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Figure 4.1 Structuring information about the family.

family(
person( tom, fox, date(7,may,L960), works(btrc, 1 520O) ),
person( ann, fox, date(9,may, I 96 1), unemployed),
I person( pat, fox, date(S,may,1983), unemployed),

person( iim, fox, date(5,may,1983), unemployed) I ).

Our database would then be comprised of a sequence of facts like this describing all
families that are of interest to our program.

Prolog is, in fact, a very suitable language for retrieving the desired information
from such a database. One nice thing about Prolog is that we can refer to objects
without actually specifying all the components of these objects. We can merely
indicate tlre structure of objects that we are interested in, and leave the particular
components in the structures unspecified or only partially specified. Figwe 4.2
shows some examples. So we can refer to all Armstrong families by:

family( person( _, amstrong, _, _), _, _)

The underscore characters denote different anonymous variables; we do not care
about their values. Further, we can refer to all families with three children by the
term:

family( _, _, L_, _, _l)
To frnd all married women that have at least three children we can pose the
question:

?- family( _, person( Name, Surname , _, _), l_, -, - I -] ).

The point of these examples is that we can specify objects of interest not by
their content, but by their structure. We only indicate their structure and leave their
arguments as unspecified slots.
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-."l.1,>- a F
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Figure 4.2 Specifying objects by their structural properties: (a) any Armstrong family; (b) any- 
family'wiih eiactly three children; (c) any family with at least three children'

Struciure (c) makes provision for retrieving the wife's name through the

instantiation of the variables Name and Surname'

.tr
we can provide a set of procedures that can serve as a utility to make the

interaction with the database more comfortable. Such utility procedures could be

part of the user interface. Some useful utility procedures for our database are:

husband( X) :- o/o X is a husband
family( X, -, -).

wife( X) :- o/o X is a wife
family( -, X, -).

T(
a list

to

This

to
to

child( X) :-
family( -, -, Children),
member( X, Children).

o/oXisachild

o/oXin list Children
o/o Any person in the databaseexists( Person) :-

husband( Person)

wife( Person)
The 1

child( Person)

?
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Mathematically, such a collection of nodes connected by arcs is called a graph.
When the arcs are directed, as they are in an FSM, the structure is called a directed
graph or digraph.

An FSM to Parse an Identifier

Figure 7.10 shows an FSM that parses an identifier as defined by the grammar in
Figure 7.1. The set of states is {A, B, C}. A is the start state, and B is the final state.
There is a transition from A to B on a letter, from A to C on a digit, from B to B on
a letter or a digit, and from C to C on a letter or a digit.

To use the FSM, imagine that the input string is written on a piece of paper
tape. Start in the start state, and scan the characters on the input tape from left to
right. Each time you scan the next character on the tape, make a transition to
another state of the finite state machine. Use only the transition that is allowed by
the arc corresponding to the character you have just scanned. After scanning all 
the input characters, if you are in a final state, the characters are a valid identifier.
Otherwise they are not.

Example 7.4 To parse the string cab3, you would make the following transitions:

Current state: A Input: cab3 Scan c and go to B.

Current state: B Input: ab3 Scan a and go to B.

Current state: B Input: b3 Scan b and go to B.

Current state: B Input: 3 Scan 3 and go to B.

Current state: B Input: Check for final state.

Because there is no more input and the last state is B, a final state, cab3 is a valid
identifier. !

You can also represent an FSM by its state transition table. Figure 7.11 is the
state transition table for the FSM of Figure 7.10. The table lists the next state
reached by the transition from a given current state on a given input symbol.

Simplified Finite State Machines

It is often convenient to simplify the diagram for an FSM by eliminating the state
whose sole purpose is to provide transitions for illegal input characters. State C in
this machine is such a state. If the first character is a digit, the string will not be a
valid identifier, regardless of the following characters. State C acts like a failure
state. Once you make a transition to C, you can never make a transition to another
state, and you know the input string eventually will be declared invalid. Figure 7.12
shows the simplified FSM of Figure 7.10 without the failure state.

B

letter

digit

A
Start letter

Figure 7.12
The FSM of Figure 7.10 without the
failure state.
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A
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B
B
C
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C
B
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Figure 7.11
The state transition table for the
FSM of Figure 7.10.

32397_CH07_331_388.qxd  1/14/09  5:01 PM  Page 347

B

C

letter

digit

digit

letter

digit

A

letter
Start

Figure 7.10
A finite state machine (FSM) to
parse an identifier.

7.2 Finite State Machines 347

Mathematically, such a collection of nodes connected by arcs is called a graph.
When the arcs are directed, as they are in an FSM, the structure is called a directed
graph or digraph.

An FSM to Parse an Identifier

Figure 7.10 shows an FSM that parses an identifier as defined by the grammar in
Figure 7.1. The set of states is {A, B, C}. A is the start state, and B is the final state.
There is a transition from A to B on a letter, from A to C on a digit, from B to B on
a letter or a digit, and from C to C on a letter or a digit.

