The Concurrent
Programming
Abstraction

Terminology

Ben-Ari — “control pointer”
Hardware — “program counter”

Each process has its own PC

Process P: pl, p2,p3,...
Process Q: ql, g2, q3,...
Process R: rl,r2,r3, ..

Example with two processes,
each with two statements

Process P: pl, p2
Process Q: ql, g2

Possible Interleavings

pl—ql—-p2—q2,
pl—ql—q2—-p2,
pl—p2—ql—q2,
ql—-pl—>q2-p2,
ql—-pl—-p2—q2,
gql—g2—-pl-p2.

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 2.2

Algorithm 2.1: Trivial concurrent program

integer n <« 0

p q

integer kl « 1 integer k2 « 2
pl: n « kl ql: n <« k2

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 2.3

Algorithm 2.1

n is a global variable
k|l and k2 are local variables

What are the possible final values of n?

Can analyze with a state transition diagram.

State Diagram for a Concurrent Program

(end)
gl: n « k2
kl=1k2=2

)
i) (

n=1

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 2.6

Homework problem

Devise an interleaving such that Algorithm 2.9
(next slide) terminates with a value of |10 for n.

Algorithm 2.9: Concurrent counting algorithm

integer n <« 0

integer temp
pl: do 10 times
p2: temp < n
p3: n < temp + 1

integer temp
ql: do 10 times
q2: temp < n
q3: n <« temp + 1

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.24

The compiler

The compiler translates a single statement of a high-
order language to multiple machine language
statements.

The compiler

The compiler translates a single statement of a high-
order language to multiple machine language
statements.

LDA k,s
n =%k + 1; * ADDA 1,1
STA n,d

Fact

In practice, the interleaving takes place at the machine
level, not the high-order language level. To do the
analysis correctly, you must analyze Algorithm 2.1 as

follows (Pep/8 assembly language).

integer n—0

P g
integer n—kl integer n+k2
pl: DA k1,s ql: Lpa k2,s

p2: STA n,d q2: STA n,d

Justification of The Concurrency Theorem

Suppose in a multiprocessing system, one CPU
tries to execute p2: STA n,d at the same time
another CPU tries to execute q2:sTa n,d.

See next slide.

The hardware will force one to go first, so the
corruption in the next slide will not occur.

Inconsistency Caused by Overlapped Execution

Global memory

0000 0000 0000 0011

7 ™~

0000 0000 0000 0001 0000 0000 0000 0010

Local memory Local memory

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 2.10

Justification of The Concurrency Theorem

Conclusion:

The effect is the same as if an arbitrary
interleaving happens in a multiprogramming
system.

Atomic statements

A statement is atomic if it cannot be interleaved at a
lower level of abstraction.

The atomic assumption in Ben-Ari’s text:
All statements in the algorithms of Ben-Ari’s text are
assumed to be atomic.

Justification of the atomic assumption

It can make a difference in the analysis if you make the
atomic assumption.

The following scenarios for Algorithm 2.3 makes the
atomic assumption for the assighment statement.

Conclusion: The final value of n must be 2, regardless of
which scenario occurs.

Algorithm 2.3: Atomic assighment statements

integer n <« 0

pl:

nNn<n-+1

ql: n < n+1

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.12

Scenario for Atomic Assignment Statements

Process p Process q n
pl: n—n+1 | ql: nen+1 | 0
(end) ql: nen+1 | 1
(end) (end) 2

M. Ben-Ari. Principles of Concurrent and Distributed Programming,

Slide 2.13

Process p Process q n
pl: nn+1 | gql: n<n+1 | 0
pl: n—n+1 | (end) 1
(end) (end) 2
Second edition © M. Ben-Ari 2006

Justification of the atomic assumption

The following scenarios for Algorithm 2.3 do not make
the atomic assumption.

(R1 corresponds to the accumulator of Pep8, # is
immediate addressing, and direct addressing is default.)

Conclusion: The final value of n could be | or 2,
depending on which scenario occurs.

