An Experience Téaching Formal Methods in Discrete Mathematics

J. Stanley Warford
Pepperdine University
Malibu, CA 90263

warford@pepperdine.edu

Abstract

In spite of recent calls to incorporate formal
methods into the computer science curriculum,
the effort is still controversial and proceeding
slowly. This paper presents our experience in
restructuring the undergraduate Discrete Mathe-
matics course to include formal methods. It con-
cludes with some philosophical ruminations
about the place of formal methods in the com-
puter science curriculum in general.

Introduction

Six years ago Edsger Dijkstra addressed the ACM
Computer Science Conference and called for the
elevation of formal methods to a more prominent
place in the discipline and curriculum of com-
puter science. His talk was published in the Com-
munications [3] along with comments from other
scientists in the field [8]. Some agreed with Dijk-
stra’s contention that computing is a “radical nov-
elty” in need of a corresponding radical approach.
Others took issue with his contention that formal
methods should be taught as the primary tool for
software development [12].

Two years later David Gries addressed the
SIGCSE conference [5] with basically the same
plea that formal methods needs to be taught as a
core subject to undergraduates. He argued for
teaching a calculational style of reasoning so that
students will be as comfortable with proof tech-
niques as they are with algebraic manipulations.

The calls for changes in the computer science
curriculum have produced a debate on whether

1G
gULcLSEETIN Vol. 27 No. 3 Sept. 1995

formal methods should be emphasized and, if so,
then how [1, 2, 4, 7, 9]. An example of the influ-
ence of these ideas is contained in the Computing
Curricula 1991 report [10]. The Appendix of the
report contains several sample curricula identified
as Breadth-First. The freshman course descrip-
tions for these curricula all contain recommenda-
tions for a rigorous connection between
specification and design, including loop invari-
ants as an example.

In an effort to integrate formal methods into the
curriculum we restructured the Discrete Mathe-
matics course at Pepperdine University beginning
the Fall Semester, 1993. The redesign of the
course was motivated by our belief that the dis-
crete math course, a required course during the
first semester of the sophomore year, was the nat-
ural place in our curriculum to introduce the
topic. The immediate impetus was the appearance
of a new book by Gries and Schneider, A Logical
Approach to Discrete Math [6], for which the
authors had provided us a prepublication manu-
script. This paper describes the course and lists a
number of lessons learned from the experience. It
concludes with some philosophical points on the
place of formal methods in the curriculum.

Course description

The change in the course turned out to be a signif-
icant paradigm shift involving a trade-off of
breadth for depth. The central idea behind the
book [11] is to apply the logic machinery that has
been developed to facilitate program proofs to
topics that are traditionally taught in the Discrete

Mathematics course. The first half of the four-
hour semester course is now devoted to an in-
depth treatment of propositional and predicate
calculus. The remainder of the course applies
equational proof techniques to the traditional top-
ics in discrete math. Table 1 shows the organiza-
tion of the new course. ’

Table 1: Course topics

Weeks Topic

0.50 Textual substitution, equality, assignment
0.75 Boolean expressions

1.00 Propositional calculus

0.50 Proof style

0.50 Review, exam

0.25 Solving word problems

1.00 Quantification

0.75 Predicate calculus

0.75 Predicates and programming
0.75 Review, exam

0.75 Theory of sets

1.25 Mathematical induction

1.00 Tuples, cross products, relations
0.75 Review, exam

1.00 Functions, partial orders

1.00 Modern algebra

1.00 Infinite sets

0.50 Review, exam

Topics from the old course that were sacrificed in
this reorganization include logic networks, net-
work minimization, coding theory, finite-state
machines, and Turing machines. In most of these
cases, the topic is covered in other courses in the
curriculum. It was nice to have these topics
treated in more than one course to serve as a rein-
forcement. Under the new organization, however,
the linkage no longer is one of duplication but of
application. For example, under the old curricu-
lum a student would see logic networks and mini-
mization in both Discrete Math and Computer
Architecture. Now she sees it only in Architec-
ture. Under the new curriculum, the student
applies predicate calculus to problems in the fol-
lowing Data Structures course. We view this as a
more efficient use of limited student contact time.

SIGCSE
BULLETIN Vol. 27 No. 3 Sept. 1995

To emphasize the calculational approach all theo-
rems are derived algebraically, and never by
resorting to truth tables. Quantification of arith-
metic and Boolean operators are presented con-
sistently as shown in Table 2. In the same way
that X is the quantified version of +, V is the
quantified version of A.

Table 2: Quantification symbols

Operator Quantified version
+ %
X I1
A v
% 3

Quantified expressions use a uniform notation for
predicate and arithmetic operators as shown in
Table 3.