To use the FSM, imagine that the input string is written on a piece of paper
tape. Start in the start state, and scan the characters on the input tape from left to
right. Each time you scan the next character on the tape, make a transition to
another state of the finite state machine. Use only the transition that is allowed by
the arc corresponding to the character you have just scanned. After scanning all 
the input characters, if you are in a final state, the characters are a valid identifier.
Otherwise they are not.

Example 7.4 To parse the string cab3, you would make the following transitions:

Current state: A Input: cab3 Scan c and go to B.

Current state: B Input: ab3 Scan a and go to B.

Current state: B Input: b3 Scan b and go to B.

Current state: B Input: 3 Scan 3 and go to B.

Current state: B Input: Check for final state.

Because there is no more input and the last state is B, a final state, cab3 is a valid
identifier. !

You can also represent an FSM by its state transition table. Figure 7.11 is the
state transition table for the FSM of Figure 7.10. The table lists the next state
reached by the transition from a given current state on a given input symbol.

Simplified Finite State Machines

It is often convenient to simplify the diagram for an FSM by eliminating the state
whose sole purpose is to provide transitions for illegal input characters. State C in
this machine is such a state. If the first character is a digit, the string will not be a
valid identifier, regardless of the following characters. State C acts like a failure
state. Once you make a transition to C, you can never make a transition to another
state, and you know the input string eventually will be declared invalid. Figure 7.12
shows the simplified FSM of Figure 7.10 without the failure state.

B

letter

digit

A
Start letter

Figure 7.12
The FSM of Figure 7.10 without the
failure state.

Current
State

A
B
C

Next State

B
B
C

Digit

C
B
C

Letter

Figure 7.11
The state transition table for the
FSM of Figure 7.10.

32397_CH07_331_388.qxd  1/14/09  5:01 PM  Page 347
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When you parse a string with this simplified machine, you will not be able to
make a transition when you encounter an illegal character in the input string. There
are two ways to detect an illegal sentence in a simplified FSM:

! You may run out of input, and not be in a final state.
! You may be in some state, and the next input character does not correspond

to any of the transitions from that state.

Figure 7.13 is the corresponding state transition table for Figure 7.12. The state
transition table for a simplified machine has no entry for a missing transition. Note
that this table has no entry under the digit column for the current state of A. The
remaining machines in this chapter are written in simplified form.

Nondeterministic Finite State Machines

When you parse a sentence using a grammar, frequently you must choose between
several production rules for substitution in a derivation step. Similarly, nondeter-
ministic finite state machines require you to decide between more than one transi-
tion when parsing the input string. Figure 7.14 is a nondeterministic FSM to parse a
signed integer. It is nondeterministic because there is at least one state that has more
than one transition from it on the same character. For example, state A has a transi-
tion to both B and C on a digit. There is also some nondeterminism at state B
because, given that the next input character is a digit, a transition both to B and to C
is possible.

Example 7.5 You must make the following decisions to parse +203 with this
nondeterministic FSM:

Current state: A Input: +203 Scan + and go to B.

Current state: B Input: 203 Scan 2 and go to B.

Current state: B Input: 03 Scan 0 and go to B.

Current state: B Input: 3 Scan 3 and go to C.

Current state: C Input: Check for final state.

Because there is no more input and you are in the final state C, you have
proven that the input string +203 is a valid signed integer. !

When parsing with rules of production, you run the risk of making an incorrect
choice early in the parse. You may reach a dead end where no substitution will get
your intermediate string of terminals and nonterminals closer to the given string.
Just because you reach such a dead end does not necessarily mean that the string is
invalid. All invalid strings will produce dead ends in an attempted parse. But even
valid strings have the potential for producing dead ends if you make a wrong deci-
sion early in the derivation.

Current
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B
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B
B

Digit

B

Letter

Figure 7.13
The state transition table for the
FSM of Figure 7.12.
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A nondeterministic FSM to parse a
signed integer.
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The same principle applies with nondeterministic finite state machines. With
the machine of Figure 7.14, if you are in the start state, A, and the next input char-
acter is 7, you must choose between the transitions to B and to C. Suppose you
choose the transition to C and then find that there is another input character to scan.
Because there are no transitions from C, you have reached a dead end in your
attempted parse. You must conclude, therefore, that either the input string was
invalid or it was valid and you made an incorrect choice at an earlier point.

Figure 7.15 is the state transition table for the machine of Figure 7.14. The
nondeterminism is evident from the multiple entries (B, C) in the digit column.
They represent a choice that must be made when attempting a parse.

Machines with Empty Transitions

In the same way that it is convenient to incorporate the empty string into production
rules, it is sometimes convenient to construct finite state machines with transitions
on the empty string. Such transitions are called empty transitions. Figure 7.17 is an
FSM that corresponds closely to the grammar in Figure 7.2 to parse a signed inte-
ger, and Figure 7.16 is its state transition table.

