
CoSc 450: Programming Paradigms

Monitors

Chapter 7

CoSc 450: Programming Paradigms 07

Monitor

Purpose: To consolidate the wait and signal operations in
a single class.

Instead of having semaphores and critical sections
spread throughout the code of different processes, put
the critical sections into methods of the monitor class.

CoSc 450: Programming Paradigms 07

Algorithm 7.1

n is an attribute of the monitor instead of being a global
variable.

Solves the critical section problem.

Monitor methods are guaranteed to execute atomically.

Algorithm 7.1: Atomicity of monitor operations

monitor CS

integer n ¿ 0

operation increment

integer temp

temp ¿ n

n ¿ temp + 1

p q
p1: CS.increment q1: CS.increment

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c≠ M. Ben-Ari 2006 Slide 7.1

CoSc 450: Programming Paradigms

Java monitors

There is no special monitor type.

Any class can be a monitor.

The keyword synchronized makes a method
atomic.

07

CoSc 450: Source Code CriticalSection

.java

package algorithm0701;

import static util450.Util450.*;

public class CriticalSection {

 private int n = 0;

 public synchronized void increment() throws InterruptedException {

 int temp;

 temp = n;

 randomDelay(40);

 n = temp + 1;

 }

 public synchronized int get() {

 return n;

 }

}

CoSc 450: Source Code Algorithm0701

.java

public class Algorithm0701 extends Thread {

 private int processID;

 private CriticalSection cs;

 Algorithm0701(int pID, CriticalSection criticalSection) {

 processID = pID;

 cs = criticalSection;

 }

CoSc 450: Source Code Algorithm0701

.java

 public void run() {

 if (processID == 1) { // Process p

 for (int i = 0; i < 10; i++) {

 try {

 System.out.println("p.i == " + i);

 cs.increment();

 } catch (InterruptedException e) {

 }

 }

 } else if (processID == 2) { // Process q

 for (int i = 0; i < 10; i++) {

 try {

 System.out.println("q.i == " + i);

 cs.increment();

 } catch (InterruptedException e) {

 }

 }

 }

 }

CoSc 450: Source Code Algorithm0701

.java

 public static void main(String[] args) {

 CriticalSection cs = new CriticalSection();

 Algorithm0701 p = new Algorithm0701(1, cs);

 Algorithm0701 q = new Algorithm0701(2, cs);

 p.start();

 q.start();

 try {

 p.join();

 q.join();

 } catch (InterruptedException e) {

 }

 System.out.println("The value of n is " + cs.get());

 }

}

CoSc 450: Programming Paradigms

C++ monitors

There is no special monitor type.

You construct a monitor using a mutex and a
lock_guard to make the operations atomic.

07

CoSc 450: Source Code Algorithm-7-1

.cpp

#include <cstdlib>

#include <iostream>

#include <thread>

#include <mutex>

#include "Util450.cpp"

using namespace std;

class CriticalSection {

private:

 int n = 0;

 mutex csMutex;

public:

 void increment() {

 lock_guard<mutex> guard(csMutex);

 int temp;

 temp = n;

 randomDelay(40);

 n = temp + 1;

 }

 int get() {

 lock_guard<mutex> guard(csMutex);

 return n;

 }

};

mutex for mutual exclusion in monitor

lock_guard with mutex for RAII

CoSc 450: Source Code Algorithm-7-1

.cpp

CriticalSection cs;

void pRun() {

 for (int i = 0; i < 10; i++) {

 cout << "p.i == " << i << endl;

 cs.increment();

 }

}

void qRun() {

 for (int i = 0; i < 10; i++) {

 cout << "q.i == " << i << endl;

 cs.increment();

 }

}

int main() {

 thread p(pRun);

 thread q(qRun);

 p.join();

 q.join();

 cout << "The value of n is " << cs.get() << endl;

 return EXIT_SUCCESS;

}

CoSc 450: Programming Paradigms

C++ RAII design pattern

RAII – Resource Acquisition Is Initialization

Pronounced “R, A, double I”

Resource acquisition happens during initialization.

Resource deallocation happens during destruction.

07

CoSc 450: Programming Paradigms

RAII in Algorithm-7-1 increment() method

guard is a local variable of type lock_guard, allocated
on the run-time stack on the stack frame for
increment().

It is created when the method is called, and destroyed
automatically when the method terminates.

When guard is created it locks mutex.

When guard is destroyed it unlocks mutex.

Therefore, mutual exclusion is guaranteed.

07

CoSc 450: Programming Paradigms

C++ RAII design pattern benefits

Non-void functions would be difficult, if not impossible,
to implement atomically with only mutex.

RAII is exception safe.

RAII simplifies resource management.

Most C++ libraries follow the RAII design pattern.

07

Executing a Monitor Operation

H
HH

monitor CS

n 0

fff

f

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c≠ M. Ben-Ari 2006 Slide 7.2

CoSc 450: Programming Paradigms 07

Condition variable

A special monitor variable that has a queue (FIFO) of
blocked processes.

A monitor can have more than one condition variable.
There is a queue of blocked processes for each
condition variable.

CoSc 450: Programming Paradigms 07

Condition variable

There are three operations on condition variable cond.

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

��

CoSc 450: Programming Paradigms 07

Condition variable

There are three operations on condition variable cond.

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

��

CoSc 450: Programming Paradigms 07

Condition variable

There are three operations on condition variable cond.

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

��

CoSc 450: Programming Paradigms 07

Condition variable

There are three operations on condition variable cond.

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

��

CoSc 450: Programming Paradigms 07

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

6HPDSKRUH %HQ�$UL�PRQLWRU

�� wait(S) PD\�RU�PD\�QRW�EORFN� �� waitC(cond) DOZD\V�EORFNV�

�� signal(S) DOZD\V�KDV�DQ�HIIHFW� �� signalC(cond) KDV�QR�HIIHFW�LI
cond TXHXH�LV�HPSW\�

�� 3URFHVV�XQEORFNHG�E\ signal(S)
PLJKW�QRW�UHVXPH�H[HFXWLRQ
LPPHGLDWHO\�

�� 3URFHVV�XQEORFNHG�E\
signalC(cond) UHVXPHV�H[HFXWLQJ
LPPHGLDWHO\�

��

CoSc 450: Programming Paradigms 07

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

6HPDSKRUH %HQ�$UL�PRQLWRU

�� wait(S) PD\�RU�PD\�QRW�EORFN� �� waitC(cond) DOZD\V�EORFNV�

�� signal(S) DOZD\V�KDV�DQ�HIIHFW� �� signalC(cond) KDV�QR�HIIHFW�LI
cond TXHXH�LV�HPSW\�

�� 3URFHVV�XQEORFNHG�E\ signal(S)
PLJKW�QRW�UHVXPH�H[HFXWLRQ
LPPHGLDWHO\�

�� 3URFHVV�XQEORFNHG�E\
signalC(cond) UHVXPHV�H[HFXWLQJ
LPPHGLDWHO\�

��

CoSc 450: Programming Paradigms 07

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

6HPDSKRUH %HQ�$UL�PRQLWRU

�� wait(S) PD\�RU�PD\�QRW�EORFN� �� waitC(cond) DOZD\V�EORFNV�

�� signal(S) DOZD\V�KDV�DQ�HIIHFW� �� signalC(cond) KDV�QR�HIIHFW�LI
cond TXHXH�LV�HPSW\�

�� 3URFHVV�XQEORFNHG�E\ signal(S)
PLJKW�QRW�UHVXPH�H[HFXWLRQ
LPPHGLDWHO\�

�� 3URFHVV�XQEORFNHG�E\
signalC(cond) UHVXPHV�H[HFXWLQJ
LPPHGLDWHO\�

��

CoSc 450: Programming Paradigms 07

6OLGH�PDWHULDO &R6F����� 3URJUDPPLQJ�3DUDGLJPV

'HDGORFN�IUHH� 1R

3URRI

P0 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P1 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P2 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P3 SLFNV�XS�IRUN���RQ�KLV�OHIW�
P4 SLFNV�XS�IRUN���RQ�KLV�OHIW�

$QG�QRZ�QR�SKLORVRSKHU�FDQ�SLFN�XS�KLV�IRUN�RQ�KLV�ULJKW�

waitC(cond)
DSSHQG p WR cond TXHXH
p.state← EORFNHG
monitor.lock← UHOHDVHG

signalC(cond)
LI cond TXHXH "= /0

UHPRYH�KHDG�RI cond TXHXH�DQG�DVVLJQ�WR q
q.state← UHDG\

empty(cond)
UHWXUQ cond TXHXH�LV(PSW\

6HPDSKRUH %HQ�$UL�PRQLWRU

�� wait(S) PD\�RU�PD\�QRW�EORFN� �� waitC(cond) DOZD\V�EORFNV�

�� signal(S) DOZD\V�KDV�DQ�HIIHFW� �� signalC(cond) KDV�QR�HIIHFW�LI
cond TXHXH�LV�HPSW\�

�� 3URFHVV�XQEORFNHG�E\ signal(S)
PLJKW�QRW�UHVXPH�H[HFXWLRQ
LPPHGLDWHO\�

�� 3URFHVV�XQEORFNHG�E\
signalC(cond) UHVXPHV�H[HFXWLQJ
LPPHGLDWHO\�

��

CoSc 450: Programming Paradigms 07

The Ben-Ari monitor

Ben-Ari defines his monitor to have “the immediate
resumption requirement.”

When signalC(cond) executes, the blocked process, if
any is blocked, immediately resumes.

The process that executed signalC is put in a signaling
queue. (No waiting queue necessary)

Known as “Hoare semantics”.

CoSc 450: Programming Paradigms

Notes on monitors

Buhr, et. al., “Monitor Classification”, Computing

Surveys, March 1995.

07

Monitor Classification
Peter A. Buhr and Michel Fortier

Dept. of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Michael H. Coffin

EDS Research and Development, 901 Tower Drive, 1st Floor, Troy Michigan 48007-7019, U. S. A.

Abstract

One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for

systems with shared memory, is the monitor. Over the past twenty years many kinds of monitors have been proposed

and implemented, and many modern programming languages provide some form of monitor for concurrency control.

This paper presents a taxonomyof monitors that encompassesall the extant monitors and suggests others not found in

the literature or in existing programming languages. It discusses the semantics and performance of the various kinds

of monitors suggested by the taxonomy, and it discusses programming techniques suitable to each.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming; D.3.3 [Pro-

gramming Languages]: Language Constructs and Features—concurrent programming structures, control struc-

tures; D.4.1 [Operating Systems]: Process Management—concurrency, mutual exclusion, scheduling, synchroniza-

tion; Performance—simulation; F.3.3 [Logics andMeanings of Programs]: Studies of ProgramConstructs—control

primitives

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Monitors, Classification

1 Introduction

Many modern software systems consist of collections of cooperating tasks. In such systems, mechanisms for arrang-

ing exclusive access to resources, and for synchronizing and communicating among tasks, are needed. Many such

mechanisms have been proposed, including semaphores [Dijkstra 1968], path expressions [Campbell and Habermann

1974], and various forms of message passing [Cheriton 1982; Gentleman 1985; Cheriton 1988]. One of the most

natural, elegant, and efficient mechanisms for synchronization and communication, especially for systems with shared

memory, is the monitor. Monitors were first proposed by Brinch Hansen [1973] and later described and extended

by C.A.R. Hoare [1974]. Many programming languages—for example, Concurrent Pascal [Brinch Hansen 1975],

Mesa [Mitchell et al. 1979], Modula [Wirth 1985], Turing [Holt and Cordy 1988], Modula-3 [Cardelli et al. 1988],

NeWS [Gosling et al. 1989], Emerald [Raj et al. 1991] and C++ [Buhr et al. 1992]—provide monitors as ex-

plicit language constructs. In addition, software entities such as operating-system kernels and device drivers have a

monitor-like structure, although they may use lower-level primitives such as semaphores or locks to simulate monitors.

Monitors are an important concurrency-control mechanism now, and will continue to be in the foreseeable future.

Many different kinds of monitors have been proposed and implemented, and several comparisons of various kinds

of monitors have been published. Howard [1976a; 1976b] developed proof rules for five kinds of monitors and showed

that they could be used to simulate one another. Andrews and Schneider [1983, p. 18–20] classify monitors as either

blocking or nonblocking and describe programming techniques appropriate to each. Andrews [1991, p. 263–325] gives

by far the most complete comparison to date; he discusses five kinds of monitors (based on Howard’s classification),

outlines a proof that they are equivalent (in the sense that they can be used to simulate one another), and discusses

programming techniques appropriate to each.

This paper extends previous classification and comparison work in the followingways. First, we develop a taxon-

omy of monitors that includes all extant monitors and uncovers several new ones. Second, we systematically compare

the various kinds of monitors from the standpoint of the programmer. We do this by developing proof rules for each

kind of monitor, comparing the complexity of the proof rules, and assessing the difficulty of fulfilling proof obliga-

tions. Both full (complete) and simplified monitor proof rules are discussed. Finally, we investigate the performance

of the various monitors to determine whether there are significant performance differences among them. Although

c 1995 ACM, ACM Computing Surveys, 27(1):63–107,March 1995.

1

CoSc 450: Programming Paradigms

General monitor

All procedures are mutually exclusive. Each
monitor has

* One entry queue

* One queue for each condition variable

* One waiting queue

* One signaler queue

07

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

CoSc 450: Programming Paradigms

General actions

waitC(cond)

Blocked on condition queue for cond

signalC(cond)

Signaler moved to signaler queue

Signaled moved from condition queue to

wait queue

Monitor is unlocked

Monitor chooses from one of the queues which

process gets to enter

07

CoSc 450: Programming Paradigms

General actions

waitC(cond)

Blocked on condition queue for cond

signalC(cond)

Signaler moved to signaler queue

Signaled moved from condition queue to

wait queue

Monitor is unlocked

Monitor chooses from one of the queues which

process gets to enter

07

CoSc 450: Programming Paradigms

General actions

waitC(cond)

Blocked on condition queue for cond

signalC(cond)

Signaler moved to signaler queue

Signaled moved from condition queue to

wait queue

Monitor is unlocked

Monitor chooses from one of the queues which

process gets to enter

07

CoSc 450: Programming Paradigms

General actions

waitC(cond)

Blocked on condition queue for cond

signalC(cond)