Algorithm 2.6: Assignment statement for a register machine

integer n <« 0

P q
pl: load R1,n ql: load R1,n
p2: add R1,#1 q2: add R1,#1
p3: store R1,n q3: store R1,n

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.18

Register Machine

Memory Memory Memory
ol --- - lol - o1
Load l T Store
0 1 1
Registers Registers Registers

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 2.19

Scenario for a Register Machine

Process p Process q n | p.R1 | q.R1
pl: load R1,n ql: load R1,n 0 ? ?
p2: add R1,#1 ql: load R1,n 0 0 ?
p2: add R1,#1 | g2: add R1,#1 0 0 0
p3: store R1,n q2: add R1,#1 | 0 1 0
p3: store R1,n | g3: store R1,n 0 1 1
(end) q3: store R1,n | 1 1 1
(end) (end) 1 1 1

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.20

Justification of the atomic assumption

Even though the results are different depending on
whether we make the atomic assumption, we can still
model the nonatomic assumption with atomic
assignment statements.

Algorithm 2.4 uses a temp variable that corresponds to
the accumulator.

Algorithm 2.4: Assignment statements with one global reference

integer n <« 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: n « temp + 1 q2: N« temp + 1

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.14

Correct Scenario for Assignment Statements

Process p Process q n | p.temp | g.temp
pl: temp<n ql: temp<n 0 ? ?
p2: n—temp+1 | ql: temp<«n 0 0 ?
(end) ql: temp«<n 1 0 ?
(end) q2: n—temp+1 | 1 0 1
(end) (end) 2 0 1

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.15

Incorrect Scenario for Assignment Statements

Process p Process q n | p.temp | g.temp
pl: temp<n ql: temp<n 0 ? ?
p2: n—temp+1 gl: temp<n 0 0 ?
p2: n—temp+1 | q2: n<temp+1 0 0 0
(end) q2: n—temp+1 | 1 0 0
(end) (end) 1 0 0

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.16

Justification of the atomic assumption

Conclusion: The final value of n could be | or 2,
depending on which scenario occurs.

But, this is the outcome of the more realistic analysis.

So, the atomic assumption is justified if you design the
algorithm to mimic the lower level (usually with a temp
variable).

Definitions

Computation: A directed path through a graph starting
from the initial state and ending in a halt state.

Scenario: A table representation of a computation.

Concurrency analysis

Specify which statements are atomic.
Assume arbitrary interleaving of atomic statements.
Is the algorithm correct for all interleavings!?

Correctness

Correctness must be proved.
Exhaustive testing is difficult, if not impossible.
Some concurrent algorithms are designed to be non-

terminating.

Safety property, P

“Always”
P must be true in every state in every computation.

Safety property, P

“Always”
P must be true in every state in every computation.

Liveness property, P

“Eventually”
In every computation, there is some state in which P is
true.

: Programming Parac

Duality

If P is a safety property, then =P is a liveness property.

Duality

If P is a safety property, then =P is a liveness property.

(Vx| R: P)=(dx | R: —P)

Duality

If P is a safety property, then =P is a liveness property.

(Vx| R: P)=(dx | R: —P)

If P is a liveness property, then =P is a safety property.

Duality

If P is a safety property, then =P is a liveness property.

(Vx| R: P)=(dx | R: —P)

If P is a liveness property, then =P is a safety property.

—I(E|£L‘|R:P)E(\V/CIZ|R:—IP)

Safety examples

Vending machine: It is always true that if no money is
inserted, no drink is dispensed.

Safety examples

Vending machine: It is always true that if no money is
inserted, no drink is dispensed.

Star wars defense: It is always true that a missile is
never launched unless the launch button is pressed.

Safety examples

Vending machine: It is always true that if no money is
inserted, no drink is dispensed.

Star wars defense: It is always true that a missile is
never launched unless the launch button is pressed.

Safety usually rules out bad behavior.

Liveness examples

Vending machine: If enough money is in the machine, a
drink will eventually be dispensed.

Liveness examples

Vending machine: If enough money is in the machine, a
drink will eventually be dispensed.

Star wars defense: If the launch button is pressed, the
missile will eventually be launched.

Liveness examples

Vending machine: If enough money is in the machine, a
drink will eventually be dispensed.

Star wars defense: If the launch button is pressed, the
missile will eventually be launched.

Liveness ensures that the system does what it is
supposed to do.

Definition

Weakly fair: A scenario is weakly fair if, at any state in
the scenario, a statement that is continually enabled,
eventually appears in the scenario.

: Programming Parac

Question

Does Algorithm 2.5 (next slide) necessarily stop!?

