
pers/t
Structures: Example Programs tom fox

7t

4.1

4.2

4.3

4.4

4.5

Retrieving structured information from a database 88

Doing data abstraction 92

Simulating a non-deterministic automaton 94

Travel agent 98

The eight queens problem 103

Data structures, with matching, backtracking and arithmetic, are a powerful
programming tool. In this chapter we will develop the skill of using this tool
through programming examples: retrieving structured information from a database,

simulating a non-deterministic automaton, travel planning, and eight queens on
the chessboard. We will also see how the principle of data abstraction can be carried
out in Prolog. The programming examples in this chapter can be read selectively.

,,{t¡,,;X,,,-,. Retrieving structured information from a database

This exercise develops techniques of representing and manipulating structured data
objects. It also illustrates Prolog as a natural database query language'

A database can be naturally represented in Prolog as a set of facts. For example, a

database about families can be represented so that each family is described by one
clause. Figure 4.1 shows how the information about each family can be structured.
Each family has three components: husband, wife and children. As the number of
children varies from family to family the children are represented by a list that is
capable of accommodating any number of items. Each person iS, in turn, repres-
ented by a structure of four components: name, surname, date of birth, iob. The job

, information is 'unemployed', or it specifies the working organization and salary. The
family of Figure 4.1 can be stored in the database by the clause:

B8

Figure

fami
pe
p€
tr
f

Our da
familie

Prol
from sr

withou
indicat
compo
shows

fami

The ur
about 1

term:

fami

To finr
questic

?- 1z

The p<
their c<

argum(

ograms

tic, are a powerful
I of using this tool
;ion from a database,
Lnd eight queens on
action can be carried
be read selectively.

ating structured data
rsuage.
facts. For examþle, a
y is described by one
ily can be structured.
rn. As the number of
rnted by a list that is
n is, in turn, repres-
of birth, job. The iob
lation and salary. The

pers()n

Retrieving structured information from a database 89

family

person/t ,//\\
tom fox date works ann fox date unemployed psrson.4\ /\ l\ ,4\\ ,/\7 may l9ó0 bbc 15200 9 may l9ól pat fox date unemployed person/t\ //N5 may 1983 jim fox date unemployed

t1

5 may 1983

Figure 4.1 Structuring information about the family.

family(
person(tom, fox, date(7,may,L960), works(btrc, 1 520O)),
person(ann, fox, date(9,may, I 96 1), unemployed),
I person(pat, fox, date(S,may,1983), unemployed),

person(iim, fox, date(5,may,1983), unemployed) I).

Our database would then be comprised of a sequence of facts like this describing all
families that are of interest to our program.

Prolog is, in fact, a very suitable language for retrieving the desired information
from such a database. One nice thing about Prolog is that we can refer to objects
without actually specifying all the components of these objects. We can merely
indicate tlre structure of objects that we are interested in, and leave the particular
components in the structures unspecified or only partially specified. Figwe 4.2
shows some examples. So we can refer to all Armstrong families by:

family(person(_, amstrong, _, _), _, _)

The underscore characters denote different anonymous variables; we do not care
about their values. Further, we can refer to all families with three children by the
term:

family(_, _, L_, _, _l)
To frnd all married women that have at least three children we can pose the
question:

?- family(_, person(Name, Surname , _, _), l_, -, - I -]).

The point of these examples is that we can specify objects of interest not by
their content, but by their structure. We only indicate their structure and leave their
arguments as unspecified slots.

90 Using Structures: Example Programs

(a) family (b) family da

sa.

sa.
,/l\

person Wec

o F

armstrong /\l tt a F

(c) family/t a F
person

-."l.1,>- a F

/\ .F

Figure 4.2 Specifying objects by their structural properties: (a) any Armstrong family; (b) any-
family'wiih eiactly three children; (c) any family with at least three children'

Struciure (c) makes provision for retrieving the wife's name through the

instantiation of the variables Name and Surname'

.tr
we can provide a set of procedures that can serve as a utility to make the

interaction with the database more comfortable. Such utility procedures could be

part of the user interface. Some useful utility procedures for our database are:

husband(X) :- o/o X is a husband
family(X, -, -).

wife(X) :- o/o X is a wife
family(-, X, -).

T(
a list

to

This

to
to

child(X) :-
family(-, -, Children),
member(X, Children).

o/oXisachild

o/oXin list Children
o/o Any person in the databaseexists(Person) :-

husband(Person)

wife(Person)
The 1

child(Person)

?

Y

/\' ll

Retrieving structured information from a database 91

dateofbirth(person(_, _, Date, _), Date).

salary(person(_, _, _, works(_, S)), S). o/o Salary of working person

salary(person(_, _, _, unemployed), O). o/o Salary of unemployed

We can use these utilities, for example, in the following queries to the database

o Find the names of all the people in the database:

?- exists(penon(Name, Surname, _, _)).
¡ Find all children born in 2000:

?- child(X),
dateofbirth(X, date(_, _, 2OOO)).

o Find all employed wives:

?- wife(person(Name, Surname, _, works(_, _))).
o Find the names of unemployed people who were born before 1923:

?- exists(person(Name, Surname, date(_, _, Year), unemployed)),
Year <1973.

o Find people born before 1960 whose salary is less than 8000:

?- exists(Person),
dateofbirth(Person, date(_, _, Year)),
Year < 1960,
salary(Person, Salary),
Salary < 8OOO.

o Find the names of families with at least three children:
?- family(person(-, Name, -, -), -, L, -, - I -l).

To calculate the total income of a family it is useful to define the sum of salaries of
a list of people as a two-argument relation:

total(List_of_people, Sum_of_their_salaries)

This relation can be programmed as:

total([], O). o/o Empty list of people

total([Person I List], Sum) :-
salary(Person, S),
total(List, Rest),
SumisS+Rest.

The total income of families can then be found by the question:

?- family(Husband, Wife, Children),
total([Husband, Wife I Children], Income).

;trong family; (b) any
:three children.
hrough the

utility to make the
procedures could be
r database are:

lase

o/o S: salary of first person
o/o Rest: sum of salaries of others

92 Using Structures: Example Programs

Let the length relation count the number of elements of a list, as defined in Section
3.4. Then we can specify all families that have an income per family member of less

than 2000 by:

?- family(Husband, Wife, Children)'
total([Husband, Wife I Children], Income),
length([Husband, Wife I Children], N), o/o N: size of family
Income/N < 2OOO.

Exercises

Let u¡
compr
can b,
selectr
have t
compr

sele

Here ¿

hus

wif
chi

We ca

firs
c.

SeC(

c.

4.1

4.2

Write queries to frnd the following from the family database:

(a) names of families without children;
(b) all employed children;
(c) names of families with employed wives and unemployed husbands;

(d) all the children whose parents differ in age by at least L5 years'

Define the relation

twins(Childl, Child2)

to find twins in the family database.

',4,2 Doing data abstraction

Dqta abstraction canbe viewed as a process of organizing various pieces of informa-
tion into natural units (possibly hierarchically), thus structuring the information
into some conceptually meaningful form. Each such unit of information should be

easily accessible in the program. Ideally, all the details of implementing such a

structure should be invisible to the user of the structure - the programmer can then
just concentrate on objects and relations between them. The point of the process is

to make the use of information possible without the programmer having to think
about the details of how the information is actually represented'

Let us discuss one way of carrying out this principle in Prolog. Consider our
family example of the previous section again. Each family is a collection of pieces of
information. These pieces are all clustered into natural units such as a person or a
family, so they can be treated as single objects. Assume again that the family
information is structured as in Figure 4.L. In the previous section, each family was

represented by a Prolog clause. Here, a family will be represented as a structured
object, for example:

FoxFamily: family(person(tom, fox, -, -), -, -)

We ca

nth
c
n

An
Figure

firs
sur

bor

Ho
forget
and n
relati<
repres
In ou
childt
Fox ar
Using
Persor

t.L

Y

defined in Section
úly member of less

rsbands;

rs pieces of informa-
Lng the information
lormation should be
nplementing such a
rogrammer can then
¡int of the Process is
mer having to think
d.
)rolog. Consider our
ollection of Pieces of
,uch as a person or a
¡ain that the familY
ion, each familY was
tnted as a structured

ars.

Doing data abstraction 93

Let us now defrne some relations through which the user can access particular
components of a family without knowing the details of Figure 4.1. Such relations
can be called selectors as they select particular components. The name of such a
selector relation will be the name of the component to be selected. The relation will
have two arguments: first, the object that contains the component, and second, the
component itself:

selector_relation(Obiect, Component_selected)

Here are some selectors for the family structure:

husband(family(Husband, _, _), Husband).

wife(family(_, Wife, _), Wife).
children(family(_, _, Childlist), Childlist).

We can also define selectors for particular children:

firstchild(Family, First) :-
children(Family, [First | _]).

secondchild(Family, Second) :-
children(Family, [_, Second | _]).

We can generalize this to selecting the Nth child:

nthchild(N, Family, Child) r
children(Family, Childlist),
nth_member(N, Childlist, Child). o/o Nth element of a list

Another interesting object is a person. Some related selectors according to
Figure 4.1 are:

firstname(person(Name, _, _, _), Name).

surname(person(_, Surname, _, _), Surname).

born(person(_, _, Date, _), Date).

How can we benefit from selector relations? Having defined them, we carì now
forget about the particular way that structured information is represented. To create
and manipulate this information, we just have to know the names of the selector
relations and use these in the rest of the program. In the case of complicated
representations, this is easier than always referring to the representation explicitly.
In our family example in particular, the user does not have to know that the
children are represented as a list. For example, assume that we want to say that Tom
Fox and Jim Fox belong to the same family and that Jim is the second child of Tom.
Using the selector relations above, we can defrne two persons, call them Personl and
Person2, and the family. The following list of goals does this:

94 Using Structures: Example Programs

firstname(Personl, tom), surname(Personl' fox)'
firstname(Person2, iim), surname(Person2' fox)'
husband(FamilY, Personl"),
secondchild(FamilY, Person2)

As a result, the variables Personl, Person2 and Family are instantiated as:

Personl : person(tom, fox, -, -)
Person2 : person(jim, fox, -, -)
Family : familY(person(tom, fox, -, -), -, [-' person(iim' fox) | -])

Theuseofselectolrelationsalsomakesprogramseasiertomodify.Imaginethat
we would like to improve the efficiency of a program by changing the representation

ofdata.Allwehavetodoistochangethedefrnitionsoftheselectorrelations,and
the rest of the program will work unchanged with the new representation'

Exerctse

o/o Personl is Tom Fox
o/o Person2 is Jim Fox

a

Figure

ø:F

4.3 Complete the definition of nthchild by deflning the relation

nth-member(N, List, X)

which is true if X is the Nth member of List'

Simula a non-deterministic automaton

This exercise shows how an abstract mathematical construct can be translated into

Prolog. In addition, our resulting program will turn out to be much more flexible

than initiallY intended.
Anon-deterministicfiniteøutomatonisanabstractmachinethatreadsasinputa

stringofsymbolsanddecideswhethertoacceptottorejecttheinputstring.An
automaton has a numbe t or støtesand it is always in one of the states' It can change

its state by moving from the current state to another state' The internal structure of

theautomatoncanberepresentedbyatransitiongraphsuchasthatinFigure4.3.In
this example , s1, s2, sg ãnd sa are the støtes of the automaton. Starting from the

initial state (s1 in our example), the automaton moves from state to state while

reading the input string' Tiansitions depend on the current input symbol' as

indicated by the arc labels in the transition graph'

Atransitionoccurseachtimeaninputsymbolisread.Notethattransitionscan
benon-deterministic.InFigure4.3,iftheautomatorrisinstatesrandthecurrent
inputsymbolisøthenitcantransitintosrors2.Somearcsate|abel|ednulldenoting
the ,null symbol'. These arcs correspond to 'silent moves' of the automaton' Such a

move
obsen
transil

Thr
autoÍ
such t

(1) i
(z) i
(3) 1

Iti
execu
to mi
deten
they:
input
accep
to se€
other

In
(1)

(2)

i
.i.l
la**""

Simulating a non-deterministic automaton 95

bs Tom Fox
sJim Fox

lted as:

-l)
rdify. Imagine that
; the representation
:ctor relations, and
:sentation.

n be translated into
much more flexible

rat reads as inPut a
ire input string. An
;tates. It can change
internal structure of
;hat in Figure 4.3: In
r. Starting from the
state to state while
t input symbol, as

that transitions can
e s1 and the cufient
Lbelled nulldenoting
l automaton. Such a

a

a

b

b

Figure 4.3 An example of a non-deterministic finite automaton.

move is said to be silent because it occurs without any reading of input, and the
obseler, viewing the automaton as a black box, will not be able to notice that any
transition has occurred.

The state s3 is double circled, which indicates that it is a final state. The
automaton is said to accept the input string if there is a transition path in the graph
such that

(1) it starts with the initial state,

(Z) it ends with a frnal state, and
(3) the arc labels along the path correspond to the complete. input string.

It is entirely up to the automaton to decide which of the possible moves to
execute at arry time. In particular, the automaton may choose to make or not
to make a silent move, if it is available in the current state. But abstract non-
deterministic machines of this kind have a magic property: if there is a choice then
they always choose a'right' move; that is, a move that leads to the acceptance of the
input string, if such a move exists. The automaton in Figure 4.3 will, for example,
accept the strings ab and aøbaab, but it will reject the stdngs abb and øbbø.lt is easy
to see that this automaton accepts any string that terminates with ab, and rejects all
others.

In Prolog, an automaton can be specified by three relations:

(1) a unary relation final which defrnes the final states of the automaton;
(2) a three-argument relation trans which defrnes the state transitions so that

trans(S1, X, 52)

means that a transition from a state 51 to S2 is possible when the current input
symbol X is read;

null

null

96 Using Structures: Example Programs

(3) a binary relation
silent(S1' 52)

meaning that a silent move is possible from 51 to 52'

For the automaton in Figure 4.3 these three relations are:

final(s3).

trans(sl, a, s1).
trans(sl, a, s2).
trans(sl, b, s1).
trans(s2, b, s3).
trans(s3, b, s4).

silent(s2, s4).
silent(s3' s1.).

we will represent input strings as Prolog lists. So the string aøb will be represented

by [a,a,b]. Given the deicription of the automaton, the simulator will process a given

iáput string and decide whether the string is accepted or reiected- By definition, the

non-deterministic automatori accepts a given string if (starting ftom an initial state),

after having read the whole input string, the automaton can (possibly) be in its final

state. The simulator is prograÀmed as a binary relation, accepts, which defines the

acceptance of a string from a given state' So

accepts(State, Süing)

is true if the automaton, starting from the state state as initial state, accepts the

string string. The accepts relation can be defrned by three clauses. They correspond

to the following three cases:

(1) The empty string, [], is accepted from a state State if State is a final state'

(2)Anon-emptyStringisacceptedfromstateifreadingthefrrstsymbolinthe
string can bring the automaton into some state stateL, and the rest of the string

is accepted from Statel. Figure 4'4(a) illustrates'

(3)Astringisacceptedfromstateiftheautomatoncanmakeasilentmove
fromstatetostatel.andthenacceptthe(whole)inputStringfromStatel.
Figure 4.4(b) illustrates.

