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Terminology

Ben-Ari — “control pointer”
Hardware — “program counter”
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Each process has its own PC

Process P:  p1, p2, p3, ...
Process Q:  q1, q2, q3, ...
Process R:  r1, r2, r3, ...
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Example with two processes, 
each with two statements

Process P:  p1, p2
Process Q:  q1, q2



Possible Interleavings

p1!q1!p2!q2,

p1!q1!q2!p2,

p1!p2!q1!q2,

q1!p1!q2!p2,

q1!p1!p2!q2,

q1!q2!p1!p2.
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Algorithm 2.1: Trivial concurrent program
integer n ¿ 0

p q
integer k1 ¿ 1 integer k2 ¿ 2

p1: n ¿ k1 q1: n ¿ k2
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Algorithm 2.1

n is a global variable
k1 and k2 are local variables

What are the possible final values of n?

Can analyze with a state transition diagram.



State Diagram for a Concurrent Program
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Homework problem

Devise an interleaving such that Algorithm 2.9 
(next slide) terminates with a value of 10 for n.



Algorithm 2.9: Concurrent counting algorithm
integer n ¿ 0

p q
integer temp integer temp

p1: do 10 times q1: do 10 times

p2: temp ¿ n q2: temp ¿ n

p3: n ¿ temp + 1 q3: n ¿ temp + 1
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The compiler

The compiler translates a single statement of a high-
order language to multiple machine language 
statements.

n = k + 1;
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The compiler

The compiler translates a single statement of a high-
order language to multiple machine language 
statements.

n = k + 1;
LDA  k,s
ADDA 1,i
STA  n,d
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Fact

In practice, the interleaving takes place at the machine 
level, not the high-order language level. To do the 
analysis correctly, you must analyze Algorithm 2.1 as 
follows (Pep/8 assembly language).

p
integer n←k1
p1:   LDA k1,s
p2:   STA n,d

q
integer n←k2
q1:   LDA k2,s
q2:   STA n,d

integer n←0
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Justification of  The Concurrency Theorem

Suppose in a multiprocessing system, one CPU 
tries to execute p2: STA n,d at the same time 
another CPU tries to execute q2: STA n,d.

See next slide.

The hardware will force one to go first, so the 
corruption in the next slide will not occur.

01



Inconsistency Caused by Overlapped Execution

Local memory Local memory

0000 0000 0000 0001 0000 0000 0000 0010

0000 0000 0000 0011

Global memory

®
®*

H
HY
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Justification of  The Concurrency Theorem

Conclusion:

The effect is the same as if an arbitrary 
interleaving happens in a multiprogramming 
system.

01
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Atomic statements

A statement is atomic if it cannot be interleaved at a 
lower level of abstraction.

The atomic assumption in Ben-Ari’s text:
All statements in the algorithms of Ben-Ari’s text are 
assumed to be atomic.
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Justification of the atomic assumption

It can make a difference in the analysis if you make the 
atomic assumption.

The following scenarios for Algorithm 2.3 makes the 
atomic assumption for the assignment statement.

Conclusion: The final value of n must be 2, regardless of 
which scenario occurs.



Algorithm 2.3: Atomic assignment statements
integer n ¿ 0

p q
p1: n ¿ n + 1 q1: n ¿ n + 1
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Scenario for Atomic Assignment Statements

Process p Process q n

p1: n¿n+1 q1: n¿n+1 0

(end) q1: n¿n+1 1

(end) (end) 2

Process p Process q n

p1: n¿n+1 q1: n¿n+1 0

p1: n¿n+1 (end) 1

(end) (end) 2
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Justification of the atomic assumption

The following scenarios for Algorithm 2.3 do not make 
the atomic assumption.

(R1 corresponds to the accumulator of Pep8, # is 
immediate addressing, and direct addressing is default.)

Conclusion: The final value of n could be 1 or 2, 
depending on which scenario occurs.



Algorithm 2.6: Assignment statement for a register machine
integer n ¿ 0

p q
p1: load R1,n q1: load R1,n

p2: add R1,#1 q2: add R1,#1

p3: store R1,n q3: store R1,n
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Register Machine

Registers

Memory
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Scenario for a Register Machine

Process p Process q n p.R1 q.R1

p1: load R1,n q1: load R1,n 0 ? ?

p2: add R1,#1 q1: load R1,n 0 0 ?

p2: add R1,#1 q2: add R1,#1 0 0 0

p3: store R1,n q2: add R1,#1 0 1 0

p3: store R1,n q3: store R1,n 0 1 1

(end) q3: store R1,n 1 1 1

(end) (end) 1 1 1
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Justification of the atomic assumption

Even though the results are different depending on 
whether we make the atomic assumption, we can still 
model the nonatomic assumption with atomic 
assignment statements.