Signaler moved to signaler queue

Signaled moved from condition queue to

wait queue

Monitor is unlocked

Monitor chooses from one of the queues which

process gets to enter

07

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

waitC(A)

Action of waitC(A)

Process blocked on condition queue A

Monitor is unlocked

An unblocked process is selected to continue

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

signalC(A)

Action of signalC(A)

Signaler to signaler queue, signaled to wait queue

Monitor is unlocked

An unblocked process is selected to continue

CoSc 450: Programming Paradigms

Types of monitors

The type of monitor is determined by how the
monitor chooses which process gets to enter.
Each queue has a specific precedence:

* E	 — entry precedence

* W	 — waiting precedence

* S	 — signaler precedence

07

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E — entry precedence

W — waiting precedence

S — signaler precedence

Chapter 11

third priority, hence cases. Finally, there are cases in which the priorities are all different. The right

column of Table 1 shows how the traditional explicit-signal monitors fall into the categorization scheme. (One point

of clarification about traditional monitor names. The names given in the right column come from Howard’s [1976a]

classification. However, Andrews and Schneider [1983, p. 19] and Andrews [1991, pp. 266-267] used the term signal

and continue to describe Howard’s wait and notifymonitor.)

Queue priorities must not be confused with task priorities, nor should the monitor scheduler be confused with

the operating-system task scheduler. Queue priorities are fixed, and a monitor scheduler uses queue priorities to

arbitrate among tasks using a particular monitor. Task priorities are often variable and are used by the operating-

system scheduler to arbitrate among tasks on a system-wide basis.

relative priority traditional monitor name

1

2 Wait and Notify [Lampson and Redell 1980]

3 Signal and Wait [Howard 1976a]

4

5 Signal and Continue [Howard 1976b]

6 Signal and Urgent Wait [Hoare 1974]

7 (rejected)

8 (rejected)

9 (rejected)

10 (rejected)

11 (rejected)

12 (rejected)

13 (rejected)

Table 1: Relative Priorities for Internal Monitor Queues

Of the 13 cases, we reject cases 7–13 for the following reasons. Consider the cases where the entry queue has

the highest priority (cases 7, 12 and 13 of Table 1). In such monitors, a signalled or signaller task cannot resume

execution until there are no calling tasks. This property creates the potential for an unbounded wait for signalled or

signaller tasks, and it inhibits concurrency by preventing signalled or signaller tasks from getting out of the monitor

and continuing execution. For example, if there are a large number of tasks calling the monitor, and each of them has

to wait or signal, there will soon be a large number of tasks blocked on conditions inside the monitor, and the number

of tasks accomplishing useful work will correspondingly diminish.

The same problem occurs if the entry queue has priority over the waiting queue or over the signaller queue (cases

8–11 of Table 1). If the entry queue has priority over the waiting queue, a signalled task resumes only when there are

no more signaller or calling tasks; this creates the potential for an unbounded wait for signalled tasks if a continuous

stream of tasks are calling the monitor. If the calling tasks have priority over the signaller tasks, a signaller task

resumes only when there are no more signalled and calling tasks; this property creates the potential for an unbounded

wait for signaller tasks if a continuous stream of tasks are calling the monitor. Since allowing the entry queue to

have a priority greater then either of the internal queues has significant disadvantages and few if any compensating

advantages, they are eliminated from further discussion. Therefore, only cases 1–6 of Table 1 are examined.

If two or more queues have equal priority, the scheduler chooses one arbitrarily. This encourages a style of

programming where signals are used as “hints” [Lampson and Redell 1980, p. 111][Nelson 1991, p. 102]. In this

approach, a task may signal a condition whenever it might be true; the signalled task is responsible for checking

whether it actually is true. This is a cautious approach to concurrency control, where the signalled and signaller tasks

can make no assumptions about order of execution, even within the monitor.

3.1.1 Immediate-Return Monitors

Brinch-Hansen and Hoare both discuss a restricted monitor in which the signal statement is permitted only before a

return from a monitor-entry routine. We call this kind of monitor an immediate-return monitor. The semantics of an

immediate-return signal are that both the signaller and signalled tasks continue execution. Because only one task can

be active in the monitor, one of the two tasks must leave the monitor immediately; in this case, it is the signaller. Such

6

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

W

S

Mesa Semantics, E < W < S

Buhr, C++

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

W

Signaler always picked.

Signaler queue not necessary.

Mesa Semantics, E < W < S

Buhr, C++

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

W

When w eventually picked, condition may no longer be met.

May need waitC in the body of a loop instead of an if.

Mesa Semantics, E < W < S

Buhr, C++

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

W

S

Hoare Semantics, E < S < W

Ben-Ari, C--

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

Signaled always picked

Waiting queue not necessary

S

Hoare Semantics, E < S < W

Ben-Ari, C--

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

Can have waitC in the body of an if statement.

However, signalC should be the last statement of operation.

S

Hoare Semantics, E < S < W

Ben-Ari, C--

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

W

S

Java, Wait and Notify

E = W < S

condition
A

condition
B

waiting
queue

signaller
queue

entry queue

exit

monitor
variables

active task waiting task

Figure 3: Processes Waiting to use a Monitor

In the case of an automatic-signal monitor, there are no condition queues and only one queue is needed to manage

the tasks with false conditional expressions; we chose to put tasks with false conditional expressions on the waiting

queue because each waiting task is effectively eligible to run when the monitor is unlocked so that it can recheck its

conditional expression.

When a monitor becomes unlocked, it is not obvious which task should execute next; it could be a task from any of

the entry, waiting, or signaller queues. Depending on the kind of monitor, a particular choice is made. All other tasks

must wait until the monitor is again unlocked. Since this selection is done implicitly, the next task to resume execution

in the monitor is not under direct user control. A monitor-synchronization operation may cause the monitor to unlock,

but the selection of the next task to execute depends on the kind of monitor. The main difference among monitors is

the algorithm used by the implicit monitor scheduler to select the next task to execute when the monitor is unlocked.

3 Monitor Classification

This section presents a taxonomy of monitors that encompasses all the extant monitors and suggests others not found

in the literature or in existing programming languages. Initially, the monitors are divided into two groups based on

whether the signal operation is explicit or implicit; within these two broad categories, several additional sub-categories

are developed based on the semantics of the signal operation.

3.1 Explicit-SignalMonitors

An explicit-signal monitor is a monitor with an explicit statement (in contrast to an automatic-signal monitor,

which has no statement). Several kinds of explicit-signal monitors have been presented in the literature, all of

which can be categorized using the following classification scheme [Fortier 1989]. The classification scheme is based

on an exhaustive case analysis of the scheduling possibilities for the three internal monitor queues—the entry, waiting

and signaller queues—when a monitor is unlocked. The different kinds of monitors are classified based on the relative

priorities associated with these three queues. Each queue has a specific priority, referred to as entry priority (),

waiting priority (), and signaller priority (), respectively. The relative orderings of these three priorities yields

13 different possibilities, which are given in Table 1. There is one case in which the 3 priorities are equal. There are

cases in which exactly two priorities are equal, and each equal pair can be either greater than or less than the

5

E

Signaler always picked. Signaled waits in entry queue.

There are no condition variables.

wait

Java, Wait and Notify

E = W < S

CoSc 450: Programming Paradigms

Java, Wait and Notify

E = W < S

* waitC is called wait in Java.

