
2.1 Data objects 33

simple objects structures
,/\

data objects

variables
/\of Prolog constants

/\

2.1.1

atoms numbers

Figure 2.1 Data objects in Prolog.

Atoms and numbers
In chapter 1 we have seen some examples of atoms and variables. In general,
however, atoms can take more complicated forms - that is, strings of the follow-
ing characters:
. upper-case letters A,B, . . . ,2
. lower-case letters a, b, . . . , z
. digitsO,'J.,2,...,9
. special characters such as * -* I < >: : . &
Atoms can be constructed iri three ways:

(1) Strings of ietters, digits and the underscore character, ,_,, starting with a lower-
case letter:

anna
nil
x25
x_25
x_2548

.x_
xv
alpha_beta procedure
missJones

(2) Strings of special characters:

+

When using atoms of this form, some care is necessary because some strings
of special characters already have a predefined meaning. An example is ,:-,.

44

syntax and semantics of basic con-
ects. The topics included are:

ts

am

meanings of a program
lauses and goals.

r Chapter 1. Here the treatment will

in Prolog. The Prolog system
lm by its syntactic form. This is
different forms for each type of

br distinguishing between atoms
upper-case letters whereas atoms

rmation (such as data-type decla-
¡rder to recognize the t¡re of an

2.1 Data objects 33

simple objects structures
,/\

data objects

variables
/\of Prolog constants

/\

2.1.1

atoms numbers

Figure 2.1 Data objects in Prolog.

Atoms and numbers
In chapter 1 we have seen some examples of atoms and variables. In general,
however, atoms can take more complicated forms - that is, strings of the follow-
ing characters:
. upper-case letters A,B, . . . ,2
. lower-case letters a, b, . . . , z
. digitsO,'J.,2,...,9
. special characters such as * -* I < >: : . &
Atoms can be constructed iri three ways:

(1) Strings of ietters, digits and the underscore character, ,_,, starting with a lower-
case letter:

anna
nil
x25
x_25
x_2548

.x_
xv
alpha_beta procedure
missJones

(2) Strings of special characters:

+

When using atoms of this form, some care is necessary because some strings
of special characters already have a predefined meaning. An example is ,:-,.

44

syntax and semantics of basic con-
ects. The topics included are:

ts

am

meanings of a program
lauses and goals.

r Chapter 1. Here the treatment will

in Prolog. The Prolog system
lm by its syntactic form. This is
different forms for each type of

br distinguishing between atoms
upper-case letters whereas atoms

rmation (such as data-type decla-
¡rder to recognize the t¡re of an

Terms

Atoms, numbers, variables and structures are all terms.

: in the current input file that
Lits original form, represented as
getsentence of this section can be

cg system by means of built-in
ams. The details of 'consulting,
:ion of Prolog. Here we look at
clogs.
ile F with a goal of the forr¡

program3 will typically have an
rgram file. The effect of this goal
and loaded into the memory, so
rrther questions from the user.
time during the same session.
this new flle are added into the
lementation and other circum-
Lt a procedure defined in the
ry be simply added at the end of
ition of this procedure may be

sult goal, for example:

. If a Prolog implementation also
n a compiled form. This enables
r factor of 5 or 10 between the
ed into memory in the compiled
e:

d, but interpreted programs are
rd traced by Prolog's debugging

IS:

Summary 175

facilities. Therefore an interpreter is typically used in the program development
phase, and a compiler is used with the final program.

It should be noted, again, that the details of consulting and compiling files
depend on the implementation of Prolog. usually a prolog implementation also
allows the user to enter and edit the program interactively.

5ummary
A Prolog implementation normally provides a set of built-in procedures to
accomplish several useful operations that are not possible in pure prolog. In this
chapter, such a set of predicates available in many Prolog implementations was
introduced.
The type of a term can be tested by the following predicates:

var(X)
nonvar(X)
atom(X)
integer(X)
float(X)
atomic(X)
compound(X)

X is a (non-instantiated) variable
X is not a variable
X is an atom
X is an integer
X is a real number
X is either an atom or a number
X is a structure

Terms can be constructed or decomposed:

Term :.. I Functor I Argumentlist]
functor(Term, Functor, Arity)
arg(N, Term, Argument)
name(Atom, CharacterCodes)

Terms can be compared:

X:Y XandYmatch
X::Y XandYareidentical
X \:: Y X and Y are not identical
X::: Y X and Y are arithmetically equal
X:\: Y X and Y are not arithmetically equal
X < Y adthmetic value of X is less than Y (related: :<,),):)
X @< Y term X precedes term Y (related: @:<, @>, @>:)