Table 3: Notation

Conventional notation Uniform notation

2 (Zil1<i<n+1:i2)

M=

i=1

For the domain of
positive integers

(Vi) (P (i)

(Vil0<i:P.0)

The real paradigm shift occurs when traditional
discrete math topics like set theory and relations
are all developed with the same formal methods
machinery. For example, the set membership
operator € is defined in terms of existential quan-
tification by the axiom

Fe {x|R:E} = (3x|R:F = E)

In English, the axiom states that F is an element
of the set of expressions E over all x such that
range R is true, if and only if there exists an x for
which R is true such that F equals E. Similarly,
set equality is defined in terms of universal quan-
tification by the axiom

S=T=(Vx|:xe S=xe T)

By the time we get to sets, students have had
weeks of practice manipulating expressions like
the quantifications on the right side of the above
axioms. It is straightforward for them to use the
definitions to prove properties of union, intersec-
tion, and subsets. Similarly, the development of
cross products, relations, and functions employs
formal methods of proof.

An example of the proof style is a proof of the
theorem S = {x|xe€ S:x} . Since this is a set
equality, by the above axiom it suffices to prove
that ve S=ve {x|xe S:x} for arbitrary v.

ve {x|xe S:ix}

(Definition of set membership)
(3x|xe Siv=1x)

(A previously learned trading theorem)
(Ax|x=v:xe S)

(The previously learned one-point rule)

ve S

Observations
The following observations are based on my
experience with the new approach.

Proofs—The entire nature of the course changed.
Rather than most exercises being based on exam-
ples and a few on proofs, now most exercises are
proofs and only a few are based on examples.
Proofs, which students used to dread, are now the
favorite part. I believe this phenomenon can be
traced to the detailed exposition of formal meth-
ods at the beginning. Students are used to alge-
braic manipulations from high school algebra,
and learning the symbolic manipulations required
of formal methods came quite naturally. I also
found that proofs were easier to grade. With the
old approach, I never knew if a student under-
stood the steps in the proof but was having trou-
ble with the English or if he did not understand
the proof. Now that proofs have an explicit syn-
tax and semantics it is easier to pinpoint a prob-
lem and evaluate a proof attempt for giving
partial credit.

SIGCSE

BULLETIN Vo!-

27 No. 3 Sept. 1995

62

Unified treatment—TIt is intellectually satisfying
to teach discrete mathematics with a unified
approach. The discrete math course takes on the
same nature as the traditional calculus course. In
the same way that a calculus student learns in a
linear fashion the manipulations necessary for
taking derivatives and then integrals, the discrete
math student learns in a linear fashion the manip-
ulations necessary for formal proof and then its
application to topics in program correctness and
discrete mathematics. Formal logic is the glue
that binds the topics together.

Notation—The notation shown in Table 3 takes
some getting used to, but is to be preferred to the
traditional notation. The fact that arithmetic and
predicate operators can share the same syntactical
notation when quantified makes calculations
much easier to do and to teach.

An example of one benefit of this notation is seen
in the expression

(Vx) ((3y) P(x,) A Q(x,))

written traditionally. Without precedence rules it
is not obvious what the scope of 3 is. Does it
extend to Q or not? Unlike the older style, the
parentheses in the quantified expression

(Vx|: (3y|:P(xy) A Q(xy))

always indicates the scope making it clear
whether the y in O(x,y) is a free variable.

Following courses—I found an immediate benefit
the following semester in my Data Structures
course. Knowing the quantification rules for sum-
mation helped in the derivation of statement exe-
cution counts in the analysis of algorithms.
Knowing the formal properties of Hoare triples
and loop invariants gave students and teacher a
common vocabulary with which to explain and
understand complex algorithms.

Justification—Students have a peculiar habit of
questioning why they must learn the particular

topics we select for them. In particular, teaching
formal methods for the sole purpose of program
proof or program derivation can be difficult to
Justify. It is easier for students to accept formal
methods when it is cast as a mathematical disci-
pline that applies to discrete topics as well as pro-
gramming topics. This broadening of the domain
of application that the text achieves is a major
benefit to the curriculum.

Philosophical ruminations

The utility of formal methods in computer sci-
ence is still controversial. Some argue that formal
methods are too difficult to teach to undergradu-
ates. My experience with A Logical Approach to
Discrete Math convinced me that formal methods
are easily mastered at the undergraduate level. A
surprising observation is that the approach
seemed to help the weaker students more than the
stronger ones. It seems that strong students will
learn in spite of our approach. Rather than over-
whelming the weaker students, formal methods
gave them confidence in their newly learned skill
of symbol manipulation.

Others argue that formal methods are too cumber-
some to solve large software problems, and that
we should therefore not spend time teaching them
to our students. While it may be true that the ben-
efits of formal methods have been oversold and
that they are not the silver bullet for solving the
software crisis, I found that the benefit of teach-
ing formal methods in the discrete math course
had immediate benefit in following courses.

One problem is that some advocates of formal
methods either make or imply some rather extrav-
agant claims. For example, Dijkstra [3] goes so
far as to call Software Engineering “The Doomed
Discipline” because it cannot even approach its
goal. He disparages programming tools for soft-
ware production and algorithmic visualization
tools for education in favor of predicate calculus
applied in a calculational style.

The problem with extravagant claims is that they
frequently polarize their audiences. Many com-

SIGCSE

BULLETIN 1995

Vol. 27 No. 3 Sept.