* signalC is called notify in Java.

* notifyAll moves all processes from the waiting

queue to the entry queue.

* Signaler usually executes notifyAll, and waiting

processes loop on their boolean expressions.

07

CoSc 450: Programming Paradigms

Threads, Concurrent Execution, and Synchronization 67

Example 91 Multþle Threads
The main program creates a new thread, binds it to u, and starts it. Now two threads are executing concurrently:
one executes main, and another executes run. 'While the main method is blocked waiting for keyboard input,
the new thread keeps incrementing i. The new thread executes yield 0 to make sure that the other thread is
allowed to run (when not blocked).

class rncrementer extends Thread {
public int i;
pubtic void runO {for (;;) {

i++;
yietd0;

)))

/ f Forever
// increment i

class Threadlemo {
public static void main(StringlJ args) throws IoException {

Incrementer u = nev¡ Incrementer0;
u. start 0 ;
System.out.println(''Repeatedty press Enter to get the current value of i:'');
for (;;) {system.in.read0; // waii- for keyboard input

system. out.println (u. i) ;
)Ì)

States and State T[ansitions of a Thread. A t]read's transition from one state to another may be caused

by a method call performed by the thread itself (shown in the monospace font), by a method call possibly
pãrformed by another thread (shown in the sianË ed monospace font); and by timeouts and other actions.

o.notifYO o.notífYAf7 o

got lock o. \4tait ()ono

start () dies

u died

interrupt ()

timeout Waiting for oLocking o

to lock o

scheduled

preempted RunningEnabled
yield ()

sleep ()interrupt () DeadSleepingCreated

u.joinotimeout

Joining u

Sestoft, page 67

07

CoSc 450: Programming Paradigms

Java, Wait and Notify

E = W < S

E = W criticized by Buhr:

“In all cases, the no-priority property
complicates the proof rules, makes
performance worse, and makes programming
more difficult. ... Therefore, we have rejected all
no-priority monitors from further
consideration.”

07

CoSc 450: Programming Paradigms 07

Semaphore / monitor equivalence

Semaphores and monitors have equivalent capabilities.

You can construct a semaphore with a monitor.

You can construct a monitor with a semaphore.

Algorithm 7.2: Semaphore simulated with a monitor

monitor Sem

integer s ¿ k

condition notZero

operation wait

if s = 0

waitC(notZero)

s ¿ s † 1

operation signal

s ¿ s + 1

signalC(notZero)

p q
loop forever loop forever

non-critical section non-critical section

p1: Sem.wait q1: Sem.wait

critical section critical section

p2: Sem.signal q2: Sem.signal

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c≠ M. Ben-Ari 2006 Slide 7.3

Hoare semantics

Algorithm 7.2: Semaphore simulated with a monitor

monitor Sem

integer s ¿ k

condition notZero

operation wait

if s = 0

waitC(notZero)

s ¿ s † 1

operation signal

s ¿ s + 1

signalC(notZero)

p q
loop forever loop forever

non-critical section non-critical section

p1: Sem.wait q1: Sem.wait

critical section critical section

p2: Sem.signal q2: Sem.signal

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c≠ M. Ben-Ari 2006 Slide 7.3

Hoare semantics Mesa semantics
monitor Sem

 integer s ← k

condition notZero

operation wait

 while s = 0

 waitC(notZero)

 s ← s – 1

operation signal

 s ← s + 1

 signalC(notZero)

CoSc 450: Programming Paradigms

Semaphore simulated with a monitor

C++ implementation of Algorithm 7.2

signal() uses lock_guard for mutual exclusion.

wait() uses unique_lock for mutual exclusion and
the condition on which to wait.

wait() takes two parameters:

• A unique_lock
• A predicate that must be true to unblock the process

07

CoSc 450: Source Code Util450.cpp

class Semaphore {

private:

 int s;

 condition_variable notZero;

 mutex semMutex;

public:

 Semaphore(int k) { s = k; }

 void wait() {

 unique_lock<mutex> guard(semMutex);

 notZero.wait(guard, [this]{return s != 0;});

 s--;

 }

 void signal() {

 lock_guard<mutex> guard(semMutex);

 s++;

 notZero.notify_one();

 }

};

Lambda expression passing function as a parameter.

CoSc 450: Programming Paradigms

Spurious wakeup — Problem

Mesa semantics: E < W < S, signaled unblocked, signaler
continues.

There is no guarantee to the waiting process that the
boolean expression it waited on is still true.

Another process may have changed the value of the
expression between the signal execution and the
resumption of the waiting.

07

CoSc 450: Programming Paradigms

Spurious wakeup — Solution

Signaled must first execute a loop on the condition to
guarantee that the condition is met.

C++ condition_variable wait() method does the
spurious wakeup loop automatically.

wait(unique_lock lock, Predicate pred)

is equivalent to

while (!pred()) { wait(lock); }

07

CoSc 450: Programming Paradigms

C++ lambda syntax

[captured variables](parameters) { function code }

In class Semaphore: [this]{return s != 0;}
the captured variable this allows access to class
attribute s in the function code.

Suppose you also have local variable n that you need to
access in your function:

[this, n]{return s != n;}

07

CoSc 450: Programming Paradigms

C++ lambda syntax

[captured variables](parameters) { function code }

In class Semaphore: [this]{return s != 0;}
the function has no parameters, so you can omit the
parentheses ().

07

CoSc 450: Programming Paradigms 07

Scheme

(lambda (n)

 (* n n))

(define square

 (lambda (n)

 (* n n)))

> (square 5)

25

>

C++

function< int(int) > square;

square = [](int n) { return n * n; };

cout << square(5);

25

Functional programming!

CoSc 450: Programming Paradigms

lock_guard vs unique_lock

Constructor for both lock the mutex.

Destructor for both unlock the mutex.

unique_lock is required for condition variables.

Programmer can lock and unlock a unique_lock.

guard.lock()
guard.unlock()

07

CoSc 450: Programming Paradigms 07

The producer-consumer problem

with a finite buffer

Two condition variables: notEmpty and notFull

The producer calls append(D). Only the producer can
be in the notFull queue of blocked processes.

The consumer calls take(). Only the consumer can be
in the notEmpty queue of blocked processes.