Algorithm 2.5: Stop the loop A

integer n <« 0
boolean flag « false

p

pl:
p2:

while flag = false

n<1—n

ql: flag « true

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 2.17

rogramming Parac

Answer: No

There is a scenario for which it never stops:

Answer: No

There is a scenario for which it never stops:

pl,p2,pl,p2,pl,p2,pl,p2, pl,p2,pl,p2,pl, p2,..

Answer: No

There is a scenario for which it never stops:

pl,p2,pl,p2,pl,p2,pl,p2, pl,p2,pl,p2,pl, p2,..

ql is continually enabled, but does not appear in the
scenario.

Answer: No

There is a scenario for which it never stops:

pl,p2,pl,p2,pl,p2,pl,p2, pl,p2,pl,p2,pl, p2,..

ql is continually enabled, but does not appear in the
scenario.

Therefore, the scenario is not weakly fair.

Weak fairness

If the operating system can assure weak fairness, then
Algorithm 2.5 is guaranteed to terminate.

So, fairness depends on the scheduling policy of the
operating system.

Critical reference

Variable v is a critical reference if

(a) it is assigned in one process and has an occurrence
in another process,

or

(b) it occurs in an expression in one process and is
assigned in another.

Limited critical reference (LCR)

A program satisfies LCR if each statement contains at
most one critical reference.

Example: Algorithm 2.3

Algorithm 2.3: Atomic assighment statements

integer n < 0

pl:

n<<n-<+1

ql: n<n+1

Example: Algorithm 2.3

Algorithm 2.3: Atomic assighment statements

integer n « 0

pl:

n<n+1 ql: n<n+1

1

Critical reference

Example: Algorithm 2.3

Algorithm 2.3: Atomic assighment statements

integer n « 0

pl:

n<n+1 ql: n<n+1

1

Critical reference

Example: Algorithm 2.3

Algorithm 2.3: Atomic assighment statements

integer n « 0

pl:

n<n+1 ql: n<n+1

1

Critical reference

Critical reference

Example: Algorithm 2.3

Algorithm 2.3: Atomic assighment statements

integer n « 0

pl:

n<n+1 ql: n<n+1

1

Critical reference

Critical reference

Conclusion: Algorithm 2.3 does not satisfy LCR.

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: n « temp + 1 q2: n <« temp + 1

1

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: n « temp + 1 q2: n <« temp + 1

1

Not critical (temp in q is a different temp)

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: n « temp + 1 q2: n <« temp + 1

1

Not critical (temp in q is a different temp)

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: n « temp + 1 q2: n <« temp + 1

1

Not critical (temp in q is a different temp)

Critical reference

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: N « te + 1 q2: n <« temp + 1

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: N <« te + 1 q2: n <« temp + 1

Critical reference

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: N/ tenph+ 1 q2: n <« temp + 1

Critical reference

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: N/ tenph+ 1 q2: n <« temp + 1

Critical reference

Not critical

Example: Algorithm 2.4

Algorithm 2.4: Assignment statements with one global reference

integer n < 0

p q
integer temp integer temp
pl: temp < n ql: temp < n
p2: N/ tenph+ 1 q2: n <« temp + 1

Critical reference

Not critical

Conclusion: Algorithm 2.4 does satisfy LCR.

Limited critical reference

If an algorithm satisfies LCR, then it behaves the same
regardless of whether its statements are atomic!

Then, you do not need to modify your algorithm with
temp to mimic the lower level.

Algorithm 2.8: Volatile variables

integer n <« 0
p q
integer locall, local2 integer local
pl: N <« some expression ql: local < n+ 6

p2: computation not using n q2:
p3: locall « (n+5) %7 q3:
p4: local2 « n+5 q4-:
p5: n « locall * local2 q5:

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 2.23

Volatile variables

An optimizing compiler could translate the statements
in process p,Algorithm 2.8, as follows:

pl: tempRegl < some expression
pP2: computation not using n

p3: tempReg?2 < tempRegl| + 5
p4: local2 «+ tempReg2

p5: locall « tempReg2 *7

p6: n « locall * local2

Volatile variables

The optimizing compiler does not assign to n in the
first statement. Original statements p3 and p4 are
executed out of order.

If there were no concurrency, the translated code
would be correct.

With concurrency and interleaving, any translated code
might not be correct.

Volatile variables

Specifying a variable as volatile instructs the compiler to
load and store the value of the variable at each use,
rather than to optimize away these loads and stores.