Algorithm 2.4 uses a temp variable that corresponds to 
the accumulator.



Algorithm 2.4: Assignment statements with one global reference
integer n ¿ 0

p q
integer temp integer temp

p1: temp ¿ n q1: temp ¿ n

p2: n ¿ temp + 1 q2: n ¿ temp + 1
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Correct Scenario for Assignment Statements

Process p Process q n p.temp q.temp

p1: temp¿n q1: temp¿n 0 ? ?

p2: n¿temp+1 q1: temp¿n 0 0 ?

(end) q1: temp¿n 1 0 ?

(end) q2: n¿temp+1 1 0 1

(end) (end) 2 0 1
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Incorrect Scenario for Assignment Statements

Process p Process q n p.temp q.temp

p1: temp¿n q1: temp¿n 0 ? ?

p2: n¿temp+1 q1: temp¿n 0 0 ?

p2: n¿temp+1 q2: n¿temp+1 0 0 0

(end) q2: n¿temp+1 1 0 0

(end) (end) 1 0 0
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Justification of the atomic assumption

Conclusion: The final value of n could be 1 or 2, 
depending on which scenario occurs.

But, this is the outcome of the more realistic analysis.

So, the atomic assumption is justified if you design the 
algorithm to mimic the lower level (usually with a temp 
variable).
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Definitions

Computation:  A directed path through a graph starting 
from the initial state and ending in a halt state.

Scenario:  A table representation of a computation.
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Concurrency analysis

Specify which statements are atomic.
Assume arbitrary interleaving of atomic statements.
Is the algorithm correct for all interleavings?
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Correctness

Correctness must be proved.
Exhaustive testing is difficult, if not impossible.
Some concurrent algorithms are designed to be non-
terminating.
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Safety property, P

“Always”
P must be true in every state in every computation.
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Safety property, P

“Always”
P must be true in every state in every computation.

Liveness property, P

“Eventually”
In every computation, there is some state in which P is 
true.
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Duality

If P is a safety property, then ¬P is a liveness property.

If P is a liveness property, then ¬P is a safety property.

Draft 1

(4.2) turn = 1 _ turn = 2

(4.3) p3..5 _ p8..10 ⌘ wantp

(4.4) q3..5 _ q8..10 ⌘ wantq

¬(8x R : P ) ⌘ (9x R : ¬P )

2 (p8 ) 3 p9)

p1 ) 3 p2

32 p1

p4 ^ (turn = 2) ) 3 p5
p4 ^ ¬(turn = 2) ) 3 p3

p4 ^2 (turn = 2) ) 3 p5

32A ^ (2A ) 3B) ) 3B

23¬q1

2wantp ^2 turn = 1 ) 32¬wantq

p2 ) 3 p8

p2 ^ ¬3 p8

¬2 turn = 2

1 The Equational Temporal System
This section presents an axiomatic deductive system of temporal logic whose theorems are proved with the
equational logic E of [?]. Theorems cited in a proof hint take two forms. A numbered reference enclosed in
parentheses witout a decimal point is a reference to an axiom or a previously-proved theorem in this paper.
A numbered reference enclosed in parentheses with a decimal point is a reference to an axiom or a theorem
from the propositional calculus in [?].

1.1 Next
The next operator e is defined by the following two axioms.

(1) Axiom, Self-dual: e¬p ⌘ ¬ ep
(2) Axiom, Distributivity of e over ): e(p ) q) ⌘ ep ) eq
Linearity follows from self-dual and distributivity of e over ).

(3) Linearity: ep ⌘ ¬ e¬p
Proof:

6 J. STANLEY WARFORD

THEOREMS OF THE PREDICATE CALCULUS

Universal quantification.
Notation: (?x : P ) means (?x true : P ).
(9.2) Axiom, Trading: (8x R : P ) ⌘ (8x : R ) P )

(9.3) Trading:
(a) (8x R : P ) ⌘ (8x : ¬R _ P )

(b) (8x R : P ) ⌘ (8x : R ^ P ⌘ R)

(c) (8x R : P ) ⌘ (8x : R _ P ⌘ P )

(9.4) Trading:
(a) (8x Q ^R : P ) ⌘ (8x Q : R ) P )

(b) (8x Q ^R : P ) ⌘ (8x Q : ¬R _ P )

