of the story.

To provide a balanced view of the discipline the
introductory course should avoid two pitfalls.

First, it should not spend an inordinate amount of
time at one level to the exclusion of the other levels.
Historically, our tendency has been to spend most (if not
all) of our time in the introductory course at level 6, the
high order languages level. We then pack the students off
to more "advanced" courses that specialize in some other
level. It is easy for students to perceive that computer
science is a fragmented discipline.

Second, to present a truly unified view of computer
science it should not only give more equal weight to each
level, but it should emphasize the relationships between
the levels. The idea of emphasizing the relationships
between the levels of abstraction of a computer system has
many ramifications about the introductory course content.
It means that the beginning student should understand not
only the language at each level, but also how
transformatjons are made from one level to another. The
next section discusses some of the ramifications of this
idea.

We can achieve the goal of presenting a true
introduction to all of computer science in the introductory
course only by structuring a tightly coupled introductory
course sequence. Again, the model for such a sequence is
the typical introductory physics course. The introductory
course for physics majors is usually a sequence of two,
three, or even four semesters. In the quarter system it
usually covers from three to six quarters. The course
sequence is tightly coupled in that each course in the
sequence is a strict prerequisite for the one that follows,
and in that students study from a single text throughout the
entire sequence. The sequence is a balanced presentation of
all the main areas of physics.

The introductory computer science course should be
modeled after that sequence. It should be a tightly coupled
sequence of freshman level courses. Each course in the
sequence should be a strict prerequisite for the one that
follows. Students should study from a single text that
places more equal weight on each of the seven levels of
Figure 1, and that emphasizes the relationships between the
levels.

Compared to the older sciences, computer science is
young. Mathematics and physics have been with us for
centuries. Computer science has been with us for decades. It
is instructive to look at the history of the curricula of these
more established sciences.

7 Applications level
1
6 High order languages level
1
5 Assembly level
1
4 Operating system level
]
3 Machine level
T
2 Microprogramming level
1
1 Logic gate level
Figure 1.
The level structure of a typical computer
system.)

In mathematics, the entering university student used to
take separate courses in analytic geometry and calculus.
Over the years mathematics educators realized that a single
course that combined both topics of the subject would serve
the student better at the introductory level than separate
courses. The change occurred with resistance and debate, but

“eventually the integrated approach prevailed.

Another lesson of history comes from physics.
Separate introductory books and courses used to be devoted
to the topics of mechanics, electricity and magnetism, and
thermodynamics. Again, after resistance and debate, these
topics were integrated into a single course represented by
the classic Sears and Zemansky text.

Nowadays there are dozens of introductory calculus and
physics texts that are designed to be used in two, three, or
even four course sequences. These texts typically run in
excess of a thousand pages. Some are printed in two
volumes. But the main idea is that they serve a tightly
coupled introductory sequence whose goal is to present a
unified introduction to the discipline.

The trend of our recent past is towards more
integration of computer science topics in the introductory
course. In the early days the introductory course emphasized
a particular programming language. The language syntax
was considered important. The debate often centered on
which programming language was best for a student to
learn first.

Then came the recognition that software design
principles were equally as important, if not more so, that
the specifics of a particular language. Books began to
incorporate software engineering principles such as

stepwise refinement and top-down design. The concept of
structured programming is now well integrated in most
introductory computer science books.

The next trend was the incorporation of some data
structures into the introductory course. The recent revision
of CS1 and CS2 of Curriculum 78 [2, 3] accomplishes this
integration. It is appropriate to expose beginning students
to data structures concepts because of the intimate
relationship between an algorithm and the data structure on
which it operates.

This proposal is the logical next step in the
integration process. It integrates hardware and software into
a complete overview of computer science based on the
concept of levels of abstraction. As the integration of data
structures was a pulling down of some concepts from more
advanced courses, so is the integration of hardware and
operating systems concepts. In the same way that including
data structures in the introductory course does not eliminate
the more advanced data structures course, including hardware
and operating systems concepts will not eliminate the
traditional computer organization and operating systems
courses. Instead, it will give a better foundation on which
those courses can be built.

Implementation

This section describes an implementation of the concept:
The implementation has three components:

* an introductory computer science course sequence taught
at Pepperdine University

* a machine designed to teach the fundamentals of classical
von Neumann architecture

* a textbook in preparation based on the course

Seaver College is the undergraduate liberal arts college
of Pepperdine University. It is a small college of 2400
resident students, and offers a B.S. degree in
Mathematics/Computer Science to about 100 majors.

We planned a major computer science curriculum
reorganization during the 1983-84 academic year, and
implemented it in 84-85. Part of the plan was the
establishment of an introductory course sequence whose
goal was to give students a unified view of computer
science, with the concept of levels of abstraction as the
primary framework. It is a two semester, eight hour
sequence.

We encountered two problems in our implementation.