A Prolog program can be viewed as a relational database that can be updated by
the following procedures:

assert(Clause) add Clause to the program
asserta(Clause) add at the beginning
assertz(Clause) add at the end
retract(Clause) remove a clause that matches Clause

All the obiects that satisfy a given condition can be collected into a list by the
predicates:

bagof(X, P, L) L is the list of all X that satisfy condition P
setof(X, P, L) L is the sorted list of all X that satisfy condition P
findall(X, P, L) similar to bagof

: in the current input file that
Lits original form, represented as
getsentence of this section can be

cg system by means of built-in
ams. The details of 'consulting,
:ion of Prolog. Here we look at
clogs.
ile F with a goal of the forr¡

program3 will typically have an
rgram file. The effect of this goal
and loaded into the memory, so
rrther questions from the user.
time during the same session.
this new flle are added into the
lementation and other circum-
Lt a procedure defined in the
ry be simply added at the end of
ition of this procedure may be

sult goal, for example:

. If a Prolog implementation also
n a compiled form. This enables
r factor of 5 or 10 between the
ed into memory in the compiled
e:

d, but interpreted programs are
rd traced by Prolog's debugging

IS:

Summary 175

facilities. Therefore an interpreter is typically used in the program development
phase, and a compiler is used with the final program.

It should be noted, again, that the details of consulting and compiling files
depend on the implementation of Prolog. usually a prolog implementation also
allows the user to enter and edit the program interactively.

5ummary
A Prolog implementation normally provides a set of built-in procedures to
accomplish several useful operations that are not possible in pure prolog. In this
chapter, such a set of predicates available in many Prolog implementations was
introduced.
The type of a term can be tested by the following predicates:

var(X)
nonvar(X)
atom(X)
integer(X)
float(X)
atomic(X)
compound(X)

X is a (non-instantiated) variable
X is not a variable
X is an atom
X is an integer
X is a real number
X is either an atom or a number
X is a structure

Terms can be constructed or decomposed:

Term :.. I Functor I Argumentlist]
functor(Term, Functor, Arity)
arg(N, Term, Argument)
name(Atom, CharacterCodes)

Terms can be compared:

X:Y XandYmatch
X::Y XandYareidentical
X \:: Y X and Y are not identical
X::: Y X and Y are arithmetically equal
X:\: Y X and Y are not arithmetically equal
X < Y adthmetic value of X is less than Y (related: :<,),):)
X @< Y term X precedes term Y (related: @:<, @>, @>:)

A Prolog program can be viewed as a relational database that can be updated by
the following procedures:

assert(Clause) add Clause to the program
asserta(Clause) add at the beginning
assertz(Clause) add at the end
retract(Clause) remove a clause that matches Clause

All the obiects that satisfy a given condition can be collected into a list by the
predicates:

bagof(X, P, L) L is the list of all X that satisfy condition P
setof(X, P, L) L is the sorted list of all X that satisfy condition P
findall(X, P, L) similar to bagof

: in the current input file that
Lits original form, represented as
getsentence of this section can be

cg system by means of built-in
ams. The details of 'consulting,
:ion of Prolog. Here we look at
clogs.
ile F with a goal of the forr¡

program3 will typically have an
rgram file. The effect of this goal
and loaded into the memory, so
rrther questions from the user.
time during the same session.
this new flle are added into the
lementation and other circum-
Lt a procedure defined in the
ry be simply added at the end of
ition of this procedure may be

sult goal, for example:

. If a Prolog implementation also
n a compiled form. This enables
r factor of 5 or 10 between the
ed into memory in the compiled
e:

d, but interpreted programs are
rd traced by Prolog's debugging

IS:

Summary 175

facilities. Therefore an interpreter is typically used in the program development
phase, and a compiler is used with the final program.

It should be noted, again, that the details of consulting and compiling files
depend on the implementation of Prolog. usually a prolog implementation also
allows the user to enter and edit the program interactively.