(c) (8x Q ^R : P ) ⌘ (8x Q : R ^ P ⌘ R)

(d) (8x Q ^R : P ) ⌘ (8x Q : R _ P ⌘ P )

(9.4.1) Universal double trading: (8x R : P ) ⌘ (8x ¬P : ¬R)

(9.5) Axiom, Distributivity of _ over 8 : Provided ¬occurs(‘x’, ‘P ’),
P _ (8x R : Q) ⌘ (8x R : P _Q)

(9.6) Provided ¬occurs(‘x’, ‘P ’), (8x R : P ) ⌘ P _ (8x : ¬R)

(9.7) Distributivity of ^ over 8 : Provided ¬occurs(‘x’, ‘P ’),
¬(8x : ¬R) ) ((8x R : P ^Q) ⌘ P ^ (8x R : Q))

(9.8) (8x R : true) ⌘ true

(9.9) (8x R : P ⌘ Q) ) ((8x R : P ) ⌘ (8x R : Q))

(9.10) Range weakening/strengthening: (8x Q _R : P ) ) (8x Q : P )

(9.11) Body weakening/strengthening: (8x R : P ^Q) ) (8x R : P )

(9.12) Monotonicity of 8 : (8x R : Q ) P ) ) ((8x R : Q) ) (8x R : P ))

(9.13) Instantiation: (8x : P ) ) P [x := E]

(9.16) Metatheorem: P is a theorem iff (8x : P ) is a theorem.

Existential quantification.
(9.17) Axiom, Generalized De Morgan: (9x R : P ) ⌘ ¬(8x R : ¬P )

(9.18) Generalized De Morgan:
(a) ¬(9x R : ¬P ) ⌘ (8x R : P )

(b) ¬(9x R : P ) ⌘ (8x R : ¬P )

(c) (9x R : ¬P ) ⌘ ¬(8x R : P )

(9.19) Trading: (9x R : P ) ⌘ (9x : R ^ P )

(9.20) Trading: (9x Q ^R : P ) ⌘ (9x Q : R ^ P )

(9.20.1) Existential double trading: (9x R : P ) ⌘ (9x P : R)

(9.20.2) (9x : R) ) ((8x R : P ) ) (9x R : P ))

(9.21) Distributivity of ^ over 9 : Provided ¬occurs(‘x’, ‘P ’),
P ^ (9x R : Q) ⌘ (9x R : P ^Q)

(9.22) Provided ¬occurs(‘x’, ‘P ’), (9x R : P ) ⌘ P ^ (9x : R)
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Duality

If P is a safety property, then ¬P is a liveness property.

If P is a liveness property, then ¬P is a safety property.
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This section presents an axiomatic deductive system of temporal logic whose theorems are proved with the
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(a) (8x R : P ) ⌘ (8x : ¬R _ P )

(b) (8x R : P ) ⌘ (8x : R ^ P ⌘ R)

(c) (8x R : P ) ⌘ (8x : R _ P ⌘ P )

(9.4) Trading:
(a) (8x Q ^R : P ) ⌘ (8x Q : R ) P )

(b) (8x Q ^R : P ) ⌘ (8x Q : ¬R _ P )

(c) (8x Q ^R : P ) ⌘ (8x Q : R ^ P ⌘ R)

(d) (8x Q ^R : P ) ⌘ (8x Q : R _ P ⌘ P )

(9.4.1) Universal double trading: (8x R : P ) ⌘ (8x ¬P : ¬R)

(9.5) Axiom, Distributivity of _ over 8 : Provided ¬occurs(‘x’, ‘P ’),
P _ (8x R : Q) ⌘ (8x R : P _Q)

(9.6) Provided ¬occurs(‘x’, ‘P ’), (8x R : P ) ⌘ P _ (8x : ¬R)

(9.7) Distributivity of ^ over 8 : Provided ¬occurs(‘x’, ‘P ’),
¬(8x : ¬R) ) ((8x R : P ^Q) ⌘ P ^ (8x R : Q))

(9.8) (8x R : true) ⌘ true

(9.9) (8x R : P ⌘ Q) ) ((8x R : P ) ⌘ (8x R : Q))

(9.10) Range weakening/strengthening: (8x Q _R : P ) ) (8x Q : P )

(9.11) Body weakening/strengthening: (8x R : P ^Q) ) (8x R : P )

(9.12) Monotonicity of 8 : (8x R : Q ) P ) ) ((8x R : Q) ) (8x R : P ))

(9.13) Instantiation: (8x : P ) ) P [x := E]

(9.16) Metatheorem: P is a theorem iff (8x : P ) is a theorem.

