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Atoms and numbers
In chapter 1 we have seen some examples of atoms and variables. In general,
however, atoms can take more complicated forms - that is, strings of the follow-
ing characters:
. upper-case letters A,B, . . . ,2
. lower-case letters a, b, . . . , z
. digitsO,'J.,2,...,9
. special characters such as * -* I < >: : . &
Atoms can be constructed iri three ways:

(1) Strings of ietters, digits and the underscore character, ,_,, starting with a lower-
case letter:

anna
nil
x25
x_25
x_2548

.x_
xv
alpha_beta procedure
missJones

(2) Strings of special characters:

+

When using atoms of this form, some care is necessary because some strings
of special characters already have a predefined meaning. An example is ,:-,.
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Atoms
• Start with lowercase letters
• Strings of special characters, e.g. :- is an atom
• Enclosed in single quotes, e.g. ‘Tom’ is an atom



Anonymous variables

• Singleton variable – variable in a rule that is named 
but not used

• Anonymous variable – an unnamed variable in a 
rule

• Avoid singleton variables
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Each time a single underscore character occurs in a clause it represents a new
anonymous variable. For example, we can define that an object is visible if it is seen
by the camera at some x-y coordinates:

visible( Obiect) :- see( Obiect,_, _).

This is equivalent to:

visible( Obiect) :- see( Object, X, Ð.
But this is, of course, quite different from:

visible( Obiect) :- see( Object, X, X).

If an anonymous variable appears in a question then its value is not output
when Prolog answers the question. If we are interested in people who have chil-
dren, but not in the names of the children, then we can simply ask:

?- parent( X, _).

The lexical scope of variable names is one clause. This means that, for example, if
the name XL5 occurs in two clauses, then it signifies two different variables. But
each occurrence of X15 within the same clause means the same variable. The sit-
uation is different for constants: the same atom always means the same object in
any clause, throughout the whole program.

2.1.3 Structures
Structured objects (or simply structures) are objects that have several components.
For example, the date can be viewed as a structure with three components: day,
month, year. The components themselves can, in turn, be structures. Although
composed of several components, structures are treated in the program as single
objects. In order to combine the components into a single object we have to
choose a functor. A suitable functor for our example is date. Then the date 1 May
2001 can be written as (see Figwe 2.2):

date( L, may, 20Ol)

All the components in this example are constants (two integers and one
atom). Components can also be variables or other structures. Any day in May
can be represented by the structure:

date( Day, may,2OOI)

date( 1, may,2001)

t \l/
2001 frrnctor arguments

Figure. 2.2 Date is an example of a structured oblect: (a) as it is represented as a tree; (b) as
it is written in Prolog.

(b)
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Structures
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Atoms, numbers, variables and structures are all terms.



36 Chapter 2 Syntax and Meaning of Prolog Programs

5

4

3

2

1

(6.4)

p1 = point

Figute 2.4 Tree retr

We can, howeve
dimensions, and

point( Xl, Yl)
If the same namt
point above, the
arguments, and r

arguments and tt
is defrned by two
(1) the name, wl
(2) the arity -th

As already ex¡
the program by 1

rally complicate<
shows the tree st:

(a+b)*(c-

P2: Q.3)

.S

Pr = (1.r)

(4.2)

(7.r)

12345678
Figure 2.3 Some simple geometric objects.

Note that Day is a variable and can be instantiated to any object at some later point
in the execution.

This method for data structuring is simple and powerful. It is one of the reasens
why Prolog is so naturally applied to problems that involve s)¡mbolic manipulation.

Syntactically, all data objects in Prolog ate terms. For example,
may

and

date( 1, may,2OOl)

are terms.
All structured objects can be pictured as trees (see Figure 2.2 for an example).

The root of the tree is the functor, and the children of the root are the compo-
nents. If a component is also a structure then it is a subtree of the tree that corre-
sponds to the whole structured object. our next example will show how
structures can be used to represent some simple geometric objects (see Figure 2.3).
A point in two-dimensional space is defined by its tr,vo coordinates; a line seg-
ment is defined by two points; and a triangle can be defined by three points. Let
us choose the following functors:

point for points,
seg for line segments, andtriangle for triangles.

Then the objects in Figure 2.3 can be represented as follows:
pl : point(l,l)pl: point(2,3)
S : seg( P'1., P2): seg( point(l ,l), point(2,3) )T: triangle( point( ,Z), point(6,4), point(7,l) )

The corresponding tree representation of these objects is shown in Figure 2.4.
The functor at the root of the tree is called the princípal functor of the term. So
seg is the principal functor in the term seg(point(l,i),poinr(2,3)).