5ummary
A Prolog implementation normally provides a set of built-in procedures to
accomplish several useful operations that are not possible in pure prolog. In this
chapter, such a set of predicates available in many Prolog implementations was
introduced.
The type of a term can be tested by the following predicates:

var(X)
nonvar(X)
atom(X)
integer(X)
float(X)
atomic(X)
compound(X)

X is a (non-instantiated) variable
X is not a variable
X is an atom
X is an integer
X is a real number
X is either an atom or a number
X is a structure

Terms can be constructed or decomposed:

Term :.. I Functor I Argumentlist]
functor(Term, Functor, Arity)
arg(N, Term, Argument)
name(Atom, CharacterCodes)

Terms can be compared:

X:Y XandYmatch
X::Y XandYareidentical
X \:: Y X and Y are not identical
X::: Y X and Y are arithmetically equal
X:\: Y X and Y are not arithmetically equal
X < Y adthmetic value of X is less than Y (related: :<,),):)
X @< Y term X precedes term Y (related: @:<, @>, @>:)

A Prolog program can be viewed as a relational database that can be updated by
the following procedures:

assert(Clause) add Clause to the program
asserta(Clause) add at the beginning
assertz(Clause) add at the end
retract(Clause) remove a clause that matches Clause

All the obiects that satisfy a given condition can be collected into a list by the
predicates:

bagof(X, P, L) L is the list of all X that satisfy condition P
setof(X, P, L) L is the sorted list of all X that satisfy condition P
findall(X, P, L) similar to bagof

: in the current input file that
Lits original form, represented as
getsentence of this section can be

cg system by means of built-in
ams. The details of 'consulting,
:ion of Prolog. Here we look at
clogs.
ile F with a goal of the forr¡

program3 will typically have an
rgram file. The effect of this goal
and loaded into the memory, so
rrther questions from the user.
time during the same session.
this new flle are added into the
lementation and other circum-
Lt a procedure defined in the
ry be simply added at the end of
ition of this procedure may be

sult goal, for example:

. If a Prolog implementation also
n a compiled form. This enables
r factor of 5 or 10 between the
ed into memory in the compiled
e:

d, but interpreted programs are
rd traced by Prolog's debugging

IS:

Summary 175

facilities. Therefore an interpreter is typically used in the program development
phase, and a compiler is used with the final program.

It should be noted, again, that the details of consulting and compiling files
depend on the implementation of Prolog. usually a prolog implementation also
allows the user to enter and edit the program interactively.

5ummary
A Prolog implementation normally provides a set of built-in procedures to
accomplish several useful operations that are not possible in pure prolog. In this
chapter, such a set of predicates available in many Prolog implementations was
introduced.
The type of a term can be tested by the following predicates:

var(X)
nonvar(X)
atom(X)
integer(X)
float(X)
atomic(X)
compound(X)

X is a (non-instantiated) variable
X is not a variable
X is an atom
X is an integer
X is a real number
X is either an atom or a number
X is a structure

Terms can be constructed or decomposed:

Term :.. I Functor I Argumentlist]
functor(Term, Functor, Arity)
arg(N, Term, Argument)
name(Atom, CharacterCodes)

Terms can be compared:

X:Y XandYmatch
X::Y XandYareidentical
X \:: Y X and Y are not identical
X::: Y X and Y are arithmetically equal
X:\: Y X and Y are not arithmetically equal
X < Y adthmetic value of X is less than Y (related: :<,),):)
X @< Y term X precedes term Y (related: @:<, @>, @>:)

A Prolog program can be viewed as a relational database that can be updated by
the following procedures:

assert(Clause) add Clause to the program
asserta(Clause) add at the beginning
assertz(Clause) add at the end
retract(Clause) remove a clause that matches Clause

All the obiects that satisfy a given condition can be collected into a list by the
predicates:

bagof(X, P, L) L is the list of all X that satisfy condition P
setof(X, P, L) L is the sorted list of all X that satisfy condition P
findall(X, P, L) similar to bagof

If you want to have a clause in your database and you want to be able to add or remove it
dynamically (that is, when you query), you must declare it to be dynamic in gprolog with
the :- dynamic designation. The compiler needs this designation when it consults your
database.

You can add or remove any clause not already in your database without the :- designation.

gprolog does not have assert/1.

: in the current input file that
Lits original form, represented as
getsentence of this section can be

cg system by means of built-in
ams. The details of 'consulting,
:ion of Prolog. Here we look at
clogs.
ile F with a goal of the forr¡

program3 will typically have an
rgram file. The effect of this goal
and loaded into the memory, so
rrther questions from the user.
time during the same session.
this new flle are added into the
lementation and other circum-
Lt a procedure defined in the
ry be simply added at the end of
ition of this procedure may be

sult goal, for example:

. If a Prolog implementation also
n a compiled form. This enables
r factor of 5 or 10 between the
ed into memory in the compiled
e:

d, but interpreted programs are
rd traced by Prolog's debugging

IS:

Summary 175

facilities. Therefore an interpreter is typically used in the program development
phase, and a compiler is used with the final program.

