
Prolog

• Declarative/logic paradigm

• Functional paradigm – No assignment
statement

• Declarative paradigm – No program!
Specification without implementation.

Prolog

• Declarative/logic paradigm

• Functional paradigm – No assignment
statement

• Declarative paradigm – No program!
Specification without implementation.

Prolog

• Declarative/logic paradigm

• Functional paradigm – No assignment
statement

• Declarative paradigm – No program!
Specification without implementation.

Using Prolog

• Two shells

• vi to edit and save the database, or more
to view it

• Prolog to query the database

ânn

4 Chapter 1 lntroduction to Prolog

Figure 1.1 A family tree.

This program consists of six clauses. Each of these clauses declares one fact about
the parent relation. For example, parent(tom, bob) is a particular instqnce of the
parent relation. In general, a relation is defined as the set of all its instances.

When this program has been communicated to the Prolog system, Prolog can
be posed some questions about the parent relation. For example: Is Bob a parent
of Pat? This question can be communicated to the Prolog system by typing:

?- parent(bob, pat).

Having found this as an asserted fact in the program, Prolog will answer:

yes

A further query can be:

?- parent(liz, pat),

t'îi answers:

because the program does not mention anything aboutLiz being a parent of Pat. It
also answers 'no' to the question:

?- parent(tom, ben).

More interesting questions can also be asked. For example: Who is Liz's parent?

?- parent(X, liz).

Prolog will now tell us what is the value of X such that the above statement is true.
So the answer is:

X=tom

,,t

...:
,l
ii
5:ã
*
.â

*
ç
4
#
ä
â
.æ
ãsã
sãê*
.ë,.Ê

'9.*
æ

e
d,*

I:ttíçt:
t:

The question
?- parent(tr,

This time thel
solution:

X=ann
We may now
find:

X=pat
If we request f
the solutions .

Our progra
whom? That i

Find X and

This is express

?- parent(X,

Prolog now flr
displayed one
the solutions I

x=pam
Y = bob;
X=tom
Y = bob;
X=tom
Y =liz;

We can alwa¡
semicolon.

Our exampJ
is a grandparr
illustrated by ì

(1) Who is a 1

(2) Who is a I

parent

parent

ì
t
I
I gr

Figure 1.2 The ¡

ânn

4 Chapter 1 lntroduction to Prolog

Figure 1.1 A family tree.

This program consists of six clauses. Each of these clauses declares one fact about
the parent relation. For example, parent(tom, bob) is a particular instqnce of the
parent relation. In general, a relation is defined as the set of all its instances.

When this program has been communicated to the Prolog system, Prolog can
be posed some questions about the parent relation. For example: Is Bob a parent
of Pat? This question can be communicated to the Prolog system by typing:

?- parent(bob, pat).

Having found this as an asserted fact in the program, Prolog will answer:

yes

A further query can be:

?- parent(liz, pat),

t'îi answers:

because the program does not mention anything aboutLiz being a parent of Pat. It
also answers 'no' to the question:

?- parent(tom, ben).

More interesting questions can also be asked. For example: Who is Liz's parent?

?- parent(X, liz).

Prolog will now tell us what is the value of X such that the above statement is true.
So the answer is:

X=tom

,,t

...:
,l
ii
5:ã
*
.â

*
ç
4
#
ä
â
.æ
ãsã
sãê*
.ë,.Ê

'9.*
æ

e
d,*

I:ttíçt:
t:

The question
?- parent(tr,

This time thel
solution:

X=ann
We may now
find:

X=pat
If we request f
the solutions .

Our progra
whom? That i

Find X and

This is express

?- parent(X,

Prolog now flr
displayed one
the solutions I

x=pam
Y = bob;
X=tom
Y = bob;
X=tom
Y =liz;

We can alwa¡
semicolon.

Our exampJ
is a grandparr
illustrated by ì

(1) Who is a 1

(2) Who is a I

parent

parent

ì
t
I
I gr

Figure 1.2 The ¡

Defining relations by facts

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

Demo

•?- consult(‘ch1.pl’).