If in the same program we also had points in three-dimensional space then we
could use another functor, point3, say, for their representation:

point3( X,Y, Z)

point

/\4'.

*

+

a b

Figure 2.5 A tree s

(c - s).
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P1 represented as point( 1, 1).
S represented as seg( point( 1, 1), point( 2, 3).
T represented as
triangle( point( 4, 2), point( 6, 4), point( 7, 1)).
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Figure 2.4 Tree representation of the obiects in Figure 2.3.

We can, however, use the same name, point, for points in both two and three
dimensions, and write for example:

point( Xl, Yl) and point( X, Y, Z)

If the same name appears in the program in two different roles, as is the case for
point above, the Prolog system will recognize the difference by the number of
arguments, and will interpret this name as two functors: one of them with two
arguments and the other one with three arguments. This is so because each functor
is defined by two things:
(1) the name, whose syntax is that of atoms;
(2) the ørtty -that is, the number of arguments.

As already explained, all structured objects in Prolog are trees, represented in
the program by terms. we will study two more examples to illustrate how natu-
rally complicated data objects can be represented by Prolog terms. Figure 2.5
shows the tree structure that corresponds to the arithmetic expression:

(a+b)"(c-5)

pointto any object at some later point

powerful. It is one of the reasons
involve Ð¡mbolic manipulation.
ts. For example,

(see Figure 2.2 for an example).
lren of the root are the compo-
a subtree of the tree that corre-

next example will show how
lometric objects (see Figure 2.3).
its two coordinates; a line seg-
be defined by three points. Let

rs follows:

rbjects is shown in Figure 2.4.
trincipal fiinctor of the term. So
1),point(2,3)).
tree-dimensional space then we
presentation:

./\

/\42

/\
ab

/\7l/\64

*

+

/\
c 5

Figure.2.5 A tree structu¡e that corresponds to the arithmetic expression (a + b) *
(c - s).
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According to the syntax of terms introduced so far this can be written, using the
symbols '*','*' and'J as functors, as follows:

*( +(a, b), - ( c, 5) )

This is, of course, a legal Prolog term, but it is not in the form that we would
normally use. We would normally prefer the usual infix notation as used in
mathematics. In fact, Prolog also allows us to use the infix notation so that the
s)¡mbols '*','l' and'J are written as infix operators. Details of how the pro-
grammer can define his or her own operators will be discussed in Chapter 3.

As the last example we consider some simple electric circuits shown in Fig-
ure 2.6. The right-hand side of the figure shows the tree representation of these
circuits. The atoms rl, 12, 13 and 14 are the names of the resistors. The functors
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seq( 11, 12)
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Figure 2.6 Some simple electric circuits and their tree representations: (a) sequential
composition of resistors 11 and û; þ) parcllel composition of two resistors; (c) paratlel
composition of three resistors; (d) parallel composition of 11 and another circuit.
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Given two tern
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(2) the variables
. after the subsr
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mathematics. In fact, Prolog also allows us to use the infix notation so that the
s)¡mbols '*','l' and'J are written as infix operators. Details of how the pro-
grammer can define his or her own operators will be discussed in Chapter 3.

As the last example we consider some simple electric circuits shown in Fig-
ure 2.6. The right-hand side of the figure shows the tree representation of these
circuits. The atoms rl, 12, 13 and 14 are the names of the resistors. The functors
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Figure 2.6 Some simple electric circuits and their tree representations: (a) sequential
composition of resistors 11 and û; þ) parcllel composition of two resistors; (c) paratlel
composition of three resistors; (d) parallel composition of 11 and another circuit.
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Figure 2.7 Matching triangle( point(l,l), A, point(2,3) ) = triangle( X, point(4,Y),
point(2,Z) )

The following example will illustrate how matching alone can be used for
interesting computation. Let us return to the simple geometric objects of
Figarc 2.4, and define a piece of program for recognizing horizontal and vertical
line segments. 'Vertical' is a property of segments, so it can be formalized in Pro-
log as a unary relation. Figure 2.8 helps to formulate this relation. A segment is
vertical if the x-coordinates of its end-points are equal, otherwise there is no other
restriction on the segment. The property 'horizontal' is similarly formulated, with

point(X,Yl)

point(X.Y) point(X1.\')

point(X. Y)

Figure 2.8 Illustration of vertical and horizontal line segments.

Matching
= is the matching operator
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2.2 Matching 4"1

?- date( D, M, 2OO1) : date( Dl, may, Y1),
date( D, M, 2OOl) : date( 15, M, Y).