Existential quantification.
(9.17) Axiom, Generalized De Morgan: (9x R : P ) ⌘ ¬(8x R : ¬P )

(9.18) Generalized De Morgan:
(a) ¬(9x R : ¬P ) ⌘ (8x R : P )

(b) ¬(9x R : P ) ⌘ (8x R : ¬P )

(c) (9x R : ¬P ) ⌘ ¬(8x R : P )

(9.19) Trading: (9x R : P ) ⌘ (9x : R ^ P )

(9.20) Trading: (9x Q ^R : P ) ⌘ (9x Q : R ^ P )

(9.20.1) Existential double trading: (9x R : P ) ⌘ (9x P : R)

(9.20.2) (9x : R) ) ((8x R : P ) ) (9x R : P ))

(9.21) Distributivity of ^ over 9 : Provided ¬occurs(‘x’, ‘P ’),
P ^ (9x R : Q) ⌘ (9x R : P ^Q)

(9.22) Provided ¬occurs(‘x’, ‘P ’), (9x R : P ) ⌘ P ^ (9x : R)



CoSc 450: Programming Paradigms 02

Safety examples

Vending machine: It is always true that if no money is 
inserted, no drink is dispensed.

Star wars defense: It is always true that a missile is 
never launched unless the launch button is pressed.

Safety usually rules out bad behavior.
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Liveness examples

Vending machine: If enough money is in the machine, a 
drink will eventually be dispensed.

Star wars defense: If the launch button is pressed, the 
missile will eventually be launched.

Liveness ensures that the system does what it is 
supposed to do.
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missile will eventually be launched.

Liveness ensures that the system does what it is 
supposed to do.
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Definition

Weakly fair: A scenario is weakly fair if, at any state in 
the scenario, a statement that is continually enabled, 
eventually appears in the scenario.
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Question

Does Algorithm 2.5 (next slide) necessarily stop?



Algorithm 2.5: Stop the loop A
integer n ¿ 0

boolean flag ¿ false

p q
p1: while flag = false q1: flag ¿ true

p2: n ¿ 1 † n q2:

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c≠ M. Ben-Ari 2006 Slide 2.17
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Answer: No

There is a scenario for which it never stops:

p1, p2, p1, p2, p1, p2, p1, p2, p1, p2, p1, p2, p1, p2, ...

q1 is continually enabled, but does not appear in the 
scenario.

Therefore, the scenario is not weakly fair.
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Weak fairness

If the operating system can assure weak fairness, then 
Algorithm 2.5 is guaranteed to terminate.

So, fairness depends on the scheduling policy of the 
operating system.
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Critical reference

Variable v is a critical reference if
(a) it is assigned in one process and has an occurrence 
in another process,
or
(b) it occurs in an expression in one process and is 
assigned in another.



CoSc 450: Programming Paradigms 02

Limited critical reference (LCR)

A program satisfies LCR if each statement contains at 
most one critical reference.
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Example: Algorithm 2.3

Algorithm 2.3: Atomic assignment statements
integer n ¿ 0

p q
p1: n ¿ n + 1 q1: n ¿ n + 1
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Example: Algorithm 2.3

Algorithm 2.3: Atomic assignment statements
integer n ¿ 0

p q
p1: n ¿ n + 1 q1: n ¿ n + 1
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Critical reference

Critical reference

Conclusion:  Algorithm 2.3 does not satisfy LCR.
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Example: Algorithm 2.4
Algorithm 2.4: Assignment statements with one global reference

integer n ¿ 0

p q
integer temp integer temp

p1: temp ¿ n q1: temp ¿ n

p2: n ¿ temp + 1 q2: n ¿ temp + 1
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Limited critical reference

If an algorithm satisfies LCR, then it behaves the same 
regardless of whether its statements are atomic!

Then, you do not need to modify your algorithm with 
temp to mimic the lower level.



Algorithm 2.8: Volatile variables
integer n ¿ 0

p q
integer local1, local2 integer local

p1: n ¿ some expression q1: local ¿ n + 6

p2: computation not using n q2:

p3: local1 ¿ (n + 5) £ 7 q3:

p4: local2 ¿ n + 5 q4:

p5: n ¿ local1 * local2 q5:
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Volatile variables

An optimizing compiler could translate the statements 
in process p, Algorithm 2.8, as follows:

p1:  tempReg1 ← some expression
p2:  computation not using n
p3:  tempReg2 ← tempReg1 + 5
p4:  local2 ← tempReg2
p5:  local1 ← tempReg2 * 7
p6:  n ← local1 * local2
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Volatile variables

The optimizing compiler does not assign to n in the 
first statement. Original statements p3 and p4 are 
executed out of order.