• ?- halt. % to quit

• ; % next solution

• a % all solutions

• <ret> % stop

auses declares one fact about
is a particular instønce of the
: set of all its instances.
he Prolog system, Prolog can
For example: Is Bob a parent
rolog system by Çping:

Prolog will answer:

ut Liz being a parent of Pat. It

mple: Who is Liz's parent?

tt the above statement is true.

1.1 Defining relations by facts 5

The question Who are Bob's children? can be communicated to Prolog as:

?- parent(bob, X).

This time there is more than iust one possible answer. Prolog frrst answers with one
solution:

X=ann
We may now request another solution (by Wping a semicolon), and Prolog will
ñnd:

X=pat
If we request further solutions (semicolon again), Prolog will answer'no'because all
the solutions have been exhausted.

Our program can be asked an even broader question: Who is a parent of
whom? That is:

Find X and Y such that X is a parent of Y.

This is expressed in Prolog by:

?- parent(X, Y).

Prolog now finds all the parent-child pairs one after another. The solutions will be
displayed one at a time as long as we tell Prolog we want more solutions, until all
the solutions have been found. The answers are output as:

x=pam
Y = bob;
X=tom
Y = bob;
X=tom
Y = liz;

We can always stop the stream of solutions by typing a return instead of a
semicolon.

Our example program can be asked still more complicated questions like: Who
is a grandparent of Jim? This query has to be broken down into two steps, as

illustrated by Figure 1.2.

(1) \Âfho is a parent of Jim? Assume that this is some Y.

(2) Who is a parent of Y? Assume that this is some X.

parent

parent

Figure 1.2 The grandparent relation expressed as a composition of two parent relations.

I
I
I
I

grandparent

Who is a grandparent of jim?
1. Who is a parent of jim? Y
2. Who is a parent of Y? X
Query:
?- parent(Y, jim), parent(X, Y).

Who are tom’s grandchildren?
?- parent(tom, X), parent(X, Y).

Who are tom’s grandchildren?
?- parent(tom, X), parent(X, Y).

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

Exits one goal, and calls the next goal.
Exit means “success”.

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

The invocation number.
Unique for every invocation.

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

The index number.
The number of direct ancestors of the goal,

i.e., the current depth of the goal.

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

The invocation number increases.
Now working off of invocation 1.

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

The index number remains 1.
No direct ancestors of the goal,

i.e., the current depth of the goal is 1.

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

Redo indicates backtracking.

| ?- parent(tom, X), parent(X, Y).
 1 1 Call: parent(tom,_273) ?
 1 1 Exit: parent(tom,bob) ?
 2 1 Call: parent(bob,_277) ?
 2 1 Exit: parent(bob,ann) ?

X = bob
Y = ann ? ;
 2 1 Redo: parent(bob,ann) ?
 2 1 Exit: parent(bob,pat) ?

X = bob
Y = pat ? ;
 1 1 Redo: parent(tom,bob) ?
 1 1 Exit: parent(tom,liz) ?
 2 1 Call: parent(liz,_277) ?
 2 1 Fail: parent(liz,_277) ?

(1 ms) no

Demo trace

Do ann and pat have a common parent?
?- parent(X, ann), parent(X, pat).

Do ann and pat have a common parent?
?- parent(X, ann), parent(X, pat).

Bratko vs. gprolog
In gprolog, identical functors must be contiguous.

Bratko
female(pam).
male(tom).
male(bob).
female(liz).
female(ann).
female(pat).
male(jim).

gprolog
female(pam).
female(liz).
female(ann).
female(pat).
male(tom).
male(bob).
male(jim).

-
10 Chapter 1 lntroduction to Prolog

female

parent 1, mother parent

parent

Figure 1.3 Definition graphs for the relations mother and grandparent in terms of
relations parent and female.