To satisfy the first goal, Prolog instantiates the variables as follows:
D: Dl
M: maY
Yl :2001

After having satisfied the second goal, the instantiation becomes more speciflc as
follows:

D:L5
Dl :15
M: maY
Yl:2OOl
Y: 2001

This example also shows that variables, during the execution of consecutive goals,
typically become instantiated to increasingly more specifrc values.

The general rules to decide whether two terms, S and T, match are as follows:

(1) If S and T are constants then S and T match only if they are the same
object.

(2) lf S is a variable and T is anything, then they match, and S is instantiated
to T. Conversely, if T is a variable then T is instantiated to S.

(3) If S and T are structures then they match only if
(a.¡ S and T have the same principal functor, and
(b) all their corresponding components match.

The resulting instantiation is determined by the matching of the components.

The last of these rules can be visualized by considering the tree representation of
terms, as in the example of Figure 2.7. Tlre matching process starts at the root
(the principal functors). As both functors match, the process proceeds to the
arguments where the pairs of corresponding arguments are matched. So the
whole matching process can be thought of as consisting of the following
sequence of (simpler) matching operations:

triangle : triangle,
point(l,l) : X,
A - point(4,Y),
point(2, 3) : point(2,2).

The whole matching process succeeds because all the matchings in the sequence
succeed. The resulting instantiation is:

¡ : point(L,l)
4: point(4,y)z:3

Matching
= is the matching operator
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Clause – a rule or a fact

Instance of clause C – C with each variable 
substituted by some term.

, is conjunction “and”

; is disjunction “or”

P :- Q ; R.

is the same as

P :- Q.
P :- R.
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The declarative meaning of programs determines whether a given goal is true,
and if so, for what values of variables it is true. To precisely define the declarative
meaning we need to introduce the concept of instance of a clause. An instance of
a clause C is the clause C with each of its variables substituted by some term. A
variant of a clause C is such an instance of the clause C where each variable is
substituted by another variable. For example, consider the clause:

ancestor( X, Y) :- parent( X, Y)-

Two variants of this clause are:

ancestor( A, B) :- parent( A, B).
ancestor( Xl, X2) :- parent( X't , X2\.

Instances of this clause are:

ancestor( peter, Z):- parent( peter, Z).
ancestor( peter, barry) :- parent( peter, barry ).

Given a program and a goal G, the declarative meaning says

A goal G is true (that is, satisfiable, or logically follows ftom the program) if and
only if:
(1) there is a clause C in the program such that
(2) there is a clause instance I of C such that

(a) the head of I is identical to G, and
(b) all the goals in the body of I are true.

This definition extends to Prolog questions as follows. In general, a question
to the Prolog system is a lisf of goals separated by commas. A list of goals is true
1f all thle goals in the list are true for the same instaîtiation of variables. The
values of the variables result from the most general instantiation.

A comma between goals thus denotes tl:re coniunction of goals: they aII have
to be true. But Prolog also accepts the disiunction of goals: any one of the goals
in a disjunction has to be true. Disiunction is indicated by a semicolon. For
example,

P:- Q; R.

is read: P is true if Q is true or R is true. The meaning of this clause is thus the same
as the meaning of the following two clauses together:

P:- Q.
P:- R.

The comma binds stronger than the semicolon. So the clause:

P:- Q, R; S, T, U.

is understood as:

P:- ( Q, R); ( S, T, U).

Declarative meaning – what?

G :- Q, R, S.

head body

goals

Query, ?- G.
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æ Procedural meaning

rctions can always be explicitly

Whenever several answers are

:latives if

:estor

:cessor

rlon notation?

semicolon notation.

a:.

:

The procedural meaning specifies how Prolog answers questions. To answer a
question means to try to satisfy a list of goals. Thus the procedural meaning of
Prolog is a procedure for executing a list of goals with respect to a given pro-
gram. To 'execute goals' means: try to satisfy them.

Let us call this procedure êxecute. As shown in Figure 2.9, t}]re inputs to and
the outputs from this procedure are:

input: a program and a goal list
output: a success/failure indicator and an instantiation of variables

The meaning of the two output results is as follows:

(1) The success/failure indicator is 'yes' if the goals are satisfiable and 'no'
otherwise. We say that 'yes' signals a successfi.tl termination and 'no' a

føilure.
(2) At instantiation of variables is only produced in the case of a successful

termination; in the case of failure there is no instantiation.
In Chapter 1, we have already discussed informally what procedure execute

does, under the heading 'How Prolog answers questions'. What follows in the
rest of this section is just a more formal and systematic description of this proc-
ess, and can be skipped without seriously affecting the understanding of the rest
of the book.