If there were no concurrency, the translated code 
would be correct.

With concurrency and interleaving, any translated code 
might not be correct.
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Volatile variables

Specifying a variable as volatile instructs the compiler to 
load and store the value of the variable at each use, 
rather than to optimize away these loads and stores.
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Concurrency in C++

CountA.cpp

Uses class thread.

Passes a function as a parameter to the constructor 
that the thread executes.

Functional programming!

p.join() forces main() to suspend execution until p 
terminates.



CountA.cpp
#include <cstdlib>
#include <iostream>
#include <thread>
using namespace std;

volatile int n = 0;

void pRun(int m) {
    int temp;
    for (int i = 0; i < m; i++) {
        temp = n;
        n = temp + 1;
    }
}

void qRun(int m) {
    int temp;
    for (int i = 0; i < m; i++) {
        temp = n;
        n = temp + 1;
    }
}



CountA.cpp

int main(int argc, char **argv) {
    int myMax = stoi(argv[1]);
    cout << "The value of myMax is " << myMax << endl;
    thread p(pRun, myMax);
    thread q(qRun, myMax);
    p.join();
    q.join();
    cout << "The value of n should be " << 2*myMax << endl;
    cout << "The value of n is " << n << endl;
    return EXIT_SUCCESS;
}
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Function syntax

Think of the statement

thread p(pRun, myMax);

as if it were

thread p(pRun(myMax));

where myMax is the actual parameter that corresponds 
to the formal parameter m.
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Demo CountA.cpp

Take main() input from command line or from CLion 
Program arguments in Run/Debug Configuration.

Conclusion: The program works for small values of m, 
but not for large values of m.

Why?
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Demo CountA.cpp

Because for small values of m each thread will complete 
its entire computation within a single time slice. 

Therefore, no interleaving!
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Concurrency in C++

CountB.cpp

Uses a random delay to force interleaving due to time 
slice timeouts even for small values of m.



CountB.cpp

#include <cstdlib>
#include <iostream>
#include <thread>
#include "Util450.cpp"
using namespace std;

volatile int n = 0;

void pRun() {
    int temp;
    for (int i = 0; i < 10; i++) {
        randomDelay(10);
        temp = n;
        randomDelay(10);
        n = temp + 1;
    }
}



CountB.cpp

void qRun() {
    int temp;
    for (int i = 0; i < 10; i++) {
        randomDelay(10);
        temp = n;
        randomDelay(10);
        n = temp + 1;
    }
}

int main(int argc, char **argv) {
    thread p(pRun);
    thread q(qRun);
    p.join();
    q.join();
    cout << "The value of n is " << n << endl;
    return EXIT_SUCCESS;
}



Util450.cpp

#include <thread>
#include <chrono>
#include <random>
#include <iostream>

using namespace std;

random_device rdev{}; // For random seed
default_random_engine engine{rdev()}; // Seed the engine

void randomDelay(int delay) {
    uniform_int_distribution<int> distr(0, delay);
    int d = distr(engine);
    // cout << "delay == " << d << endl;
    this_thread::sleep_for(chrono::milliseconds(d));
}
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Demo CountB.cpp

Results are unpredictable because of the random 
delays.

To see the delays, repeat demo with cout 
uncommented in randomDelay().

Interleaving may occur within the cout streams!
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similar to that of C, and it has the advantage of being object-oriented. Java 
provides an extensive library of graphical user interface (GUI) elements for 
input and output. ! e programs in this chapter get their input as a string of 
terminal characters from a single input window and send the results of the 
translation to the standard output window. ! e GUI programming details 
are not shown but are available with the so" ware for this text.        

 Java itself is an interpreted language based on the Java Virtual Machine 
(JVM).     FIGURE 7.26          shows the di# erence between a compiled language and 
an interpreted language. Part (a) shows the translation process for a compiled 
language like C. Every run in the computation process executes a machine 
language program with input and output. In the $ rst run, a C compiler 
converts the source code in a high-level language to the object code in machine 
language. In the second run, the machine language object code executes, 
processing the application input and producing the application output. 

 Part (b) shows the translation process for an interpreted language like 
Java and Pep/9, both of which are based on virtual machines. In the $ rst 
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 The difference between compilation and interpretation.  
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Java

Use IntelliJ IDE.