First, one of our goals was to give more equal weight
to each of the levels. We wanted to teach students an
assembly language at Level 5 in such a way that they would
not loose sight of the overall concept of levels of
abstraction in the system. The problem was the choice of a
suitable architecture and corresponding language to achieve

46

this goal in such a short amount of class time. Our solution
was to develop a machine customized for teaching these
concepts.

Second, there was no appropriate text on the market.
It is not that the material is unavailable. It is available, but
it is scattered in many specialized books designed for
specialized courses. Our solution was to write our own
material for the course. The material is currently being
developed for publication as a textbook.

The remainder of this section describes the two-
semester course sequence. Space limitations preclude a
detailed listing of topics covered with time alloted to each.
This information is available from the author.

The course generally presents the levels top-down
from the highest to the lowest. For pedagogical reasons
we discuss Level 3, the machine level, before Level 5, the
assembly level. It seems more natural in this case to revert
temporarily to a bottom-up approach so that the building
blocks of the lower level will be in hand for construction
of the higher level.

The course begins with a description of the concept of
levels of abstraction in a computer system. As an example
of an application, they learn how to use their text editors
in the context of word processing. The skills then carry
over to the next part where they must create text files of
programs and data.

The first course in the two-course sequence generally
follows the CS1 course of Curriculum 78. Our our
presentation of problem solving with Pascal is fairly
complete. Some topics, such as passing procedures as
parameters, are not included.

The course integrates two design methodologies into
the Pascal part—stepwise refinement and top down design.
Although these two techniques are closely related (some
would say identical) we treat them separately. Stepwise
refinement is a tool for developing a single main program
or a single module. Top down design is a tool for
partitioning a program into modules. In this course, the
definition of a module is a main program, or a procedure, or
a function. One advantage of the levels of abstraction
approach is its application in many different areas of
computer science. Both of these software design
methodologies are based on information hiding and
abstraction principles. That principle can be taught here in
the context of software design.

One goal of the course is to give the student useful
software tools. So we try to present the "best” known
algorithms. The sequential file update problem is solved
with the balanced-line algorithm [4, 5]. The section on
sorting uses the taxonomy of sort algorithms described
recently by Merritt [6]. The version of Quick Sort is one
that executes in time n log n even in the case when the
array is approximately in order originally.

The second course presents PEP/5, a hypothetical
computer designed to illustrate computer concepts. Students
learn the fundamentals of information representation and
computer organization at the bit level. A central theme of
this course is the relationship of the levels to one another.
Here we show the relationship between the ASCII
representation (Level 3) and Pascal variables of type char
(Level 6). We also show the relationship between two's
complement representation (Level 3) and Pascal variables
of type integer (Level 6).

The PEP/S computer is a classical von Neumann
machine. The CPU contains an accumulator, an index
register, a base register, a program counter, a stack pointer,
and an instruction register. It has four addressing
modes—immediate, direct, indexed, and stack relative. At
this point, students can run short programs in binary on a
simulator. The PEP/5 operating system is in simulated read
only memory (ROM). It can load and execute programs in
hexadecimal format from students' text files. They learn by
running the simulator that executing a store instruction to
ROM does not change the memory value.

The native machine instruction set contains one input
and one output instruction. These are single character
instructions based on the ASCII character set. A group of
four instructions have unimplemented opcodes that generate
software interrupts. At the assembly level the operating
system provides the four instructions as decimal and
hexadecimal I/O.

Level 5 is the assembly level. The course presents
the concept of the assembler as a translator between two
levels. It shows the relationship between assignment
statements at Level 6, and load and store instructions at
Level 5. Itintroduces Level 5 symbols and the symbol
table.

The unified approach really pays off here. Students
learn a specific Level 6 language, Pascal. They learn a
specific von Neumann machine, PEP/S. This part continues
the theme of relationships between the levels by showing
the correspondence between:

* Joops and if statements at Level 6, and branching
instructions at Level 5

* arrays at Level 6 and indexed addressing at Level 5

* procedure calls at Level 6 and the run-time stack at
Level 5

* function and procedure parameters at Level 6, and stack
relative addressing at Level 5

* case statements at Level 6 and jump tables at Level 5.

The beauty of the unified approach is that the course
can implement many of the examples from the Pascal part
at this lower level. For example, the run-time stack
illustrated in the recursive examples of the Pascal part
corresponds directly to the hardware stack in PEP/5 main
memory. Students learn the compilation process by being
able to translate manually between the two levels.

417

This approach also provides a natural setting for the
discussion of central issues in computer science. For
example, the course presents structured versus unstructured
flow of control in the context of programming at Level 6
versus programming at Level 5. It discusses the goto
controversy and the structured programming/efficiency trade-
off with concrete examples from languages at the two
levels.

Curriculum guidelines warn against a common pittall
of the introductory assembly language course. The danger
is that the student will get mired down in the details of a
specific machine and will not be able to cull the
fundamental principles from the material. Most assembly
language books simply do not assume a common high
order language background of the student. Therefore they
are never able to make as strong a connection between the
levels of the system as this course does.