Concurrency in C++

CountA.cpp

Uses class thread.

Passes a function as a parameter to the constructor
that the thread executes.

Functional programming!

p.Jjoin() forces main () to suspend execution until p
terminates.

CountA.cpp

#include <cstdlib>
#include <iostream>
#include <thread>
using namespace std;

volatile int n = 0;

void pRun(int m) {
int temp;
for (int 1 = 0; 1 < m; i++) {
temp = n;
n = temp + 1;

}

void qRun(int m) {
int temp;
for (int 1 = 0; 1 < m; i++) {
temp = n;
n = temp + 1;

CountA.cpp

int main(int argc, char **argv) {
int myMax = stoi(argv[l]);
cout << "The value of myMax is " << myMax << endl;
thread p(pRun, myMax);
thread g(gRun, myMax);
p.join();
g.join();
cout << "The value of n should be " << 2*myMax << endl;
cout << "The value of n is " << n << endl;
return EXIT SUCCESS;

Function syntax

Think of the statement
thread p(pRun, myMax);
as if it were

thread p(pRun(myMax));

where myMax is the actual parameter that corresponds
to the formal parameter m.

Demo CountA.cpp

Take main () input from command line or from CLion
Program arguments in Run/Debug Configuration.

Conclusion: The program works for small values of m,
but not for large values of m.

Why?

Demo CountA.cpp

Because for small values of m each thread will complete
its entire computation within a single time slice.

Therefore, no interleaving!

Concurrency in C++

CountB.cpp

Uses a random delay to force interleaving due to time
slice timeouts even for small values of m.

CountB.cpp

#include <cstdlib>
#include <iostream>
#include <thread>
#include "Util4d50.cpp"”
using namespace std;

volatile int n 0;
void pRun() {
int temp;
for (int i = 0; i < 10; i++) {
randomDelay(10);
temp = n;
randomDelay(10);
n = temp + 1;

CountB.cpp

void gRun() {
int temp;
for (int i = 0; i < 10; i++) {
randomDelay(10);
temp = n;
randomDelay(10);
n = temp + 1;

}

int main(int argc, char **argv) {
thread p(pRun);
thread g(gRun);
p.join();
g.join();
cout << "The value of n is " << n << endl;
return EXIT SUCCESS;

Utild50.cpp

#include <thread>
#include <chrono>
#include <random>
#include <iostream>

using namespace std;

random device rdev{}; // For random seed
default random engine engine{rdev()}; // Seed the engine

void randomDelay(int delay) {
uniform int distribution<int> distr (0, delay);
int d = distr(engine);
// cout << "delay == " << d << endl;
this thread::sleep for(chrono::milliseconds(d));

Demo CountB.cpp

Results are unpredictable because of the random
delays.

To see the delays, repeat demo with cout
uncommented in randomDelay ().

Interleaving may occur within the cout streams!

Computer Systems rirtu epition Figure 7.26

Compilation, C++

Input

Source
High-order language

~(

Application
input

~(

(a) Compilation.

Processing

Output

Translator
achine langua

Object
ge Machine language

Object
achine langua

Application
ge output

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Computer Systems rirtu eoition

Figure 7.26
(continued)

Interpretation, Java

Input

Source
High-order language

Processing

T1.ranslat0r
Machine language

Output

Object
Byte code

Object
Byte code

Application
input

(b) Interpretation.

4 N

Virtual Machine
Machine language

o /

Application
output

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Java

Use Intelli) IDE.

Modify Ben-Ari and Sestoft Java programs to make
project class public for two reasons:

* Allows JavaDoc html documentation.
e Allows to execute the class file from the command

line.

Must rename class to match file name.

Java

p.start () puts thread p in the ready (Enabled) queue.

p.join(), executed by main(), suspends main() until
thread p terminates.

CountA. java

package counta;
public class CountA extends Thread {

static volatile int n = 0;
int m;

CountA(int myM) {
m = myM;

}

public void run() {
int temp;
for (int 1 = 0; 1 < m; i++) {
temp = n;
n = temp + 1;

CountA. java

public static void main(String[] args) {
int myMax = Integer.parselInt(args[0]);
System.out.println("The value of myMax is
CountA p = new CountA(myMax);
CountA g = new CountA(myMax);

+ myMax) ;

p.start();
g.start();
try {

p.Jjoin();
g.join();
} catch (InterruptedException e) {
}
System.out.println(
"The value of n should be + 2 * myMax);
System.out.println("The value of n is " + n);

Demo CountA. java

Take main () input from command line or from Intelli
Program arguments in Run/Debug Configuration.