Modify Ben-Ari and Sestoft Java programs to make 
project class public for two reasons:

• Allows JavaDoc html documentation.
• Allows to execute the class file from the command 
line.

Must rename class to match file name.



CoSc 450: Programming Paradigms 02

Java

p.start() puts thread p in the ready (Enabled) queue.

p.join(), executed by main(), suspends main() until 
thread p terminates.



CountA.java

package counta;

public class CountA extends Thread {

   static volatile int n = 0;
   int m;

   CountA(int myM) {
      m = myM;
   }

   public void run() {
      int temp;
      for (int i = 0; i < m; i++) {
         temp = n;
         n = temp + 1;
      }
   }



CountA.java

   public static void main(String[] args) {
      int myMax = Integer.parseInt(args[0]);
      System.out.println("The value of myMax is " + myMax);
      CountA p = new CountA(myMax);
      CountA q = new CountA(myMax);
      p.start();
      q.start();
      try {
         p.join();
         q.join();
      } catch (InterruptedException e) {
      }
      System.out.println(
         "The value of n should be " + 2 * myMax);
      System.out.println("The value of n is " + n);
   }
}
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Demo CountA.java

Take main() input from command line or from IntelliJ 
Program arguments in Run/Debug Configuration.

Conclusion: As with C++, the program works for small 
values of m, but not for large values of m.
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Command line: Compilation vs Interpretation

warford$ ./CountA 10

warford$ java counta/CountA 10

Execute the machine language app

Execute the Java virtual machine

The app is input to the Java
virtual machine
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CountB.java

Similar to CountB.cpp

Must put randomDelay() in a try statement because 
an exception is possible.

Insert random delays that make multiple runs not 
predictable.

The random sleep delays are long enough to trigger a 
timeout, which forces interleaving to occur.



CountB.java

package countb;

import static util450.Util450.*;

public class CountB extends Thread {

   static volatile int n = 0;

   public void run() {
      int temp;
      for (int i = 0; i < 10; i++) {
         try {
            randomDelay(10);
            temp = n;
            randomDelay(10);
            n = temp + 1;
         } catch (InterruptedException e) {
         }
      }
   }



CountB.java

   public static void main(String[] args) {
      CountB p = new CountB();
      CountB q = new CountB();
      p.start();
      q.start();
      try {
         p.join();
         q.join();
      } catch (InterruptedException e) {
      }
      System.out.println("The value of n is " + n);
   }
}



Util450.java

package util450;

public final class Util450 {

   public static void randomDelay(int delay)
         throws InterruptedException {
      int d = (int) (delay * Math.random());
      // System.out.println("delay == " + d);
      Thread.sleep(d); // milliseconds
   }
}
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Threads

Like processes, threads are also programs during 
execution.

However, a thread is under control of a process.

A process is under control of the operating system.

Demo Activity Monitor application.
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Threads vs Processes

A process is a program during execution in an 
operating system.

• Processes communicate via message passing.

A thread is a program during execution in a process.

• Threads communicate via shared memory.



CoSc 450: Programming Paradigms 02

Threads vs Processes

A process is a program during execution in an 
operating system.

• Processes communicate via message passing.

A thread is a program during execution in a process.

• Threads communicate via shared memory.



CoSc 450: Programming Paradigms 02

Threads vs Processes

A process is a program during execution in an 
operating system.

• Processes communicate via message passing.

A thread is a program during execution in a process.

• Threads communicate via shared memory.



CoSc 450: Programming Paradigms 02

Threads vs Processes

A process is a program during execution in an 
operating system.

• Processes communicate via message passing.

A thread is a program during execution in a process.

• Threads communicate via shared memory.



CoSc 450: Programming Paradigms 02

The action of p.start() and p.join()

(Sestoft 20.1, page 80)

Let u be a thread (an object of a subclass of Thread).

u.start() changes the state of u to Enabled so that 
its run() method will be called when a processor 
becomes available.

u.join() waits for thread u to die; may throw 
InterruptedException if the current thread is 
interrupted while waiting.



Transitions from the running state

422 Chapter 8 Process Management

The PCB contains additional information to help the operating system schedule
the CPU. An example is a unique process identification number assigned by the
system, labeled Process ID in Figure 8.18, that serves to reference the process. Sup-
pose a user wants to terminate a process before it completes execution normally,
and he knows the ID number is 782. He could issue a KILL(782) command that
would cause the operating system to search through the queue of PCBs, find the
PCB with ID 782, remove it from the queue, and deallocate it.