The unit on language translation principles is
motivated by the goal to emphasize the relationships
between the levels of Figure 1. It introduces students to
simple parsing theory. It begins with a formal definition
of phrase structured grammars, and describes context-
sensitive, context-free, and regular grammars. It shows the
relationship between regular grammars and finite state
machines. Furthering the goal of providing useful software
tools, the course shows how to implement finite state
machines in Pascal as recognizers. It presents a Pascal
program that contains a finite state machine and translates
between two small languages.

Here is yet another advantage of the unified approach.
Students learn a specific high order language, Pascal. They
learn a specific assembly language, PEP/5. They learn a
specific tool, the finite state machine. The translation
program as a model now equips them to write a small PEP/5
assembler in Pascal. That project is a key element of the
course. It illustrates in a concrete way the relationship
between two different levels of abstraction.

The last topic is a description of the function of an
operating system and a few of the key issues in operating
system design. Two topics, one on loaders and another on
interrupt handlers, are illustrated with the PEP/5 operating
system. The system has a simulated ROM burn-in facility.
Students can rewrite any part of the operating system,
assemble it, "burn it" into ROM, install it, and run it on
the PEP/S system. They can redefine any of the
unimplemented opcode instructions.

Although a complete survey would take the student
down to Levels 2 and 1, we have found that to not be
possible in eight semester hours. However, we believe that
our course is a step in the right direction toward giving our
students a unified view of the discipline of computer
science.

Qur course structure does not follow all the CS 1 and
CS 2 guidelines of Curriculum 78. Although-we cover all

of CS 1, we omit the following topics from CS 2: program
specification, queues, random access files, array
implementation of linked lists, array and record
implementations of trees, linked list implementation of
sets, hashing. These topics are postponed until the data
structures course. We introduce the student to the concept
of a data structure, with the example of the stack. That is
the data structure necessary to understand the
implementation of recursion and process interupts at the
lower levels. -

Conclusion

Gibbs and Tucker [1] define computer science as the
systematic study of algorithms and data structures,
specifically

(1) their formal properties,
(2) their mechanical and linguistic realizations, and
(3) their applications.

They distinguish computer engineering as that discipline in
which (2) takes precedence over (1), and information
systems in which (3) takes precedence. Their view of
computer science is that discipline in which (1) takes
precedence. This paper argues for an introductory view of
computer science in which (1) and (2) take equal
precedence.

Although the effort by Gibbs and Tucker is to define a
computer science curriculum appropriate for a liberal arts
degree in computer science, I believe that an introductory
course that follows the philosophy outlined here is
applicable as a foundation course for both liberal arts
colleges and engineering schools. The situation is similar
to the other pure and applied sciences. Mechanical and
electrical engineering courses assume that their students
have taken an introductory physics course. Chemical
engineering students start with introductory chemistry. The
introductory course services both chemistry and chemical
engineering majors. Likewise, the introductory computer
science course should service both computer science and
computer engineering majors,

Computer science is remarkably young. Its curriculum
is in a continual state of flux compared to the more
established sciences. As the discipline matures, so will the
curriculum. We have every reason to-believe that the
curriculum will evolve to a state resembling that of the
more established disciplines.

Acknowledgements

The book, Structured Computer Organization, by Andrew S.

Tanenbaum [6] has influenced my thinking about the
cutriculum more than any other. This paper exténds the
level structure of Tanenbaum's book by adding the high
order programming level and the applicatioris level at the
top. Many people contributed to the ideas of this paper.

48

Don Thompson, Don Hancock, Carol Adjemian, and Chelle
Boehning taught sections of the course described here, and
contributed many suggestions for improvement. Pepperdine
University in the person of Ken Perrin provided the
creative environment in which the idea behind this project
was able to evolve. ‘

References

[1}1 Gibbs, N. E. and Tucker, A. B., A Model curriculum
for a Liberal Arts Degree in Computer Science,
Commun. ACM 29, 3 (March 1986).

[2] Koffman, E.B., Miller, P. L., and Wardle, C. E.,
Recommended Curriculum for CS1, 1984: A Report of
the ACM curriculum committee Task Force for CS1,
Commun. ACM 27, 10 (Oct. 1984).

3] Koffman, E.B., Stemple, D., and Wardle, C. E.,
Recommended Curriculum for CS2, 1984: A Report of
the ACM curriculum committee Task Force for CS2,
Commun. ACM 28, 8 (Aug. 1985).

[4] Dijkstra, E. W., A Discipline of Programming,
Prentice-Hall, 1976.

[5] Levy, M.R., Modularity and the Sequential File
Update Problem, Commun. ACM, (June, 1982).

[6] Merritt, S. M., An Inverted Taxonomy of Sorting
Algorithms, Commun. ACM, (Jan. 1985).

A g A,

RS