Relations such as parent and mother can be illustrated by diagrams such as
those in Figure 1.3. These diagrams conform to the following conventions.
Nodes in the graphs correspond to obiects - that is, arguments of relations. Arcs
between nodes correspond to binary relations. The arcs are oriented so as to
point from the first argument of the relation to the second argument. Unary
relations are indicated in the diagrams by simply labelling the corresponding
obiects with the name of the relation. The relations that are being defined are
represented by dashed arcs. So each diagram should be understood as follows: if
the relations shown by solid arcs hold, then the relation shown by a dashed arc
also holds.

Such graphical illustrations may be very helpfuI when we think about how to
define new relations. Consider the grandparent relation. It can be, according to
Figure 1.3, immediately written in Prolog as:

grandparent(X, Z) i parent(X, Y), parent(Y, Z).

At this point it will be useful to make a comment on the layout of our programs.
Prolog gives us almost full freedom in choosing the layout of the program. So we
can insert spaces and new lines as it best suits our taste. In general we want to make
our programs look nice and tidy, and easy to read. To this end we will often choose
to write the head of a clause and each goal of the body on a separate line. When
doing this, we will indent the goals in order to make the difference between the
head and the goals more visible. For example, the grandparent rule would be,
according to this convention, lvritten as:

grandparent(X, Z) t
parent(X, Y),
parent(Y, Z).

Figure 1.4 illustrates the sister relation:

Fo¡ all X and Y,
X is a sister ofY if
(1) both X and Y have the same parent, and
(2) Xisafemale.

grandparent

I
I
I
I
,
t

I

parent

female
siste

Figure 1.4 Definin¡

The graph in Figu:

sister(X, Y) :-
parent(Z, X),
parent(Z,Y),
female(X).

Notice the way in
been expressed. T
pafent of x, and t
way would be to s

Z2.We can now a

?- sister(ann, pa

The answer will br
that the sister rêlat
flaw in our progra

?- sister(X, pat).

Prolog will find tv
X = anni
X=pat

So, Pat is a sister'
sister relation. Hc
perfectly logical.
different if they ar

that X and Y can I

has a parent is a s

To correct our
ent. We can stat(
can then be:

sister(X, Y) :-
parent(Z, X),
parent(2, Y),
female(X),
X\=Y'

Defining relations by rules

-
10 Chapter 1 lntroduction to Prolog

female

parent 1, mother parent

parent

Figure 1.3 Definition graphs for the relations mother and grandparent in terms of
relations parent and female.

Relations such as parent and mother can be illustrated by diagrams such as
those in Figure 1.3. These diagrams conform to the following conventions.
Nodes in the graphs correspond to obiects - that is, arguments of relations. Arcs
between nodes correspond to binary relations. The arcs are oriented so as to
point from the first argument of the relation to the second argument. Unary
relations are indicated in the diagrams by simply labelling the corresponding
obiects with the name of the relation. The relations that are being defined are
represented by dashed arcs. So each diagram should be understood as follows: if
the relations shown by solid arcs hold, then the relation shown by a dashed arc
also holds.

Such graphical illustrations may be very helpfuI when we think about how to
define new relations. Consider the grandparent relation. It can be, according to
Figure 1.3, immediately written in Prolog as:

grandparent(X, Z) i parent(X, Y), parent(Y, Z).

At this point it will be useful to make a comment on the layout of our programs.
Prolog gives us almost full freedom in choosing the layout of the program. So we
can insert spaces and new lines as it best suits our taste. In general we want to make
our programs look nice and tidy, and easy to read. To this end we will often choose
to write the head of a clause and each goal of the body on a separate line. When
doing this, we will indent the goals in order to make the difference between the
head and the goals more visible. For example, the grandparent rule would be,
according to this convention, lvritten as:

grandparent(X, Z) t
parent(X, Y),
parent(Y, Z).

Figure 1.4 illustrates the sister relation:

Fo¡ all X and Y,
X is a sister ofY if
(1) both X and Y have the same parent, and
(2) Xisafemale.

grandparent

I
I
I
I
,
t

I

parent

female
siste

Figure 1.4 Definin¡

The graph in Figu:

sister(X, Y) :-
parent(Z, X),
parent(Z,Y),
female(X).