It should be noted, again, that the details of consulting and compiling files
depend on the implementation of Prolog. usually a prolog implementation also
allows the user to enter and edit the program interactively.

5ummary
A Prolog implementation normally provides a set of built-in procedures to
accomplish several useful operations that are not possible in pure prolog. In this
chapter, such a set of predicates available in many Prolog implementations was
introduced.
The type of a term can be tested by the following predicates:

var(X)
nonvar(X)
atom(X)
integer(X)
float(X)
atomic(X)
compound(X)

X is a (non-instantiated) variable
X is not a variable
X is an atom
X is an integer
X is a real number
X is either an atom or a number
X is a structure

Terms can be constructed or decomposed:

Term :.. I Functor I Argumentlist]
functor(Term, Functor, Arity)
arg(N, Term, Argument)
name(Atom, CharacterCodes)

Terms can be compared:

X:Y XandYmatch
X::Y XandYareidentical
X \:: Y X and Y are not identical
X::: Y X and Y are arithmetically equal
X:\: Y X and Y are not arithmetically equal
X < Y adthmetic value of X is less than Y (related: :<,),):)
X @< Y term X precedes term Y (related: @:<, @>, @>:)

A Prolog program can be viewed as a relational database that can be updated by
the following procedures:

assert(Clause) add Clause to the program
asserta(Clause) add at the beginning
assertz(Clause) add at the end
retract(Clause) remove a clause that matches Clause

All the obiects that satisfy a given condition can be collected into a list by the
predicates:

bagof(X, P, L) L is the list of all X that satisfy condition P
setof(X, P, L) L is the sorted list of all X that satisfy condition P
findall(X, P, L) similar to bagof

Recall the mathematical definition of a bag compared to the definition of a set.
A bag can have duplicates.
A set cannot. For example, {a, b, b} = {a, b}.

7.1 Constraint satir

7.2 CLP over real r

7.3t Example of CLI

7.4 CLP over finite

Constraint programn
that can be naturall¡
such problems consis
isfy the constraints.
(CLP) combines the c
isfaction is embedde
ming with constraini
of thinking about p
programming examp

Constraint sat

Motivation
Let us look at som
the query:

?- X+1:5.
In Prolog this match
is that X is a numbe
more desirable. Usir
this interpretation.
convention for CLP

The constraint abor
usual Prolog goals. '
'understands' opera
or inequations of cr

i:,-t:.:i::1.,

irtra

7 .1.1

?-{x +1:5}.x:4

176 Chapter 6 Built-in Predicates

repeat is a control facility that generates an unlimited number of alternatives fo¡
backtracking.
Input and output (other than that associated with querylng the program) are
done using built-in procedures. This chapter introduced a simple repertoire of
such procedures that can be found in many Prolog implementations.
This repertoire assumes that files are sequential. There is tlre current input streøm
and the current output stream. The computer keyboard and display are treated as
files called user.

Switching between streams is done by:

see(File) File becomes the current input stream
tell(File) File becomes the current output stream
seen close the current input stream
told close the current output stream

Files are read and written in two ways:

as sequences of characters
as sequences of terms

Built-in procedures for reading and writing characters and terms are:

read(Term)
write(Term)
put(CharCode)
geto(CharCode)
get(CharCode)

input next term
output Term
output character with the given ASCII code
input next character
input next 'printable' character

Two procedures help formatting:
nl output new line
tab(N) output N blanks

Many Prolog implementations provide additional facilities to handle non-
sequential flles, windows, provide graphics primitives, input information frorn
the mouse, etc.

Reference to Prolog standard
For some of the predicates mentioned in this chapter, ISO standard for Prolog (Del:lnsaú et al.
1996) recommends different names from those used in most Prolog implementations.
However, the predicates are conceptually the same, so compatibility is only a matter of
renaming. The concerned predicates in this chapter are: see(Filename), tell(Filenarne),
get(Code), put(Code), name(Atom,Codelist). The corresponding predicate names ill
the standard are: set-input(Filename), set-ouqrut(Filename), get-code(Code),
put_code(Code), atom_codes(Atom,Codelist).

Deransart, P., Ed-Bdali, A. and Ceroni, L. (1996) Prolog: The Standard. Berlin: Springel-Verla9'

Summary of read(X)

• The next term T is read and matched with X.

• If X is a variable, then X is instantiated to T.

• If there is no match, the goad read(X) fails with no
backtracking.