Another example of information stored in the PCB is a record of the total
amount of CPU time used so far by the suspended process. If the CPU becomes
available and the operating system must decide which of several suspended
processes gets the CPU, it can use the recorded time to make a fair decision.

As a job progresses through the system toward completion, it passes through
several states, as Figure 8.19 shows. The figure is in the form of a state transition
diagram and is another example of a finite state machine. Each transition is labeled
with the event that causes the change of state.

Figure 8.19
The state transition diagram for a
job in an operating system.

Start Ready Running Finish

Waiting

Select to run

Time out
Create
process

Terminate
process

request     completeI/O
I/Ofor

I/O

When a user submits a job for processing, the operating system creates a
process for it by allocating a new PCB and attaching it to a queue of processes that
are waiting for CPU time. It loads the program into main memory and sets the copy
of PC in the PCB to the address of the first instruction of the process. That puts the
job in the ready state.

Eventually, the operating system should select the job to receive some processing
time. It sets the alarm clock to generate an interrupt after a quantum of time and puts the
copies of the registers from the PCB into the CPU. That puts the job in the running state.

While in the running state, three things can happen: (1) The running process
may time out if it is still executing when the alarm clock interrupts. If so, the oper-
ating system attaches the process’s PCB to the ready queue, which puts it back in
the ready state. (2) The process may complete its execution normally, in which case
the last instruction it executes is an SVC to request that the operating system termi-
nate it. (3) The process may need some input, in which case it executes an SVC for
the request. The operating system would transfer the request to the appropriate I/O
device and put the PCB in another queue of processes that are waiting for their I/O
operations to complete. That puts the process in the waiting-for-I/O state.
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Example 9L MultipleThreads
The main program creates a new thread, binds it to u, and sta¡ts it. Now two threads are executing concwrently:
one executes main, and another executes run. 'While the main method is blocked waiting for keyboard input,
the new thread keeps incrementing i. The new thread executes yield 0 to make sure that the other thread is
allowed to run (when not blocked).

class Incrementer extends Thread {
public int i;
public void run0 {for (;;) {

i++;
yield0;

)])

/ / Forever
/ / increment i

class Threadoemo {
public static void maín(StringlJ args) thro\^¡s lOException {

Incrementer u = nev.r Incrementer0;
u. start 0 ;
system.out.println(r'Repeatedly press Enter to get the current value of i:");
tor (;;) {system.in.read0; // wait for keyboard input

System. out. println (u. i) ;))]

States and State Thansitions of a Thread. A thread's transition from one state to another may be caused
by a method call performed by the thread itself (shown in the monospace font), by a method call possibly
performed by another thread (shown in the sianL ed monospace font); and by timeouts and.other actions.

o.notifyO o.notífyA77o

got lock o. v¡ait ( )ono

start ( ) dies

u died

interrupt ( )

timeout Waiting for oLocking o

to lock o

scheduled

preempted RunningEnabled
yield ( )

sleep ( )
timeout

interrupt ( )Created Sleeping Dead

u.joinotimeout

Joining u

Sestoft, page 81
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The action of p.start() and p.join()

After p and q start, there could be three concurrent 
executions:
1. p executing its run() method
2. q executing its run() method
3. main() executing its statements after starting q

p.join()is not executed by thread p. It is executed by 
main().
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The throw statement

throw expression ;

The type of expression must be a subtype of class 
Throwable.

The enclosing block statement terminates abruptly. The 
thrown exception may be caught by a try-catch 
statement.
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Class hierarchy (partial)

Throwable
   Error
      OutOfMemoryError
   Exception
      IOException
      RuntimeException
         ArithmeticException
         IndexOutOfBoundsException
            ArrayIndexOutOfBoundsException
            StringIndexOutOfBoundsException
         NegativeArraySizeException
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The try-catch-finally statement

try
   body
   catch(E1 x1)
      catchBody1
   catch(E2 x2)
      catchBody2
   ...
   finally
      finallyBody
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try-catch with no finally

try {                Sequence with no exception
   A                 A B C D
   B
   C                 Sequence with exception
   D                 at B
} catch(E1 x1) {     A B F G
      F
      G
}
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try {                Sequence with no exception
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try-catch with no finally

try {                Sequence with no exception
   A                 A B C D
   B
   C                 Sequence with exception
   D                 at B
} catch(E1 x1) {     A B F G
      F
      G
}
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Sestoft, Example89.java

Uses Sestoft, Example98.java

super() is a call to the superclass constructor.