Algorithm 7.3: Producer-consumer (finite bufier, monitor) (continued)

producer consumer
datatype D datatype D

loop forever loop forever

p1: D ¿ produce q1: D ¿ PC.take

p2: PC.append(D) q2: consume(D)

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c≠ M. Ben-Ari 2006 Slide 7.7

Algorithm 7.3: Producer-consumer (finite bu�er, monitor)

monitor PC

bu�erType bu�er ⇥ empty

condition notEmpty

condition notFull

operation append(datatype V)

if bu�er is full

waitC(notFull)

append(V, bu�er)

signalC(notEmpty)

operation take()

datatype W

if bu�er is empty

waitC(notEmpty)

W ⇥ head(bu�er)

signalC(notFull)

return W

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 7.6

waitc in the body of an if

signalc the last statement of the operation

waitc in the body of an if

signalc the last possible statement of the operation

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms

Java implementation

of

the producer-consumer problem with a finite buffer

Java implementation has four classes/files:

* Algorithm0703.java for main program

* PCMonitor.java for the monitor

* Producer.java for the producer

* Consumer.java for the consumer

07

CoSc 450: Programming Paradigms

Algorithm0703

The main program:

* Allocates the monitor

* Allocates the consumer, passing it a pointer to

the monitor, so the consumer can access the

monitor

* Allocates the producer, passing it a pointer to

the monitor, so the producer can access the
monitor

07

CoSc 450: Source Code Algorithm0703.java

class Algorithm0703 {

 public static void main(String[] args) {

 PCMonitor pc = new PCMonitor();

 Consumer consumer = new Consumer(pc);

 consumer.start();

 Producer producer = new Producer(pc);

 producer.start();

 try {

 consumer.join();

 producer.join();

 } catch (InterruptedException e) {

 }

 }

}

CoSc 450: Source Code PCMonitor.java

final class PCMonitor {

 final int n = 5;

 int out = 0, in = 0;

 volatile int count = 0;

 final int[] buffer = new int[n];

 synchronized void append(int v) {

 while (count == n) {

 try {

 wait();

 } catch (InterruptedException e) {

 }

 }

 buffer[in] = v;

 in = (in + 1) % n;

 count = count + 1;

 System.out.println("Producer put " + v);

 notifyAll();

 }

Signaler executes notifyAll

Waiting processes loop on their conditions

Java semantics: E = S < W

CoSc 450: Source Code

 synchronized int take() {

 int temp;

 while (count == 0) {

 try {

 wait();

 } catch (InterruptedException e) {

 }

 }

 temp = buffer[out];

 out = (out + 1) % n;

 count = count - 1;

 System.out.println("Consumer got " + temp);

 notifyAll();

 return temp;

 }

}

Signaler executes notifyAll

Waiting processes loop on their conditions

PCMonitor.java

CoSc 450: Source Code Producer.java

class Producer extends Thread {

 private final PCMonitor pc;

 Producer(PCMonitor pc) {

 this.pc = pc;

 }

 public void run() {

 int d;

 System.out.println("Producer started.");

 for (int i = 0; i < 15; i++) {

 try {

 randomDelay(60);

 d = 10 * i;

 pc.append(d);

 } catch (InterruptedException e) {

 }

 }

 System.out.println("Producer finished.");

 }

}

CoSc 450: Source Code Consumer.java

class Consumer extends Thread {

 private final PCMonitor pc;

 Consumer(PCMonitor pc) {

 this.pc = pc;

 }

 public void run() {

 int d;

 System.out.println("Consumer started.");

 for (int i = 0; i < 15; i++) {

 try {

 randomDelay(100);

 d = pc.take(); // Ignore returned value

 } catch (InterruptedException e) {

 }

 }

 System.out.println("Consumer finished.");

 }

}

CoSc 450: Programming Paradigms

C++ implementation

of

the producer-consumer problem with a finite buffer

07

CoSc 450: Source Code Algorithm-7-3.cpp

class PCMonitor {

private:

 static const int n = 5;

 int out = 0, in = 0;

 volatile int count = 0;

 int buffer[n];

 mutex pcMutex;

 condition_variable notEmpty;

 condition_variable notFull;

public:

 void append(int v) {

 unique_lock<mutex> guard(pcMutex);

 notFull.wait(guard, [this]{return count != n;});

 buffer[in] = v;

 in = (in + 1) % n;

 count = count + 1;

 cout << "Producer put " << v << endl;

 notEmpty.notify_one();

 }

Mesa semantics: E < W < S

Automatic spurious wakeup loop

Signaler executes notify_one

CoSc 450: Source Code Algorithm-7-3.cpp

 int take() {

 unique_lock<mutex> guard(pcMutex);

 notEmpty.wait(guard, [this]{return count != 0;});

 int temp = buffer[out];

 out = (out + 1) % n;

 count = count - 1;

 cout << "Consumer got " << temp << endl;

 notFull.notify_one();

 return temp;

 }

};

Automatic spurious wakeup loop

Signaler executes notify_one

CoSc 450: Source Code Algorithm-7-3.cpp

PCMonitor pc;

void producerRun() {

 int d;

 cout << "Producer started." << endl;

 for (int i = 0; i < 15; i++) {

 randomDelay(60);

 d = 10 * i;

 pc.append(d);

 }

 cout << "Producer finished." << endl;

}

void consumerRun() {

 int d;

 cout << "Consumer started." << endl;

 for (int i = 0; i < 15; i++) {

 randomDelay(100);

 d = pc.take(); // Ignore returned value

 }

 cout << "Consumer finished." << endl;

}

CoSc 450: Source Code Algorithm-7-3.cpp

int main() {

 thread consumer(consumerRun);

 thread producer(producerRun);

 consumer.join();

 producer.join();

 return EXIT_SUCCESS;

}

CoSc 450: Programming Paradigms

The dining philosopher’s problem

* fork[i] is how many forks are available to

philosopher[i]. Initialized to 2 because two

forks are initially available.

* Before eating, decrement number of forks

available to neighbor by 1 each. No interleaving.

07

CoSc 450: Programming Paradigms

The dining philosopher’s problem

* fork[i] is how many forks are available to

philosopher[i]. Initialized to 2 because two

forks are initially available.

* Before eating, decrement number of forks

available to neighbor by 1 each. No interleaving.

07

Algorithm 7.5: Dining philosophers with a monitor

monitor ForkMonitor

integer array[0..4] fork ⇥ [2, . . . , 2]

condition array[0..4] OKtoEat

operation takeForks(integer i)

if fork[i] ⇤= 2

waitC(OKtoEat[i])

fork[i+1] ⇥ fork[i+1] ⌅ 1

fork[i⌅1] ⇥ fork[i⌅1] ⌅ 1

operation releaseForks(integer i)

fork[i+1] ⇥ fork[i+1] + 1

fork[i⌅1] ⇥ fork[i⌅1] + 1

if fork[i+1] = 2

signalC(OKtoEat[i+1])
if fork[i⌅1] = 2

signalC(OKtoEat[i⌅1])

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 7.11

Algorithm 7.5: Dining philosophers with a monitor (continued)

philosopher i
loop forever

p1: think

p2: takeForks(i)

p3: eat

p4: releaseForks(i)

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 7.12

CoSc 450: Programming Paradigms

The dining philosopher’s problem

Algorithm 7.5

* This solution has mutual exclusion and is

deadlock-free but can starve.

07

Scenario for Starvation of Philosopher 2

n phil1 phil2 phil3 f0 f1 f2 f3 f4

1 take(1) take(2) take(3) 2 2 2 2 2

2 release(1) take(2) take(3) 1 2 1 2 2

3 release(1) take(2) and release(3) 1 2 0 2 1

waitC(OK[2])

4 release(1) (blocked) release(3) 1 2 0 2 1

5 take(1) (blocked) release(3) 2 2 1 2 1

6 release(1) (blocked) release(3) 1 2 0 2 1

7 release(1) (blocked) take(3) 1 2 1 2 2

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 7.13

Scenario for starvation of Philosopher 2

CoSc 450: Programming Paradigms

The readers and writers problem

* There is a shared database with many readers

and writers.

* There can be many readers at one time.

* But there can only be one writer.

* Following solution is starvation-free.