• If <control-d> is read from the keyboard, or the end of
file is reached in a file, X is instantiated to
end_of_file.

output streøms. L
input stream. Da
put stream. Botl
names of other f

At any time
'active': one for
input stream and
tion these two s

current input str
see(Filename)

.Quch a goal succe
a side effect, that
typical example r

reads something

tell(file3),
write-on_file(
tell(user),

The current outp

tell(Filename)

A sequence of
succeeding outp'

see(filel),
read_from_file
see(user),

closes the currer
We will assu.

many Prolog irr
tial files, each rt
the current posi
position will m<
start reading at
end of a file, 1

end_of_file.
Writing is sir

mation at the e
ward and to ove

The goal

seen

closes the currer
told

164 Chapter 6 Built-in Predicates

:;&þ Input and output

The method of communication between the user and the program that we have
been using up to now consists of user questions to the program and prograrn
answers in terms of instantiations of variables. This method of communication is
simple and suffices to get the information in and out. However, it is often not
sufficient because it is too rigid. Extensions to this basic communication method
are needed in the following areas:

' input of data in forms other than questions -for example, in the form of English
sentences,

. output of information in any format desired, and
' input from and output to any computer file or device and not just the keyboard

and display.

We will now look at built-in facilities for reading data from computer files and
for outputting data to files. These procedures can also be used for formatting
data objects in the program to achieve a desired output representation of these
objects. We will also look at facilities for reading programs and for constructing
and decomposing atoms. Built-in predicates for input and output depend on the
implementation of Prolog. we will study here a simple and handy repertoire of
such predicates, which is part of many Prolog implementations. However, the
manual should be consulted for details and specificities. Many prolog imple-
mentations provide various additional facilities not covered here. Such extra
facilities handle windows, provide graphics primitives for drawing on the screen,
input information from the mouse, and so on.

6.7.1 Communication with files
We will first consider the question of directing input and output to files, and
then how data can be input and output in different forms.

Figure 6.5 shows a general situation in which a Prolog program communicates
with several files. The program can, in principle, read data ftom several input
files, also called input streams, and output data to several output files, also called

Input

user

file I
file 2

user

file 3
file 4

Ouþut
streams st¡eams

Figure 6.5 Communication between a Prolog program and several files.

User
terminal

7.1 Constraint satir

7.2 CLP over real r

7.3t Example of CLI

7.4 CLP over finite

Constraint programn
that can be naturall¡
such problems consis
isfy the constraints.
(CLP) combines the c
isfaction is embedde
ming with constraini
of thinking about p
programming examp

Constraint sat

Motivation
Let us look at som
the query:

?- X+1:5.
In Prolog this match
is that X is a numbe
more desirable. Usir
this interpretation.
convention for CLP

The constraint abor
usual Prolog goals. '
'understands' opera
or inequations of cr

i:,-t:.:i::1.,

irtra

7 .1.1

?-{x +1:5}.x:4

176 Chapter 6 Built-in Predicates

repeat is a control facility that generates an unlimited number of alternatives fo¡
backtracking.
Input and output (other than that associated with querylng the program) are
done using built-in procedures. This chapter introduced a simple repertoire of
such procedures that can be found in many Prolog implementations.
This repertoire assumes that files are sequential. There is tlre current input streøm
and the current output stream. The computer keyboard and display are treated as
files called user.

Switching between streams is done by:

see(File) File becomes the current input stream
tell(File) File becomes the current output stream
seen close the current input stream
told close the current output stream

Files are read and written in two ways:

as sequences of characters
as sequences of terms

Built-in procedures for reading and writing characters and terms are:

read(Term)
write(Term)
put(CharCode)
geto(CharCode)
get(CharCode)

input next term
output Term
output character with the given ASCII code
input next character
input next 'printable' character

Two procedures help formatting:
nl output new line
tab(N) output N blanks

Many Prolog implementations provide additional facilities to handle non-
sequential flles, windows, provide graphics primitives, input information frorn
the mouse, etc.

Reference to Prolog standard
For some of the predicates mentioned in this chapter, ISO standard for Prolog (Del:lnsaú et al.
1996) recommends different names from those used in most Prolog implementations.
However, the predicates are conceptually the same, so compatibility is only a matter of
renaming. The concerned predicates in this chapter are: see(Filename), tell(Filenarne),
get(Code), put(Code), name(Atom,Codelist). The corresponding predicate names ill
the standard are: set-input(Filename), set-ouqrut(Filename), get-code(Code),
put_code(Code), atom_codes(Atom,Codelist).

Deransart, P., Ed-Bdali, A. and Ceroni, L. (1996) Prolog: The Standard. Berlin: Springel-Verla9'