Notice the way in
been expressed. T
pafent of x, and t
way would be to s

Z2.We can now a

?- sister(ann, pa

The answer will br
that the sister rêlat
flaw in our progra

?- sister(X, pat).

Prolog will find tv
X = anni
X=pat

So, Pat is a sister'
sister relation. Hc
perfectly logical.
different if they ar

that X and Y can I

has a parent is a s

To correct our
ent. We can stat(
can then be:

sister(X, Y) :-
parent(Z, X),
parent(2, Y),
female(X),
X\=Y'

Defining relations by rules

mother(X, Y) :- % X is the mother of Y if
 parent(X, Y), % X is a parent of Y and
 female(X). % X is female

-
10 Chapter 1 lntroduction to Prolog

female

parent 1, mother parent

parent

Figure 1.3 Definition graphs for the relations mother and grandparent in terms of
relations parent and female.

Relations such as parent and mother can be illustrated by diagrams such as
those in Figure 1.3. These diagrams conform to the following conventions.
Nodes in the graphs correspond to obiects - that is, arguments of relations. Arcs
between nodes correspond to binary relations. The arcs are oriented so as to
point from the first argument of the relation to the second argument. Unary
relations are indicated in the diagrams by simply labelling the corresponding
obiects with the name of the relation. The relations that are being defined are
represented by dashed arcs. So each diagram should be understood as follows: if
the relations shown by solid arcs hold, then the relation shown by a dashed arc
also holds.

Such graphical illustrations may be very helpfuI when we think about how to
define new relations. Consider the grandparent relation. It can be, according to
Figure 1.3, immediately written in Prolog as:

grandparent(X, Z) i parent(X, Y), parent(Y, Z).

At this point it will be useful to make a comment on the layout of our programs.
Prolog gives us almost full freedom in choosing the layout of the program. So we
can insert spaces and new lines as it best suits our taste. In general we want to make
our programs look nice and tidy, and easy to read. To this end we will often choose
to write the head of a clause and each goal of the body on a separate line. When
doing this, we will indent the goals in order to make the difference between the
head and the goals more visible. For example, the grandparent rule would be,
according to this convention, lvritten as:

grandparent(X, Z) t
parent(X, Y),
parent(Y, Z).

Figure 1.4 illustrates the sister relation:

Fo¡ all X and Y,
X is a sister ofY if
(1) both X and Y have the same parent, and
(2) Xisafemale.

grandparent

I
I
I
I
,
t

I

parent

female
siste

Figure 1.4 Definin¡

The graph in Figu:

sister(X, Y) :-
parent(Z, X),
parent(Z,Y),
female(X).

Notice the way in
been expressed. T
pafent of x, and t
way would be to s

Z2.We can now a

?- sister(ann, pa

The answer will br
that the sister rêlat
flaw in our progra

?- sister(X, pat).

Prolog will find tv
X = anni
X=pat

So, Pat is a sister'
sister relation. Hc
perfectly logical.
different if they ar

that X and Y can I

has a parent is a s

To correct our
ent. We can stat(
can then be:

sister(X, Y) :-
parent(Z, X),
parent(2, Y),
female(X),
X\=Y'

Defining relations by rules

grandparent(X, Z) :- % X is a grandparent of Z if
 parent(X, Y), % X is a parent of Y and
 parent(Y, Z). % Y is a parent of Z

mother(X, Y) :- parent(X, Y), female(X).

goal goal

bodyhead

A Prolog clause

mother(X, Y) :- parent(X, Y), female(X).

goal goal

bodyhead

A Prolog clause

Exit in a trace (success)

Recursive rules

.::i ta 4!.-.t

.;,fii*Ë
' 1::::t:::::t!'l

1.3 Recursive rules 13

Recursive rules

Let us add one more relation to our family program, the ancestor relation. This
relation will be defined in terms of the parent relation. The whole definition can
be expressed with two rules. .The first rule will define the direct (immediate)
ancestors and the second rule the indirect ancestors. We say that some X is an
indirect ancestor of some Z if there is a chain of parents between X and Z, as
illustrated in Figure 1.5. In our example of Figure 1.1, Tom is a direct ancestor of
Liz and an indirect ancestor of Pat.