Conclusion: As with C++, the program works for small
values of m, but not for large values of m.

Command line: Compilation vs Interpretation

warford$./CountA 10

| Execute the machine language app

Command line: Compilation vs Interpretation

warford$./CountA 10

| Execute the machine language app

warford$S java counta/CountA 10

TThe app is input to the Java
virtual machine

Execute the Java virtual machine

CountB. java

Similar to CountB.cpp

Must put randomDelay () in a try statement because
an exception is possible.

Insert random delays that make multiple runs not
predictable.

The random sleep delays are long enough to trigger a
timeout, which forces interleaving to occur.

CountB. java

package countb;

import static util4d50.Util450.*;

public class CountB extends Thread {
static volatile int n = 0;

public void run() {
int temp;
for (int i = 0; i < 10; 1i++) {
try {
randomDelay(10);
temp = n;
randomDelay(10);
n = temp + 1;
} catch (InterruptedException e) {
}

CountB. java

public static void main(String[] args) {
CountB p = new CountB();
CountB g = new CountB();
p.start();
g.start();

try {

p.Jjoin();

qg.Jjoing();
} catch (InterruptedException e) {
}

System.out.println("The value of n is " + n);

Utild50.java

package utild50;
public final class Util450 {

public static void randomDelay(int delay)
throws InterruptedException {
int d = (int) (delay * Math.random()

(
// System.out.println("delay == +
Thread.sleep(d); // milliseconds

) ;
d);

Threads

Like processes, threads are also programs during
execution.

However, a thread is under control of a process.
A process is under control of the operating system.

Demo Activity Monitor application.

Threads vs Processes

A process is a program during execution in an
operating system.

Threads vs Processes

A process is a program during execution in an
operating system.

* Processes communicate via message passing.

Threads vs Processes

A process is a program during execution in an
operating system.

* Processes communicate via message passing.

A thread is a program during execution in a process.

Threads vs Processes

A process is a program during execution in an
operating system.

* Processes communicate via message passing.

A thread is a program during execution in a process.

* Threads communicate via shared memory.

The action of p.start() and p.join()
(Sestoft 20.1, page 80)

Let u be a thread (an object of a subclass of Thread).

u.start () changes the state of u to Enabled so that
its run () method will be called when a processor
becomes available.

u.join() waits for thread u to die; may throw
InterruptedException if the current thread is
interrupted while waiting.

s . geComputer Systems Figure 8.19

TN Y

Waiting
for I/0

elect to run

I/0 request
S
—
Ready
~— ,
Create , Terminate
Time out

process Pprocess

I/0 complete

@ 2010 Jones and Bartlert Publishers, LLC (www.jbpub.com)

Sestoft, page 8|

o.notify() o.notifyAll ()

Waiting for o

attempting to lock o o.wait ()

interrupt ()

Locking o timeout

got lock
on o

scheduled

start () preempted

. / | yield()
timeout

interrupt () Sleeping

timeout

: , u.join()
u died interrupt () Joining u

dies

The action of p.start() and p.join()

After p and g start, there could be three concurrent
executions:

|. p executing its run () method
2. g executing its run () method
3.main () executing its statements after starting g

p.Jjoin()is not executed by thread p. It is executed by
main().

The throw statement

throw expression ;

The type of expression must be a subtype of class
Throwable.

The enclosing block statement terminates abruptly. The
thrown exception may be caught by a try-catch
statement.

Class hierarchy (partial)

Throwable
Error
OutOfMemoryError
Exception
TOException
RuntimeException
ArithmeticException
IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException
NegativeArraySizeException

The try-catch-finally statement

try
body
catch(E1 x1)
catchBody |
catch(E2 x2)
catchBody2

finally
finallyBody

rogramming Parac

try-catch with no finally

try {

Q w

D
} catch(El x1) {
F
G

try-catch with no finally

try { Sequence with no exception
A ABCD
B
C
D v
} catch(El x1) {
F
G
}

try-catch with no finally

try { Sequence with no exception
A ABCD
» |
C Sequence with exception
D at B
} catch(El x1) { A BFG

!