Passing a string to the constructor of a superclass 
causes toString() to append the string to the name 
of the exception.



Sestoft, Example98.java

package example89;

class WeekdayException extends Exception {

   public WeekdayException(String wday) {
      super("Illegal weekday: " + wday);
   }
}



Sestoft, Example89.java

package example89;

public class Example89 {
   public static void main(String[] args) {
      try {
         System.out.println(args[0]
            + " is weekday number " + wdayno4(args[0]));
      } catch (WeekdayException x) {
         System.out.println("Weekday problem: " + x);
      } catch (Exception x) {
         System.out.println("Other problem: " + x);
      }
   }



Sestoft, Example89.java

   // Sestoft, Example 88
   static int wdayno4(String wday) throws WeekdayException {
      for (int i = 0; i < wdays.length; i++)
         if (wday.equals(wdays[i]))
            return i + 1;
      throw new WeekdayException(wday);
   }

   // Sestoft, Example 80
   static final String[] wdays =
      { "Monday", “Tuesday”, “Wednesday", “Thursday", 
        “Friday", "Saturday", "Sunday" };
}
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Sestoft, Example89.java

Demo with
$ java Example89 Wednesday

Demo with
$ java Example89 Wedxxx

Demo with
$ java Example89
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throws

If a method is capable of causing an exception that it 
does not handle, it must specify this behavior so that 
callers of the method can guard themselves against that 
exception.

You do this by including a throws clause in the 
method’s declaration.
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ExceptionReview

Uncaught exceptions propagate up the call chain.

Demo with
$ java ExceptionReview 10

Demo with
$ java ExceptionReview -10



MyException.java

public class MyException extends RuntimeException {

   public MyException(String message) {
      super(message);
   }
}



ExceptionReview.java

public class ExceptionReview {
   public static void main(String[] args) {
      int x = Integer.parseInt(args[0]);
      System.out.println("Main started with x == " + x);
      int x2;
      try {
         x2 = top(x);
      } catch (MyException e) {
         System.out.println("Caught an exception: " + e);
         x2 = 99;
      }
      System.out.println("Main ending with x2 == " + x2);
   }
   static int top(int y) {
      System.out.println("Top started with y == " + y);
      int y2 = bottom(y);
      System.out.println("Top returning y2 == " + y2);
      return y2;
   }
   static int bottom(int z) throws MyException {
      System.out.println("Bottom started with z == " + z);
      if (z < 0) {
         throw new MyException("Throwing MyException");
      }
      System.out.println("Bottom returning 20");
      return 20;
   }
}
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Sestoft, Example99

A clever example that can exercise all the possible 
flows of control through the try-catch-finally 
statement.

See Section 12.6.6, page 62, for a detailed explanation. 
The key sentence is the one about the finally clause:
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The try-catch-finally statement

try
   body
   catch(E1 x1)
      catchBody1
   catch(E2 x2)
      catchBody2
   ...
   finally
      finallyBody
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If there is a finally clause, the finallyBody will be 
executed regardless of whether the execution of body 
terminated normally, regardless of whether body exited 
by executing return or break or continue, 
regardless of whether any exception thrown by body 
was caught by a catch clause, and regardless of 
whether the catch clause exited by executing return 
or break or continue or by throwing an exception.



Example99.java

// Example 99 from page 73 of Java Precisely third edition (The MIT Press 2016)
// Author: Peter Sestoft (sestoft@itu.dk)

// To exercise all paths through the try-catch-finally statement in
// method m, run this program with each of these arguments: 
// 101 102 103 201 202 203 301 302 303 411 412 413 421 422 423 431 432 433
// like this:
//    java Example99 101
//    java Example99 102
//    etc

class Example99 {
   public static void main(String[] args) throws Exception {
      System.out.println(m(Integer.parseInt(args[0])));
   }



Example99.java

   static String m(int a) throws Exception {
      try {
         System.out.print("try ... ");
         if (a / 100 == 2)
            return "returned from try";
         if (a / 100 == 3)
            throw new Exception("thrown by try");
         if (a / 100 == 4)
            throw new RuntimeException("thrown by try");
      } catch (RuntimeException x) {
         System.out.print("catch ... ");
         if (a / 10 % 10 == 2)
            return "returned from catch";
         if (a / 10 % 10 == 3)
            throw new Exception("thrown by catch");
      } finally {
         System.out.println("finally");
         if (a % 10 == 2)
            return "returned from finally";
         if (a % 10 == 3)
            throw new Exception("thrown by finally");
      }
      return "terminated normally with " + a;
   }
}


