

Figure 4.1 Structuring information about the family.
family(
person(tom, fox, date(7,may,1960), works(bbc,15200)), person(ann, fox, date(9,may,1961), unemployed),
[person(pat, fox, date(5,may,1983), unemployed), person(jim, fox, date(5,may,1983), unemployed)]).

(b)

(c)

Figure 4.2 Specifying objects by their structural properties: (a) any Armstrong family; (b) any family with exactly three children; (c) any family with at least three children. Structure (c) makes provision for retrieving the wife's name through the instantiation of the variables Name and Surname.

Figure 7.10

A finite state machine (FSM) to parse an identifier.

Example 7.4 To parse the string cab3, you would make the following transitions:

Current state: A	Input: cab3	Scan c and go to B.
Current state: B	Input: ab3	Scan a and go to B.
Current state: B	Input: b3	Scan b and go to B.
Current state: B	Input: 3	Scan 3 and go to B.
Current state: B	Input:	Check for final state.

Because there is no more input and the last state is B, a final state, cab3 is a valid identifier.

Figure 7.14

A nondeterministic FSM to parse a signed integer.

Example 7.5 You must make the following decisions to parse +203 with this nondeterministic FSM:

Current state: A Input: +203 Scan + and go to B.
Current state: B Input: 203 Scan 2 and go to B.
Current state: B Input: 03 Scan 0 and go to B.
Current state: B Input: 3 Scan 3 and go to C.
Current state: C Input: Check for final state.
Because there is no more input and you are in the final state C, you have proven that the input string +203 is a valid signed integer.

Figure 7.17

An FSM with an empty transition to parse a signed integer.

Example 7.6 To parse 32 requires the following decisions:

Current state: I	Input: 32	Scan ϵ and go to F.
Current state: F	Input: 32	Scan 3 and go to M.
Current state: M	Input: 2	Scan 2 and go to M.
Current state: M	Input:	Check for final state.

The transition from I to F on ϵ does not consume an input character. When you are in state I, you can do one of three things: (a) scan + and go to F, (b) scan - and go to F , or (c) scan nothing (that is, the empty string) and go to F .

Figure 4.3 An example of a non-deterministic finite automaton.

Figure 4.3 An example of a non-deterministic finite automaton.
final(s 3).

$$
\begin{aligned}
& \operatorname{trans}(s 1, a, s 1) \\
& \operatorname{tran} s(s 1, a, s 2) \\
& \operatorname{trans}(s 1, b, s 1) \\
& \operatorname{tran}(s 2, b, s 3) \\
& \operatorname{trans}(s 3, b, s 4) \\
& \operatorname{silent}(s 2, s 4) \\
& \operatorname{silent}(s 3, s 1)
\end{aligned}
$$

Figure 4.4 Accepting a string: (a) by reading its first symbol X; (b) by making a silent move.