The first rule is simple and can be written in Prolog as:

ancestor(X, Z\ -
parent(X, Z).

The second rule, on the other hand, is more complicated. The chain of parents may
present some problems because the chain can be arbitrarily long. One attempt to
deflne indirect ancestors could be as shown in Figure 1.6. According to this, the
ancestor relation would be defined by a set of clauses as follows:

ancestor(X, Z) t
parent(X, Z).

ancestor(X, Z) t
parent(X, Y),
parent(Y, Z).

ancestor(X, Z) i
parent(X, Yl),
parent(Yl, Y2),
patent(Y2, Z).

ancestor(X, Z\ ¡
parent(X, Yl),
parent(Yl, Y2),
parent(Y2, Y3),
parent(Y3, Z).

pârent \ ancestor parent
,

rg new clauses.

uestions.

rlly, true.
given condition.
n what things are true.
rc body. The body is a list
een goals are understood as

rody. Questions only have the
tty) body.
substituted by another object.

ied and are read as 'for all'.
riables that appear only in the

uce a one-argument relation

X has two children (introduce

:ion. Hint: It will be similar to

: relations parent and sister.
rle of Figure 1.3 for the aunt

I
I
I
I
I
I
I
I
I
I
I
I
,
tII

parent

parent

(a) o)

Figure 1".5 Examples of the ancestor relation: (a) X is a direct ancestor of Z; (b) X is an
indirect ancestor of Z.

âncestor

Recursive rules

14 Chapter 1 lntroduction to Prolog

parent parent parent

parent parent parent

pârent parent

pârent

Figute 1,6 Ancestor-successor pairs at various distances.

This program is lengthy and, more importantly, it only works to some extent. It
would only discover ancestors to a certain depth in a family tree because the length
of the chain of people between the ancestor and the successor would be limited by
the length of our ancestor clauses.

There is, however, a much more elegant and correct formulation of the
ancestor relation. It will work for ancestors at aîy depth. The key idea is to define
the ancestor relation in terms of itself. Figure 1.7 illustrates the idea:

For all X andZ,
X is an ancestor ofZlf
there is a Y such that
(1) X is a parent of Y and
(2) Y is an ancestor of Z.

parent

ancestor

I
I
I
I
t
I

ancestor
I
I
I
I
I
I
I
I
I
I
I
,t

I
t
I
I
I
t
I
t
I
I
I
I
I
I
I
I
I
,
t
tI

A Prolog claus

ancestor(X,
parent(X,
ancestor('

We have thus
consists of tw(
rules are rewri

ancestor(X,
parent(X,

ancestor(X,
parent(X,
ancestor(ì

The key to thi
definition ma¡
can we use tl
defrnitions are
understandabl
the Prolog sysl
Prolog can in(
fact, one of t
possible to sol
recursion.

Going back
That is: Who i

?- ancestor(1

X = bob;
X = anni
X=paq
X=iim

Prolog's answ
definition of t
important qu(
answers?

An informai
But first let u
extended grad
in Figure 1.8.
first will intror
programs.

The prograr
ancestor, etc. T
that these two
to consider the
is called a proc(

ancestor

ancestor

I
I
I
I
I
I
I
I
t
I
I
I
I
I
¡
I
I
I
t
,

I

ancestor

Figute 1.7 Recursive formulation of the ancestor relation.

Recursive rules

14 Chapter 1 lntroduction to Prolog

parent parent parent

parent parent parent

pârent parent

pârent

Figute 1,6 Ancestor-successor pairs at various distances.

This program is lengthy and, more importantly, it only works to some extent. It
would only discover ancestors to a certain depth in a family tree because the length
of the chain of people between the ancestor and the successor would be limited by
the length of our ancestor clauses.