-

Sestoft, Example89. java

Uses Sestoft, Example98. java

super () is a call to the superclass constructor.

Passing a string to the constructor of a superclass
causes toString() to append the string to the name
of the exception.

Sestoft, Example98.java

package example89;
class WeekdayException extends Exception {

public WeekdayException(String wday) {
super("Illegal weekday: " + wday);

}

Sestoft, Example89.java

package example89;

public class Example89 ({
public static void main(String[] args) {

try {
System.out.println(args[0]
+ " 1is weekday number " + wdayno4(args[0]));
} catch (WeekdayException x) {
System.out.println("Weekday problem: " + Xx);
} catch (Exception x) {
System.out.println("Other problem: " + x);
}

Sestoft, Example89.java

// Sestoft, Example 88
static int wdayno4 (String wday) throws WeekdayException ({
for (int 1 = 0; 1 < wdays.length; i++)
if (wday.equals(wdays[i]))
return 1 + 1;
throw new WeekdayException(wday) ;

}

// Sestoft, Example 80
static final String[] wdays =
{ "Monday", “Tuesday”, *"“Wednesday", *“Thursday",
“Friday", "Saturday", "Sunday" };

Sestoft, Example89. java

Demo with
$ Java Example89 Wednesday

Demo with
S jJava Example89 Wedxxx

Demo with
S java Example89

throws

If a method is capable of causing an exception that it
does not handle, it must specify this behavior so that
callers of the method can guard themselves against that

exception.

You do this by including a throws clause in the
method’s declaration.

ExceptionReview

Uncaught exceptions propagate up the call chain.

Demo with
S java ExceptionReview 10

Demo with
S java ExceptionReview -10

MyException. java

public class MyException extends RuntimeException {

public MyException(String message) {
super (message) ;

ExceptionReview. java

public class ExceptionReview {
public static void main(String[] args) {

int x = Integer.parselInt(args[0]);

System.out.println("Main started with x == " + x);
int x2;
try {
x2 = top(x);
} catch (MyException e) {
System.out.println("Caught an exception: " + e);
x2 = 99;
}
System.out.println("Main ending with x2 == " + x2);
}
static int top(int y) {
System.out.println("Top started with y == " + y);
int y2 = bottom(y);
System.out.println("Top returning y2 == " + y2);
return y2;
}
static int bottom(int z) throws MyException {
System.out.println("Bottom started with z == " + 2)

if (z < 0) {

throw new MyException("Throwing MyException");

}

System.out.println("Bottom returning 20");
return 20;

4

Sestoft, Example99

A clever example that can exercise all the possible

flows of control through the try-catch-finally
statement.

See Section 12.6.6, page 62, for a detailed explanation.
The key sentence is the one about the finally clause:

The try-catch-finally statement

try
body
catch(E1 x1)
catchBody |
catch(E2 x2)
catchBody2

finally
finallyBody

If there is a finally clause, the finallyBody will be
executed regardless of whether the execution of body
terminated normally, regardless of whether body exited
by executing return or break or continue,
regardless of whether any exception thrown by body
was caught by a catch clause, and regardless of
whether the catch clause exited by executing return
or break or continue or by throwing an exception.

Example99. java

// Example 99 from page 73 of Java Precisely third edition (The MIT Press 2016)
// Author: Peter Sestoft (sestoft@itu.dk)

// To exercise all paths through the try-catch-finally statement in

// method m, run this program with each of these arguments:

// 101 102 103 201 202 203 301 302 303 411 412 413 421 422 423 431 432 433
// like this:

// java Example99 101
// java Example99 102
// etc

class Example99 {
public static void main(String[] args) throws Exception {
System.out.println(m(Integer.parseInt(args[0])));

}

Example99. java

static String m(int a) throws Exception {
try {
System.out.print("try ... ");
if (a / 100 == 2)
return "returned from try";
if (a / 100 == 3)
throw new Exception("thrown by try");
if (a / 100 == 4)
throw new RuntimeException("thrown by try");
} catch (RuntimeException x) {
System.out.print("catch ... ");
if (a/ 10 % 10 == 2)
return "returned from catch";
if (a/ 10 $ 10 == 3)
throw new Exception("thrown by catch");
} finally {
System.out.println("finally");
if (a % 10 == 2)
return "returned from finally";
if (a $ 10 == 3)

throw new Exception("thrown by finally");

}

return "terminated normally with " + a;