63

puter scientists disagree with promises made by
formal methods advocates [8, 12]. Some people
interpret the current state of affairs in computer
science as evidence that formal methods have
failed. In questioning the foundations of com-
puter science, Wulf [13] states that he “._. gave
up on formal specifications and program verifica-
tion” because “... the problem proved to be hard,
and there was an easier problem at hand.” He
makes the point that the lack of a solution has so
far been masked by advancing technology.

After all, formal methods have been around a
long time. Where is the large commercial soft-
ware project whose success can be demonstrably
tied to the formal methods practiced by its devel-
opers? It is no wonder that excessive claims by
the advocates of formal methods fail to rally the
troops.

I fear, however, that we may be in danger of
throwing out the baby with the bath water. I came
away from this course convinced of two things.
First, formal methods will not be the silver bullet
for solving the software crisis in our industry. It
may be one of several bullets. Second, we educa-
tors should, nevertheless, require a firm founda-
tion of formal methods of all our undergraduate
computer science students.

Practicality is not the issue. The issue is the philo-
sophical question of what constitutes an educa-
tion in a scientific discipline. An economics
major who takes a calculus course may be satis-
fied by learning the rules for differentiating and
integrating a few functions that are representative
of her discipline. These simple skills are suffi-
cient for her needs as a non mathematics major.
However, no mathematics program would fail to
teach the proofs of the fundamental theorems of
its discipline to its majors.

Similarly, programming is an activity that almost
anyone can practice with a minimal amount of
learning. But a computer science major ought to
be conversant with the theoretical foundation of
programming, which is probably the most com-
mon activity of our discipline. The existence of

theory and its relationship to practice is what dis-
tinguishes a scientific discipline from a craft and
a college from a trade school.

Because the theory exists, it belongs in the core
of our curriculum. If a deeper understanding of
the basis of computer science also has the effect
of enabling our students to write better code, so
much the better. I personally think that this side
effect is inevitable.

Based on my experience with this course, I
believe that the appropriate place for integrating
formal methods in the undergraduate curriculum
is the traditional discrete mathematics course at
the sophomore level. Rather than the usual cur-
sory introduction to the predicate calculus, the
course should introduce the topic early and in
enough depth to enable students to develop com-
putational skills in proofs of mathematical theo-
rems and program correctness. Such a
reorganization of the discrete course means that
other topics may need to be de-emphasized.

Conclusion

Formal methods deserves a more prominent place
in the core undergraduate computer science cur-
riculum. The reason for this assertion is not that
formal methods may be a valuable software engi-
neering tool, but that they are the fundamental
theoretical foundation of programming.

References

[1] Berens, T., et al, ACM Forum. Commun.
ACM 34,9 (Sept. 1991), 16-18, 91-95.
Denman, R., et al, Derivation of programs
for freshmen. ACM SIGCSE Bulletin 26, 1
(March 1994), 116-120.

Dijkstra, E-W. On the cruelty of really
teaching computing science. Commun.
ACM 32,12 (Dec. 1989), 1398-1404.
Fekete, A. Reasoning about programs: Inte-
grating verification and analysis of algo-
rithms into the introductory programming
course. ACM SIGCSE Bulletin 25, 1 (March
1993), 198-202.

- [2]

[3]

[4]

SIGCSE

BULLETIN Yo!-

27 No. 3 gept. 1995

64

[5] Gries, D. Calculation and discrimination: A
more effective curriculum. Commun. ACM
34, 3 (March 1991), 45-55.

Gries, D. and Schneider, FB. A Logical
Approach to Discrete Math Springer-Ver-
lag, New York, 1993.

Lau, K.K,, et al, Towards an introductory
formal programming course. ACM SIGCSE
Bulletin 26, 1 (March 1994), 121-125.
Parnas, D.A,, et al, Colleagues respond to
Dijkstra’s comments. Commun. ACM 32, 12
(Dec. 1989), 1405-1414.

Saiedian, H. Towards more formalism in
software engineering education. ACM
SIGCSE Bulletin 25, 1 (March 1993), 193-
197.

Tucker, A.B., et al Computing Curricula
1991: Report of the ACM/IEEE-CS Joint
Curriculum Task Force ACM Press, New
York, 1991. ‘

Warford, J.S. Review number 9407-0412.
Computing Reviews 35, 7 (July 1994), 340-
341.

Wielgus, W., et al, ACM Forum. Commun.
ACM 33, 4 (April 1990), 396-398.

Wulf, W.A. Is CS built on a foundation of
sand? Computing Research News 4, 3 (May
1992), 2. :

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

ekkk ADT's References From Page 59%#kki

References:

[1]. Gersting, Judith L., "A Software Engineering Frosting
on a Traditional CS-1 Course", Proc of the 25th SIGCSE
Technical Symposium on Computing Science Education,
233-237.

[2]. Jarc, Duane M., "Data Structures:A Unified View",
SIGCSE Bulletin, Vol 26, No. 2, June 1994, 2-4.

[3]. Turner, A. Joe, "A Summary of the ACM/IEEE-CS
Joint Curriculum Task Force Report Computing Curricula
1991", Comm of the ACM, Vol 34, No. 6, June 1991,
69-84.