There is, however, a much more elegant and correct formulation of the
ancestor relation. It will work for ancestors at aîy depth. The key idea is to define
the ancestor relation in terms of itself. Figure 1.7 illustrates the idea:

For all X andZ,
X is an ancestor ofZlf
there is a Y such that
(1) X is a parent of Y and
(2) Y is an ancestor of Z.

parent

ancestor

I
I
I
I
t
I

ancestor
I
I
I
I
I
I
I
I
I
I
I
,t

I
t
I
I
I
t
I
t
I
I
I
I
I
I
I
I
I
,
t
tI

A Prolog claus

ancestor(X,
parent(X,
ancestor('

We have thus
consists of tw(
rules are rewri

ancestor(X,
parent(X,

ancestor(X,
parent(X,
ancestor(ì

The key to thi
definition ma¡
can we use tl
defrnitions are
understandabl
the Prolog sysl
Prolog can in(
fact, one of t
possible to sol
recursion.

Going back
That is: Who i

?- ancestor(1

X = bob;
X = anni
X=paq
X=iim

Prolog's answ
definition of t
important qu(
answers?

An informai
But first let u
extended grad
in Figure 1.8.
first will intror
programs.

The prograr
ancestor, etc. T
that these two
to consider the
is called a proc(

ancestor

ancestor

I
I
I
I
I
I
I
I
t
I
I
I
I
I
¡
I
I
I
t
,

I

ancestor

Figute 1.7 Recursive formulation of the ancestor relation.

ancestor(X, Z) :- %rule a1
 parent(X, Z).

Recursive rules

14 Chapter 1 lntroduction to Prolog

parent parent parent

parent parent parent

pârent parent

pârent

Figute 1,6 Ancestor-successor pairs at various distances.

This program is lengthy and, more importantly, it only works to some extent. It
would only discover ancestors to a certain depth in a family tree because the length
of the chain of people between the ancestor and the successor would be limited by
the length of our ancestor clauses.

There is, however, a much more elegant and correct formulation of the
ancestor relation. It will work for ancestors at aîy depth. The key idea is to define
the ancestor relation in terms of itself. Figure 1.7 illustrates the idea:

For all X andZ,
X is an ancestor ofZlf
there is a Y such that
(1) X is a parent of Y and
(2) Y is an ancestor of Z.

parent

ancestor

I
I
I
I
t
I

ancestor
I
I
I
I
I
I
I
I
I
I
I
,t

I
t
I
I
I
t
I
t
I
I
I
I
I
I
I
I
I
,
t
tI

A Prolog claus

ancestor(X,
parent(X,
ancestor('

We have thus
consists of tw(
rules are rewri

ancestor(X,
parent(X,

ancestor(X,
parent(X,
ancestor(ì

The key to thi
definition ma¡
can we use tl
defrnitions are
understandabl
the Prolog sysl
Prolog can in(
fact, one of t
possible to sol
recursion.

Going back
That is: Who i

?- ancestor(1

X = bob;
X = anni
X=paq
X=iim

Prolog's answ
definition of t
important qu(
answers?

An informai
But first let u
extended grad
in Figure 1.8.
first will intror
programs.

The prograr
ancestor, etc. T
that these two
to consider the
is called a proc(

ancestor

ancestor

I
I
I
I
I
I
I
I
t
I
I
I
I
I
¡
I
I
I
t
,

I

ancestor

Figute 1.7 Recursive formulation of the ancestor relation.

ancestor(X, Z) :- %rule a1
 parent(X, Z).

ancestor(X, Z) :- %rule a2
 parent(X, Y),
 ancestor(Y, Z).