In Figure 7.17, F is the state after the first character, and M is the magnitude
state analogous to the F and M nonterminals of the grammar. In the same way that a
sign can be +, —, or neither, the transition from I to F can be on +, —, or !.

Example 7.6 To parse 32 requires the following decisions:

Current state: I Input: 32 Scan ! and go to F.

Current state: F Input: 32 Scan 3 and go to M.

Current state: M Input: 2 Scan 2 and go to M.

Current state: M Input: Check for final state.

The transition from I to F on ! does not consume an input character. When you are
in state I, you can do one of three things: (a) scan + and go to F, (b) scan — and go to
F, or (c) scan nothing (that is, the empty string) and go to F. !

Machines with empty transitions are always considered nondeterministic. In
Example 7.6, the nondeterminism comes from the decision you must make when
you are in state I and the next character is +. You must decide whether to go from I
to F on + or from I to F on !. These are different transitions because they leave you
with different input strings, even though they are transitions to the same state.

Machines with empty transitions are
considered nondeterministic.
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Figure 7.15
The state transition table for the
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FSM of Figure 7.17.
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Figure 4.3 An example of a non-deterministic finite automaton.

move is said to be silent because it occurs without any reading of input, and the
obseler, viewing the automaton as a black box, will not be able to notice that any
transition has occurred.

The state s3 is double circled, which indicates that it is a final state. The
automaton is said to accept the input string if there is a transition path in the graph
such that

(1) it starts with the initial state,

(Z) it ends with a frnal state, and
(3) the arc labels along the path correspond to the complete. input string.

It is entirely up to the automaton to decide which of the possible moves to
execute at arry time. In particular, the automaton may choose to make or not
to make a silent move, if it is available in the current state. But abstract non-
deterministic machines of this kind have a magic property: if there is a choice then
they always choose a'right' move; that is, a move that leads to the acceptance of the
input string, if such a move exists. The automaton in Figure 4.3 will, for example,
accept the strings ab and aøbaab, but it will reject the stdngs abb and øbbø.lt is easy
to see that this automaton accepts any string that terminates with ab, and rejects all
others.

In Prolog, an automaton can be specified by three relations:

(1) a unary relation final which defrnes the final states of the automaton;
(2) a three-argument relation trans which defrnes the state transitions so that

trans( S1, X, 52)

means that a transition from a state 51 to S2 is possible when the current input
symbol X is read;

null

null
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(3) a binary relation
silent( S1' 52)

meaning that a silent move is possible from 51 to 52'

For the automaton in Figure 4.3 these three relations are:

final( s3).

trans( sl, a, s1).
trans( sl, a, s2).
trans( sl, b, s1).
trans( s2, b, s3).
trans( s3, b, s4).

silent( s2, s4).
silent( s3' s1.).

we will represent input strings as Prolog lists. So the string aøb will be represented

by [a,a,b]. Given the deicription of the automaton, the simulator will process a given

iáput string and decide whether the string is accepted or reiected- By definition, the

non-deterministic automatori accepts a given string if (starting ftom an initial state),

after having read the whole input string, the automaton can (possibly) be in its final

state. The simulator is prograÀmed as a binary relation, accepts, which defines the

acceptance of a string from a given state' So

accepts( State, Süing)

is true if the automaton, starting from the state state as initial state, accepts the

string string. The accepts relation can be defrned by three clauses. They correspond

to the following three cases:

(1) The empty string, [], is accepted from a state State if State is a final state'

(2)Anon-emptyStringisacceptedfromstateifreadingthefrrstsymbolinthe
string can bring the automaton into some state stateL, and the rest of the string

is accepted from Statel. Figure 4'4(a) illustrates'

(3)Astringisacceptedfromstateiftheautomatoncanmakeasilentmove
fromstatetostatel.andthenacceptthe(whole)inputStringfromStatel.
Figure 4.4(b) illustrates.

These rules can be translated into Prolog as:

accepts( State, [] ) :- o/o Accept empty string
final( State).

accepts( State, [X I Rest] ) ¡ o/o Accept by reading first symbol

trans( State, X, Statel),
accepts( Statel, Rest).

accepts( State, String) i o/o Accept by making silent move

silent( State, Statel),
accePts( Statel, String).
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Figure 4,4 Accepting a string: (a) by reading its first symbol X; (b) by making a silent move.

The program can be asked, for example, about the acceptance of the string aøabby:

?- accepts( sl, [a,a,a,b] ).
yes

As we have already seen, Prolog programs are often able to solve more general
problems than problems for which they were originally developed. In our case, we
can also ask the simulator which state our automaton can be in initially so that it
will accept the string øb:

?- accepts( S, [a,b] ).
S:sl;
S:s3

Amusingly, we can also ask: What are all the strings of length 3 that are accepted
from state sr?

?- accepts( sl, [X1,X2,X3] ).

Xl :a
x2: a
X3:b;
xl :b
x2:a
X3 : t¡;

no
If we prefer the acceptable input strings to be typed out as lists then we can
formulate the question as:


