
CoSc 450: Programming Paradigms

What is Concurrent
Programming?

01

M. Ben-Ari

Principles of Concurrent and Distributed Programming

Second Edition

Addison-Wesley, 2006

c≠ Mordechai Ben-Ari 2006

Computer Time

ª -

time (nanoseconds) !
0 100 200 300 400 500

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition

c≠ M. Ben-Ari 2006 Slide 1.1

Human Time

ª -

time (seconds) !
0 100 200 300 400 500

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition

c≠ M. Ben-Ari 2006 Slide 1.2

Loader LoaderJob 1 Job 2 Loader

Figure 8.4

Primitive, one-job-at-a-time system

Multiprogramming
• An operating system that can switch back

and forth between processes to keep the
CPU busy is called a multiprogramming system

• It maintains a queue of process control
blocks (PCBs)

Asynchronous
interrupts

• Time outs

• I/O completions

CoSc 450: Programming Paradigms 01

T
im

e
ou

t

I/O
 r

eq
ue

st

T
im

e
ou

t

T
im

e
ou

t

T
im

e
ou

t
J1 J2 J3 J1 J3 J2

I/O
 r

eq
ue

st

T
im

e
ou

t

J3 ...

A multiprocessing system

CoSc 450: Programming Paradigms 01

Observation

It is impossible for the programmer to predict the
statements in the program where the process will be
interrupted by the operating system.

CoSc 450: Programming Paradigms 01

Process

A process is a program during execution.
The state of the process is specified by:

• the program listing
• the values of all the variables
• the next instruction to execute

program counter (PC)

8.3 Concurrent Processes 421

the CPU. If a running process requests some input from a keyboard, in the fraction of
a second that it takes the user to respond, the CPU can execute hundreds of thou-
sands of instructions for another process. Even if the process requests input from a
disk file, which is much faster than keyboard input, the CPU could still execute thou-
sands of instructions while waiting for the information to come from the disk.

To keep from wasting CPU time, the operating system can suspend the process
that makes an I/O request if it appears that the process will need to wait for the I/O
to complete. It can temporarily assign the CPU to a second process with the under-
standing that when the I/O does complete, the first process may immediately get the
CPU back. Because the second process cannot predict when the I/O device will
complete the I/O operation for the first process, it cannot know when the operating
system might interrupt it to give the CPU back to the first process.

An operating system that can switch back and forth between processes to keep
the CPU busy is called a multiprogramming system. To implement multiprogram-
ming, the hardware must provide connections for the I/O devices to send interrupt
signals to the CPU when the devices complete their I/O operations.

Processes in the Operating System

One purpose of an operating system is to allocate the resources of the system effi-
ciently. A multiprogramming time-sharing system allocates CPU time among the
jobs in the system. The objective is to keep the CPU as busy as possible executing
user jobs instead of being idle waiting for I/O. The operating system tries to be fair
in scheduling CPU time so that all the jobs will be completed in a reasonable time.

At any given time, the operating system must maintain many suspended
processes that are waiting their turn for CPU time. It maintains all these processes
by allocating a separate PCB for each one, similar to the PCB the interrupt handler
maintains in the Pep/8 system. A common practice is to link the PCBs together with
pointers in a linked list called a queue. Figure 8.18 shows a queue of PCBs.

Each PCB includes copies of all the CPU register values at the time of the
process’s most recent interrupt. The register set must include a copy of the program
counter so the process can continue executing from where it was when the interrupt
occurred.

Multiprogramming

Figure 8.18
A queue of process control blocks.

Process ID

CPU time

PC

SP

Process ID

CPU time

PC

SP

Process ID

CPU time

PC

SP

Q

71447_CH08_Chapter08.qxd 1/28/09 12:27 AM Page 421

Figure 8.18

Transitions from the running state

422 Chapter 8 Process Management

The PCB contains additional information to help the operating system schedule
the CPU. An example is a unique process identification number assigned by the
system, labeled Process ID in Figure 8.18, that serves to reference the process. Sup-
pose a user wants to terminate a process before it completes execution normally,
and he knows the ID number is 782. He could issue a KILL(782) command that
would cause the operating system to search through the queue of PCBs, find the
PCB with ID 782, remove it from the queue, and deallocate it.

Another example of information stored in the PCB is a record of the total
amount of CPU time used so far by the suspended process. If the CPU becomes
available and the operating system must decide which of several suspended
processes gets the CPU, it can use the recorded time to make a fair decision.

As a job progresses through the system toward completion, it passes through
several states, as Figure 8.19 shows. The figure is in the form of a state transition
diagram and is another example of a finite state machine. Each transition is labeled
with the event that causes the change of state.

Figure 8.19
The state transition diagram for a
job in an operating system.

Start Ready Running Finish

Waiting

Select to run

Time out
Create
process

Terminate
process

request completeI/O
I/Ofor

I/O

When a user submits a job for processing, the operating system creates a
process for it by allocating a new PCB and attaching it to a queue of processes that
are waiting for CPU time. It loads the program into main memory and sets the copy
of PC in the PCB to the address of the first instruction of the process. That puts the
job in the ready state.

Eventually, the operating system should select the job to receive some processing
time. It sets the alarm clock to generate an interrupt after a quantum of time and puts the
copies of the registers from the PCB into the CPU. That puts the job in the running state.

While in the running state, three things can happen: (1) The running process
may time out if it is still executing when the alarm clock interrupts. If so, the oper-
ating system attaches the process’s PCB to the ready queue, which puts it back in
the ready state. (2) The process may complete its execution normally, in which case
the last instruction it executes is an SVC to request that the operating system termi-
nate it. (3) The process may need some input, in which case it executes an SVC for
the request. The operating system would transfer the request to the appropriate I/O
device and put the PCB in another queue of processes that are waiting for their I/O
operations to complete. That puts the process in the waiting-for-I/O state.

71447_CH08_Chapter08.qxd 1/28/09 12:27 AM Page 422

Figure 8.19

Multiprocessing
• A computer system with more than one

physical CPU

• Also maintains a queue of PCBs, but more
than one process can be running at the same
time

Input
device

CPU
1

CPU
2

Main
memory

Output
device

Bus

Figure 8.20

CoSc 450: Programming Paradigms

The Concurrency Theorem

Multiprogramming and multiprocessing
are logically equivalent.

01