07

Algorithm 7.4: Readers and writers with a monitor

monitor RW

integer readers ⇥ 0

integer writers ⇥ 0

condition OKtoRead, OKtoWrite

operation StartRead

if writers ⇤= 0 or not empty(OKtoWrite)

waitC(OKtoRead)

readers ⇥ readers + 1

signalC(OKtoRead)

operation EndRead

readers ⇥ readers ⌅ 1

if readers = 0

signalC(OKtoWrite)

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 7.9

waitc in the body of an if

signalc the last statement of the operation

signalc the last statement of the operation

Hoare semantics: E < S < W

Algorithm 7.4: Readers and writers with a monitor (continued)

operation StartWrite

if writers ⇤= 0 or readers ⇤= 0

waitC(OKtoWrite)

writers ⇥ writers + 1

operation EndWrite

writers ⇥ writers ⌅ 1

if empty(OKtoRead)

then signalC(OKtoWrite)

else signalC(OKtoRead)

reader writer
p1: RW.StartRead q1: RW.StartWrite

p2: read the database q2: write to the database

p3: RW.EndRead q3: RW.EndWrite

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 7.10

waitc in the body of an if

signalc the last statement of the operation
signalc the last statement of the operation

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms

Readers and Writers

* New writers are blocked if any readers are
active or if a writer is active.

* An exiting writer unblocks any blocked reader
rather than a blocked writer. Consequently, all
blocked readers enter.

* Any subsequent incoming readers will be
blocked by the blocked writer, who will eventually
enter when the last active reader exits.

07

CoSc 450: Programming Paradigms Algorithm 7.4

Initial state

 R R R R R W W R R W

R
R
R

OKtoRead

OKtoWrite S

E

Database

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

StartRead
Three readers enter because
writers = 0 and OKtoWrite is empty.

 R R R R R W W

R R
R

OKtoRead

OKtoWrite S

E

Database

W
R
R

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

StartWrite
Writer is blocked on OKtoWrite
because readers = 3

 R R R R R W

R R
R

OKtoRead

OKtoWrite S

E

Database

W

R
R
W

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

StartRead
Reader is blocked on OKtoRead
because OKtoWrite is not empty

 R R R R R

R R
R

OKtoRead

OKtoWrite S

E

Database

W

R
W
W

R

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

EndRead
The first reader to exit does not signal.
The second reader to exit does not
signal.
The third reader to exit signals
OKtoWrite because readers = 0.

The writer is unblocked and
writers = 1.

 R R R R R

OKtoRead

OKtoWrite S

E

Database W

R
W
W

R

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

StartRead
The next reader to enter is blocked on
OKtoRead because writers = 1.

StartWrite
The next writer to enter is blocked on
OKtoWrite because writers = 1.

R R R

OKtoRead

OKtoWrite S

E

Database W

W
R
R

RR

W

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

EndWrite
writers = 0.
The exiting writer signals OKtoRead
because OKtoRead is not empty.

The exiting writer may be blocked on
S, but that is inconsequential because
signalc is the last statement of the
operation. It will immediately exit
because E < S.

R R R

OKtoRead

OKtoWrite S

E

Database

W

W
R
R

RR

W

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms Algorithm 7.4

EndWrite, continued
The first signaled reader resumes.
readers = 1.
It signals the next reader, which
immediately resumes by Hoare
semantics. If there were a waiting
queue with Mesa semantics, the next
reader would be blocked.

So, the next reader resumes and
readers = 2.

R R R

OKtoRead

OKtoWrite S

E

Database

W
R
R

R
R

W

Hoare semantics: E < S < W

CoSc 450: Programming Paradigms

C++ implementation

of the readers and writers problem

Ben-Ari’s solution depends on Hoare semantics.

Problem: C++ condition variables use Mesa semantics.
Algorithm 7.4 will deadlock with Mesa semantics.

Solution: Use shared_mutex type and shared_lock
type with C++17.

07

CoSc 450: Programming Paradigms

shared_mutex and shared_lock

Two levels of access:

• Shared - Several threads can share ownership of the
same mutex.

• Exclusive - Only one thread can own the mutex.

If one thread has acquired the exclusive lock, no other
threads can acquire the lock. The shared lock can be
acquired by multiple threads (readers) only when the
exclusive lock has not been acquired by any thread (a
writer).

07

CoSc 450: Programming Paradigms

C++ implementation

of the readers and writers problem

ReadersWritersA

C++ has built in the Terekhov algorithm for shared and
exclusive use of the shared_mutex as a solution for
the readers and writers problem.

07

CoSc 450: Source Code ReadersWritersA

.cpp

class RWDataBase {

private:

 int myData = 5;

 shared_mutex rwMutex;

 mutex coutMutex;

public:

 void readMyData(int readerID) {

 shared_lock<shared_mutex> guard(rwMutex);

 coutMutex.lock();

 cout << "Reader " << readerID << " is about to read" << endl;

 coutMutex.unlock();

 randomDelay(60);

 coutMutex.lock();

 cout << "Reader " << readerID << " read " << myData << endl;

 coutMutex.unlock();

 }

 void writeMyData(int writerID) {

 lock_guard<shared_mutex> guard(rwMutex);

 cout << "Writer " << writerID << " is about to write" << endl;

 randomDelay(60);

 myData += 5;

 cout << "Writer " << writerID << " wrote " << myData << endl;

 }

};

Shared access

Exclusive access

CoSc 450: Source Code ReadersWritersA

.cpp

RWDataBase rwDataBase;

void readerRun(int readerID) {

 for (int i = 0; i < 3; i++) {

 randomDelay(60);

 rwDataBase.readMyData(readerID);

 }

}

void writerRun(int writerID) {

 for (int i = 0; i < 3; i++) {

 randomDelay(60);

 rwDataBase.writeMyData(writerID);

 }

}

CoSc 450: Source Code ReadersWritersA

.cpp

int main() {

 thread reader0(readerRun, 0);

 thread reader1(readerRun, 1);

 thread reader2(readerRun, 2);

 thread writer0(writerRun, 0);

 thread writer1(writerRun, 1);

 reader0.join();

 reader1.join();

 reader2.join();

 writer0.join();

 writer1.join();

 return EXIT_SUCCESS;

}

CoSc 450: Programming Paradigms

C++ implementations

of the readers and writers problem

ReadersWritersA – With shared_mutex
ReadersWritersB – The Terekhov algorithm without

 shared_mutex
ReadersWritersC – The optimized Terekhov algorithm

ReadersWritersD – Algorithm 7.4, which deadlocks

07

CoSc 450: Programming Paradigms

ReadersWritersA

When a lock is allocated on the run-time stack, its
constructor locks the mutex.

The lock operation is not visible in the code.

When a lock is deallocated on function termination, its
destructor unlocks the mutex.

The unlock operation is not visible in the code.

That is why the code is simple to write.

07

CoSc 450: Programming Paradigms

ReadersWritersB

ReadersWritersB shows the lock() and unlock()
operations of a shared_mutex by programming them
explicitly without using a shared_mutex.

07

StartRead corresponds to lock_shared().
EndRead corresponds to unlock_shared().
StartWrite corresponds to lock().
EndWrite corresponds to unlock().

CoSc 450: Programming Paradigms

The Terekhov algorithm

Two condition variables, gate1 and gate2.

One int readers for the number of readers inside
gate1.