Particular operations in the goal execution process are illustrated by the exam-
ple in Figure 2.L0. ft may be helptul to study Figure 2.10 before reading the fol-
lowing general description.

To execute a list of goals:

Gt,Gz,...,G-

program

success/failure indicator
goal list

instantiation of variables

Figure 2.9 Input/output view of the procedure that executes a list of goals.

execute

Procedural meaning – how?



Program (data base)
big( bear).      % Clause 1
big( elephant).  % Clause 2
small( cat).     % Clause 3

brown( bear).    % Clause 4
black( cat).     % Clause 5
gray( elephant). % Clause 6
dark( Z) :-
  black( Z).     % Clause 7: Anything black is dark
dark( Z) :-
  brown( Z).     % Clause 8: Anything brown is dark

Goal list
?- dark( X), big( X).

Execution trace
dark( X), big( X).
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procedure execute (Program, GoalList, Success) ;

Input arguments:
Program: list of clauses
GoalLíst: list of goals

Output argument:
Success: truth value; Success will become true IÍ GoalLisú is true with respect to Program

Local variables:
Goal: goal
OtherGoals: list of goals
Satisfted: truth value
MatchOK: truth value
Instant; instantiation of variables
H, II,81, B7', . . . , Bn, Bn': goals

Auxiliary functions:
empty(L)t returns true if I is the empty list
head(L): retums the first element of list I
tøilQ.): returns the rest of I
appendQl,L2): appends list L2 at the end of list Il
match(ll,T2,MatchOK,Instant): tries to match terms T7 and T2; if succeeds

then MatchOK is true and læfdnf is the corresponding instantiation of variables
substifute(nstant, Goals): substitutes variables in Goøls according to il]IstanlTafron Instant

begin
iÎ enpty(GoølLisf) then Success := true
else

begin
G o al := he ad(G o alList) ¡
Other G o al s : = tail(G o alList) ;
Satisfied 2= false;
while not Satisfied and "more clauses in program" do

begin
Let next clause in Program be

H-87¡...,8r1.
Construct a vøriant ofthis clause

ft:-81t,...,8n'.
match(G o aI, H,M atchO K, In s tant) ;
iÎ MatchOKthen

begin
NewGoøls := øPqend(lBl', . . . ,Bn'1, OtherGoals);
N ewG o als .= sub stitute(Instant,N øuGoøIs) ;
e x e cute(P r o gr am,N ew G o al s,S atßfi e d)

end
end;

Success := Satisfted
end

end;

Now we general
W:

?- mea{( M), r
M:beef, W.
M:beet W=
M:beef, W,
M: chicken,
M: chicken,

M: fish, W =

Several additi
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Figure 2.11 Executing Prolog goals.
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Figure 2.11 Executing Prolog goals.



Reordering clauses and goals

• Reordering can have a big effect on efficiency.

• In extreme cases, reordering can cause an infinite 
recursive loop.
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?- ancl( tom, pat).
yes
?- anc2( tom, pat).
yes
?- anc3( tom, pat).
yes
?- anc4( tom, pat).

In the last case Prolog cannot ûnd the answer. This is manifested on the displayby a
Prolog's message zuch as 'Insuff,cient memory' or'Stack overflow'.

Figure L.9 in Chapter 1 showed the trace of anct (in Chapter L called ancestor)
produced by the above question. Figures 2.13-15 show the corresponding traces

anc2(X,Z):-
parent( X, Y),
anc2(Y,Z).

anc2(X,Z)r
parent( X, Z).

Y'= bob

yes

Y" = ann y" = pat

no no
Y"'= jim

no no

Figute 2.13 The complete execution trace to satisfy the goal anc2( tom, pat). All the
alternative paths in the large left subtree fail, before the right-most path succeeds.
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Figure 2.14 The execution trace to satisfy the goal anc3( tom' pat)'
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y" = pat

no
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Figure 2.15 Infinite execution tlace to satisfy the goal anc4( tom, pat)

goal anc2( tom, pat). All the
I right-most path succeeds.

for anc}, anc3 and anc4. Figure 2.15 clearþ shows that anc4 is hopeless, and
Figure 2.13 indicates that anc2 is rather inefficient compaled to ancl: anc2 does
much more searching and backtracking in the family tree.

This comparison reminds us of a general practical heuristic in problem solv-
ing: it if usuãlty best to try the simplest idea first. In our case, all the versions of
the ancestor relation are based on two ideas:
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