ancestor(X, Z) :- parent(X, Z).
(1,1)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).
(1,1) (2,2)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).
(1,1) (2,2)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).
 (4,3)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).
 (4,3)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

true ? ;
 1 1 Redo: ancestor(tom,pat) ?
 3 2 Redo: ancestor(bob,pat) ?
 4 3 Call: parent(bob,_385) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

true ? ;
 1 1 Redo: ancestor(tom,pat) ?
 3 2 Redo: ancestor(bob,pat) ?
 4 3 Call: parent(bob,_385) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

true ? ;
 1 1 Redo: ancestor(tom,pat) ?
 3 2 Redo: ancestor(bob,pat) ?
 4 3 Call: parent(bob,_385) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

true ? ;
 1 1 Redo: ancestor(tom,pat) ?
 3 2 Redo: ancestor(bob,pat) ?
 4 3 Call: parent(bob,_385) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

true ? ;
 1 1 Redo: ancestor(tom,pat) ?
 3 2 Redo: ancestor(bob,pat) ?
 4 3 Call: parent(bob,_385) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).
 (4,3)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

| ?- ancestor(tom, pat).
 1 1 Call: ancestor(tom,pat) ?
 2 2 Call: parent(tom,pat) ?
 2 2 Fail: parent(tom,pat) ?
 2 2 Call: parent(tom,_336) ?
 2 2 Exit: parent(tom,bob) ?
 3 2 Call: ancestor(bob,pat) ?
 4 3 Call: parent(bob,pat) ?
 4 3 Exit: parent(bob,pat) ?
 3 2 Exit: ancestor(bob,pat) ?
 1 1 Exit: ancestor(tom,pat) ?

true ? ;
 1 1 Redo: ancestor(tom,pat) ?
 3 2 Redo: ancestor(bob,pat) ?
 4 3 Call: parent(bob,_385) ?

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

ancestor(X, Z) :- parent(X, Z).
 (4,3)
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
(1,1) (2,2) (3,2)

etc. ... eventually fails

parent(bob, pat)

ancestor(t ob, pat)

parent(tom, Y)
ancestor(Y, pat)parent(tom, pat)

ancestor(tom, pat)

20 Chapter 1 lntroduction to Prolog

by rule a1 by rule a2

by fact parent(tom,bob), Y = bob

by rule al

yes, by fact parent(bob,pat)

Figure 1.9 The complete execution trace to satisfy the goal ancestor(tom, pat). The
left-hand branch fails, but the right-hand branch proves the goal is satisfiable.

The original goal ancestor(tom, pat) is then replaced by a new goal:

parent(tom, pat)

There is no clause in the program whose head matches the goal parent(tom,pat),
therefore this goal fails. This means the flrst alternative with rule ø1lnas failed. Now
Prolog backtracks to the original goal in order to try the alternative way to derive the
top goal ancestor(tom,pat). The rule ø2 is thus tried:

ancestor(X, Z\ :-
parent(X, Y),
ancestor(Y, Z).

As before, the variables X and Z become instantiated as:

X : tom, 2: pat

But Y is not instantiated yet. The top goal ancestor(tom, pat) is replaced by two
goals:

parent(tom, Y),
ancestor(Y, pat)

Prolog tries to satisfy the two goals in the order in which they appear. The first goal
matches two facts in the program: parent(tom,bob) and parent(tom,liz). Prolog frrst
tries to use the fact that appears first in the program. This forces Y to become
instantiated to bob. Thus the first goal has been satisfied, and the remaining goal
has become:

ancestor(bob, pat)

To satisfy this goal the rule ø1 is used again. Note that this (second) application of
the same rule has nothing to do with its previous application. Therefore, Prolog

no

uses a new set (

we shall renam

ancestor(X,
parent(X',

The head has tr

X':bob,Z'=
The current goi

parent(bob, :

This goal is imr
completes the r

Here is a su
the trace in Fig
tree correspon(
between the nr
that transform
is satisfied wht
labelled 'yes'. I
programs is tht
unsuccessful bl
backtracks to tl
node. Automatit

EXERCISE

1.7 Try to understa
program of Fig
style of Figure

(a) ?- parent(p
(b) ?- mother(1

(c) ?- grandpar
(d) ?- grandpar

t-:.:-;
,4,.i# Declarative

In our exampl
the program w
It therefore m¿
programs; nam

' the declarøtit
. tlre procedurt

þå

file://localhost/Users/warford/Documents/Classes/cs450/prolog
file://localhost/Users/warford/Documents/Classes/cs450/prolog
file://localhost/Users/warford/Documents/Classes/cs450/prolog