One bool writer if a writer is inside gate1 or
gate2.

There are four rules: (next slide)

07

CoSc 450: Programming Paradigms

• When a reader enters gate1, it has read access. However,
a writer must enter first gate1 and then gate2 to have
write access.

• There can be any number of readers and at most one writer
inside gate1. There cannot be any readers inside gate2.

• No one can enter gate1 if a writer is inside gate1 or
gate2. If a reader or writer tries to enter it is blocked on
gate1.

• A writer can only enter gate2 when the number of
readers inside gate1 drops to 0. If it tries to enter gate2
when there are readers inside gate1 it is blocked on
gate2.

07

CoSc 450: Programming Paradigms 07
Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Terekhov algorithm scenario
The following figure illustrates the progression of states with the Terekhov algorithm.

gate1

gate2

readers’
exit

writer’s
exit

Initial state

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

Some readers enter gate1 and exit.

W W
RR

RR
R

R

R
R

gate1

gate2

readers’
exit

writer’s
exit

A writer enters gate1.
Readers and writers are blocked on gate1.

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

The number of readers inside gate1 drops to 0.

W W
RR

RR
R

R

R
R

W

W

gate1

gate2

readers’
exit

writer’s
exit

The writer enters gate2.
Readers and writers are still blocked on gate1.
When the writer exits, the system returns to its initial state.

W W
RR

RR
R

W

3

CoSc 450: Programming Paradigms 07

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Terekhov algorithm scenario
The following figure illustrates the progression of states with the Terekhov algorithm.

gate1

gate2

readers’
exit

writer’s
exit

Initial state

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

Some readers enter gate1 and exit.

W W
RR

RR
R

R

R
R

gate1

gate2

readers’
exit

writer’s
exit

A writer enters gate1.
Readers and writers are blocked on gate1.

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

The number of readers inside gate1 drops to 0.

W W
RR

RR
R

R

R
R

W

W

gate1

gate2

readers’
exit

writer’s
exit

The writer enters gate2.
Readers and writers are still blocked on gate1.
When the writer exits, the system returns to its initial state.

W W
RR

RR
R

W

3

CoSc 450: Programming Paradigms 07

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Terekhov algorithm scenario
The following figure illustrates the progression of states with the Terekhov algorithm.

gate1

gate2

readers’
exit

writer’s
exit

Initial state

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

Some readers enter gate1 and exit.

W W
RR

RR
R

R

R
R

gate1

gate2

readers’
exit

writer’s
exit

A writer enters gate1.
Readers and writers are blocked on gate1.

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

The number of readers inside gate1 drops to 0.

W W
RR

RR
R

R

R
R

W

W

gate1

gate2

readers’
exit

writer’s
exit

The writer enters gate2.
Readers and writers are still blocked on gate1.
When the writer exits, the system returns to its initial state.

W W
RR

RR
R

W

3

CoSc 450: Programming Paradigms 07

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Terekhov algorithm scenario
The following figure illustrates the progression of states with the Terekhov algorithm.

gate1

gate2

readers’
exit

writer’s
exit

Initial state

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

Some readers enter gate1 and exit.

W W
RR

RR
R

R

R
R

gate1

gate2

readers’
exit

writer’s
exit

A writer enters gate1.
Readers and writers are blocked on gate1.

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

The number of readers inside gate1 drops to 0.

W W
RR

RR
R

R

R
R

W

W

gate1

gate2

readers’
exit

writer’s
exit

The writer enters gate2.
Readers and writers are still blocked on gate1.
When the writer exits, the system returns to its initial state.

W W
RR

RR
R

W

3

CoSc 450: Programming Paradigms 07

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Terekhov algorithm scenario
The following figure illustrates the progression of states with the Terekhov algorithm.

gate1

gate2

readers’
exit

writer’s
exit

Initial state

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

Some readers enter gate1 and exit.

W W
RR

RR
R

R

R
R

gate1

gate2

readers’
exit

writer’s
exit

A writer enters gate1.
Readers and writers are blocked on gate1.

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

The number of readers inside gate1 drops to 0.

W W
RR

RR
R

R

R
R

W

W

gate1

gate2

readers’
exit

writer’s
exit

The writer enters gate2.
Readers and writers are still blocked on gate1.
When the writer exits, the system returns to its initial state.

W W
RR

RR
R

W

3

CoSc 450: Source Code ReadersWritersB

.cpp

class RWMonitor {

private:

 mutex rwMutex;

 condition_variable gate1;

 condition_variable gate2;

 int readers = 0;

 bool writer = false;

public:

 void startRead() {

 unique_lock<mutex> guard(rwMutex);

 gate1.wait(guard, [this] { return !writer; });

 readers++;

 }

 void endRead() {

 unique_lock<mutex> guard(rwMutex);

 readers--;

 if (writer && (readers == 0)) {

 gate2.notify_one();

 }

 }

The Terekhov Algorithm

Mesa semantics: E < W < S

CoSc 450: Source Code ReadersWritersB

.cpp

 void startWrite() {

 unique_lock<mutex> guard(rwMutex);

 gate1.wait(guard, [this] { return !writer; });

 writer = true;

 gate2.wait(guard, [this] { return readers == 0; });

 }

 void endWrite() {

 unique_lock<mutex> guard(rwMutex);

 readers = 0;

 writer = false;

 gate1.notify_all();

 }

};

The Terekhov Algorithm

Mesa semantics: E < W < S

CoSc 450: Source Code ReadersWritersB

.cpp

class RWDataBase {

private:

 RWMonitor rwMonitor;

 int myData = 5;

 mutex coutMutex;

public:

 void readMyData(int readerID) {

 rwMonitor.startRead();

 coutMutex.lock();

 cout << "Reader " << readerID << " is about to read" << endl;

 coutMutex.unlock();

 randomDelay(60);

 coutMutex.lock();

 cout << "Reader " << readerID << " read " << myData << endl;

 coutMutex.unlock();

 rwMonitor.endRead();

 }

 void writeMyData(int writerID) {

 rwMonitor.startWrite();

 cout << "Writer " << writerID << " is about to write" << endl;

 randomDelay(60);

 myData += 5;

 cout << "Writer " << writerID << " wrote " << myData << endl;

 rwMonitor.endWrite();

 }

};

CoSc 450: Programming Paradigms

ReadersWritersC

ReadersWritersC is an optimized version of
ReadersWritersB. It is the reference implementation
for shared_mutex in C++17.

In place of int readers and bool writer is a single
unsigned integer named state. The first bit of state is
1 if writer is true and 0 otherwise. The remaining bits
are the count of readers. 8-bit example:

state: 0000 0110, 6 readers and no writer

state: 1000 0111, 7 readers and 1 writer

07

CoSc 450: Programming Paradigms

Masks for accessing readers and writer

readerMask: First bit 1, remaining bits 0.

writerMask: First bit 0, remaining bits 1.

07

CoSc 450: Programming Paradigms 07

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Optimization techniques
Program ReadersWritersC in our software distribution is an optimized implementation of the Terekhov algo-
rithm for the readers writers problem using the Ben-Ari terminology. For example, startRead() is how C++17
implements lock_shared(). The monitor code is below.