These rules can be translated into Prolog as:

accepts(State, []) :- o/o Accept empty string
final(State).

accepts(State, [X I Rest]) ¡ o/o Accept by reading first symbol

trans(State, X, Statel),
accepts(Statel, Rest).

accepts(State, String) i o/o Accept by making silent move

silent(State, Statel),
accePts(Statel, String).

Figur

The I

?-

ye

Al
prob
can ¡

will ¡

?-

S

S

Amu
from

?-

X
xl
X.

X
X]
x
n(

Ifw
forrn

Simulating a non-deterministic automaton 97

rest of stringfirst symbol

null

,o

,o

x
(a)

string

) will be represented
'will process a given
d. By definition, the
rom an initial state),
rssibl/) be in its final
s, which deflnes the

al state, accepts the
es. They coüespond

is a final state.

: ñrst s)¡mbol in the
the rest of the string

nake a silent move
: string from Statel.

s)¡mbol

.t move

ì
ti

:

:

i
I

:

:

¡

:

I

I
a

:

{
I
:

t

:

'a

a

1'

,

(b)

Figure 4,4 Accepting a string: (a) by reading its first symbol X; (b) by making a silent move.

The program can be asked, for example, about the acceptance of the string aøabby:

?- accepts(sl, [a,a,a,b]).
yes

As we have already seen, Prolog programs are often able to solve more general
problems than problems for which they were originally developed. In our case, we
can also ask the simulator which state our automaton can be in initially so that it
will accept the string øb:

?- accepts(S, [a,b]).
S:sl;
S:s3

Amusingly, we can also ask: What are all the strings of length 3 that are accepted
from state sr?

?- accepts(sl, [X1,X2,X3]).

Xl :a
x2: a
X3:b;
xl :b
x2:a
X3 : t¡;

no
If we prefer the acceptable input strings to be typed out as lists then we can
formulate the question as:

98 Using Structures: Example Proqrams

?- String :L, -,-1, accePts(sl, String)'

String: la,a,b]i

::'"*
- þ'a'br;

we can make further experiments asking even more general questions, such as:

From what states will the automaton accept input strings of length 7?

Further experimentation could involve modiflcations in the structure of the

automaton by changing the relations final, trans and silent. The automaton in Figure

4.3 does not contain ãny cyclic 'silent path' (a path that consists only of silent

moves). If in Figure 4.3 a new transition

silent(sL, s3)

isaddedthena,silentcycle,iscreated.Butoursimulatormaynowgetintotrouble.
For examPle, the question

?- .accePts(
s1, [a]).

would induce the simulator to cycle in state s1 indefinitely, all the time hoping to

flnd some way to the final state'

Exercises

.I
a.

S(

The 1

will t
tir

wher

D(

Here
courl
the a

tir

The
mint

T1

of th
fo

4.4

4.5

Whycouldcyclingnotoccurinthesimulationoftheoriginalautomatonin
Figure 4.3, when there was no ,silent cycle, in the transition graph?

Cycling in the execution of accepts can be prevented, for example, by counting the

number of moves made so far. The simulator would then be requested to search only

for paths of some limited length. Modify the accepts relation this way' Hint: Add a

thiid argument: the maximum number of moves allowed:

accepts(State, String, MaxMoves)

: .[.û:,:, Travel agent

In this section we will construct a program that gives advice on planning air travel'

Theprogramwillbearathersimpleadvisor,yetitwillbeabletoanswersomeuseful
questions, such as:

o What days of the week is there a direct evening flight from Ljubliana to London?

o How can I get from Ljubljana to Edinburgh on Thursday?

Here

(1)

(2)

(3)

(4)

(s)

The r

Fr

Wel
(1)

(2)