The number of readers inside gate 1, an integer, and whether a writer is inside gate1 or gate2, a boolean, define
the state of the computation. The optimized version encodes the state in a single unsigned integer named state.
The first bit of state is 1 if writer is true and 0 otherwise. The remaining bits are the count of readers.

The optimization uses two constant masks, writerMask, whose first bit is 1 and remaining bits are 0, and
readerMask, whose first bit is 0 and remaining bits are 1.

Typically, an unsigned integer would be 32 or 64 bits long. Here are some examples with an 8-bit unsigned inte-
ger.

writerMask: 1000 0000
readerMask: 0111 1111

state: 0000 0110⇒ six readers inside gate1 and no writer inside gate1 or gate2
state: 1000 0110⇒ six readers inside gate1 and one writer inside gate1 or gate2

The optimization uses bitwise & and bitwise | operations, which are extremely fast, with the masks to extract the
readers and writer values on the fly. It is coded to be safe from integer overflow. Here are some examples of
expressions in the optimized code and their meanings. Note the C semantics that integer zero is false and nonzero
is true.

Expression Meaning

state & writerMask True iff a writer is inside gate1 or gate2

state & readerMask Number of readers inside gate1

(state & readerMask) True iff the number of readers inside gate1
== readerMask is the maximum we can count

readers == readerMask - 1 True iff the number of readers inside gate1 is one less
than the maximum we can count

unsigned readers = Adds 1 to number of readers
(state & readerMask) + 1;

state &= writerMask;
state |= readers;

state |= writerMask; Sets state to specify that a writer is inside

The optimized code also programs the spurious wakeup loop explicitly without the predicate parameter in the
wait() function. For example, in startWrite() the unoptimized statement

gate1.wait(guard, [this] { return !writer; });

is coded as

while (state & writerMask)
gate1.wait(guard);

4

CoSc 450: Programming Paradigms

The optimized code also programs the spurious wakeup
loop explicitly without the predicate parameter in the

wait() function.

07

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Optimization techniques
Program ReadersWritersC in our software distribution is an optimized implementation of the Terekhov algo-
rithm for the readers writers problem using the Ben-Ari terminology. For example, startRead() is how C++17
implements lock_shared(). The monitor code is below.

The number of readers inside gate 1, an integer, and whether a writer is inside gate1 or gate2, a boolean, define
the state of the computation. The optimized version encodes the state in a single unsigned integer named state.
The first bit of state is 1 if writer is true and 0 otherwise. The remaining bits are the count of readers.

The optimization uses two constant masks, writerMask, whose first bit is 1 and remaining bits are 0, and
readerMask, whose first bit is 0 and remaining bits are 1.

Typically, an unsigned integer would be 32 or 64 bits long. Here are some examples with an 8-bit unsigned inte-
ger.

writerMask: 1000 0000
readerMask: 0111 1111

state: 0000 0110⇒ six readers inside gate1 and no writer inside gate1 or gate2
state: 1000 0110⇒ six readers inside gate1 and one writer inside gate1 or gate2

The optimization uses bitwise & and bitwise | operations, which are extremely fast, with the masks to extract the
readers and writer values on the fly. It is coded to be safe from integer overflow. Here are some examples of
expressions in the optimized code and their meanings. Note the C semantics that integer zero is false and nonzero
is true.

Expression Meaning

state & writerMask True iff a writer is inside gate1 or gate2

state & readerMask Number of readers inside gate1

(state & readerMask) True iff the number of readers inside gate1
== readerMask is the maximum we can count

readers == readerMask - 1 True iff the number of readers inside gate1 is one less
than the maximum we can count

unsigned readers = Adds 1 to number of readers
(state & readerMask) + 1;

state &= writerMask;
state |= readers;

state |= writerMask; Sets state to specify that a writer is inside

The optimized code also programs the spurious wakeup loop explicitly without the predicate parameter in the
wait() function. For example, in startWrite() the unoptimized statement

gate1.wait(guard, [this] { return !writer; });

is coded as

while (state & writerMask)
gate1.wait(guard);

4

CoSc 450: Source Code ReadersWritersC

.cpp

class RWMonitor {

private:

 mutex rwMutex;

 condition_variable gate1;

 condition_variable gate2;

 unsigned state = 0;

 static const unsigned writerMask = 1U << (sizeof(unsigned) * CHAR_BIT - 1);

 static const unsigned readerMask = ~writerMask;

public:

 void startRead() {

 unique_lock<mutex> guard(rwMutex);

 while ((state & writerMask) || (state & readerMask) == readerMask)

 gate1.wait(guard);

 unsigned readers = (state & readerMask) + 1;

 state &= writerMask;

 state |= readers;

 }

CoSc 450: Source Code ReadersWritersC

.cpp

 void endRead() {

 unique_lock<mutex> guard(rwMutex);

 unsigned readers = (state & readerMask) - 1;

 state &= writerMask;

 state |= readers;

 if (state & writerMask) {

 if (readers == 0)

 gate2.notify_one();

 } else {

 if (readers == readerMask - 1)

 gate1.notify_one();

 }

 }

CoSc 450: Source Code ReadersWritersC

.cpp

 void startWrite() {

 unique_lock<mutex> guard(rwMutex);

 while (state & writerMask)

 gate1.wait(guard);

 state |= writerMask;

 while (state & readerMask)

 gate2.wait(guard);

 }

 void endWrite() {

 unique_lock<mutex> guard(rwMutex);

 state = 0;

 gate1.notify_all();

 }

};

CoSc 450: Programming Paradigms

ReadersWritersD

ReadersWritersD is Algorithm 7.4, which assumes
Hoare semantics. C++17 uses Mesa semantics.
Allgorithm 7.4 deadlocks with Mesa semantics.

There is no empty() method in C++17 for checking
the status of the condition variable queue. This
implementation maintains a count of blocked processes
for that purpose.

07

CoSc 450: Source Code ReadersWritersD

.cpp

class RWMonitor {

private:

 mutex rwMutex;

 condition_variable okToRead;

 condition_variable okToWrite;

 int readers = 0;

 int writers = 0;

 int blockedOnOKtoRead = 0;

 int blockedOnOKtoWrite = 0;

CoSc 450: Source Code ReadersWritersD

.cpp

public:

 void startRead() {

 unique_lock<mutex> guard(rwMutex);

 if (writers == 0 || blockedOnOKtoWrite != 0) {

 blockedOnOKtoRead++;

 okToRead.wait(guard,

 [this] { return writers != 0 && blockedOnOKtoWrite == 0; });

 blockedOnOKtoRead--;

 }

 readers++;

 okToRead.notify_one();

 }

 void endRead() {

 unique_lock<mutex> guard(rwMutex);

 readers--;

 if (readers == 0) {

 okToWrite.notify_one();

 }

 }

CoSc 450: Source Code ReadersWritersD

.cpp

 void startWrite() {

 unique_lock<mutex> guard(rwMutex);

 if (blockedOnOKtoRead == 0) {

 blockedOnOKtoWrite++;

 okToWrite.wait(guard,

 [this] { return writers == 0 && readers == 0; });

 blockedOnOKtoWrite--;

 }

 writers++;

 }

 void endWrite() {

 unique_lock<mutex> guard(rwMutex);

 if (blockedOnOKtoRead == 0) {

 okToWrite.notify_one();

 } else {

 okToRead.notify_one();

 }

 }

};

