: Programming Parac Chapter 7

Monitors



Monitor

Purpose: To consolidate the wait and signal operations in
a single class.

Instead of having semaphores and critical sections
spread throughout the code of different processes, put
the critical sections into methods of the monitor class.



Algorithm 7.1

n is an attribute of the monitor instead of being a global
variable.

Solves the critical section problem.

Monitor methods are guaranteed to execute atomically.



Algorithm 7.1: Atomicity of monitor operations

monitor CS
integer n < 0

operation increment
integer temp
temp < n
n < temp + 1

p

q

pl: CS.increment

ql:

CS.increment

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 7.1



Java monitors

There is no special monitor type.
Any class can be a monitor.

The keyword synchronized makes a method
atomic.



CriticalSection

. Java

package algorithm0701;
import static util450.Util450.*;

public class CriticalSection {
private int n = 0;

public synchronized void increment() throws InterruptedException {
int temp;
temp = n;
randomDelay (40);
n = temp + 1;

}

public synchronized int get() ({
return n;

}



Algorithm0701

. Java

public class Algorithm0701 extends Thread {

private int processID;
private CriticalSection cs;

Algorithm0701(int pID, CriticalSection criticalSection) {
processID = pID;
cs = criticalSection;



Algorithm0701

. Java

public void run() {

if (processID == 1) { // Process p
for (int i = 0; i < 10; i++) {
try {
System.out.println("p.i == " + 1i);

cs.increment () ;
} catch (InterruptedException e) {

}
}
} else if (processID == 2) { // Process q
for (int i = 0; i < 10; i++) {
try {
System.out.println("q.i == " + 1i);
cs.increment();
} catch (InterruptedException e) {
}
}



Algorithm0701

. Java

public static void main(String[] args) {
CriticalSection ¢cs = new CriticalSection();
Algorithm0701 p = new Algorithm0701(1, cs);
Algorithm0701 q = new Algorithm0701(2, cs);
p.start();
g.start();

try {

p.join();

g.join();
} catch (InterruptedException e) {
}

System.out.println("The value of n is " + cs.get());



C++ monitors

There is no special monitor type.

You construct a monitor using a mutex and a
lock guard to make the operations atomic.



Algorithm-7-1

-CPP

#include <cstdlib>
#include <iostream>
#include <thread>
#include <mutex>
#include "Util450.cpp”
using namespace std;

class CriticalSection {
private:
int n = 0;
mutex csMutex; == mutex for mutual exclusion in monitor
public:
void increment () {
lock_guard<mutex> guard(csMutex); €= lock guard with mutex for RAIl
int temp;
temp = n;
randomDelay (40);
n = temp + 1;

int get() {
lock _guard<mutex> guard(csMutex);
return n;



Algorithm-7-1

-CPP

CriticalSection cs;

void pRun() {
for (int i = 0; i < 10; i++) {
cout << "p.i == " << i << endl;
cs.increment () ;

}

void qRun() {
for (int i = 0; i < 10; i++) {
cout << "qg.i == " << i << endl;
cs.increment () ;

}

int main() {
thread p(pRun);
thread q(qRun);
p.join();
q.join();
cout << "The value of n is " << cs.get() << endl;
return EXIT SUCCESS;



C++ RAIl design pattern

RAIl — Resource Acquisition Is Initialization

Pronounced “R, A, double |”
Resource acquisition happens during initialization.

Resource deallocation happens during destruction.



RAIl in Algorithm-7-1 increment () method

guard is a local variable of type 1lock guard, allocated
on the run-time stack on the stack frame for
increment ().

It is created when the method is called, and destroyed
automatically when the method terminates.

When guard is created it locks mutex.
When guard is destroyed it unlocks mutex.

Therefore, mutual exclusion is guaranteed.



C++ RAIl design pattern benefits

Non-void functions would be difficult, if not impossible,
to implement atomically with only mutex.

RAIl is exception safe.
RAIl simplifies resource management.

Most C++ libraries follow the RAIl design pattern.



Executing a Monitor Operation

X

™~~~

monitor CS

T

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006 Slide 7.2



Condition variable

A special monitor variable that has a queue (FIFO) of
blocked processes.

A monitor can have more than one condition variable.
There is a queue of blocked processes for each
condition variable.



Condition variable

There are three operations on condition variable cond.



Condition variab

There are three operations on conc

waitC(cond)
append p to cond queue
p.state <— blocked
monitor.lock < released

(S

ition variable cond.



Condition variable

There are three operations on condition variable cond.

waitC(cond)
append p to cond queue
p.state <— blocked
monitor.lock < released

signalC(cond)
if cond queue £ ()
remove head of cond queue and assign to g
q.state < ready



Condition variable

There are three operations on condition variable cond.

waitC(cond)
append p to cond queue
p.state <— blocked
monitor.lock < released

signalC(cond)
if cond queue £ ()
remove head of cond queue and assign to g
q.state < ready

empty(cond)
return cond queue 1IsSEmpty



rogramming Parac

Semaphore Ben-Ari monitor




rogramming Parac

Semaphore Ben-Ari monitor

1. wait(S) may or may not block. 1. waitC(cond) always blocks.



Semaphore Ben-Ari monitor

1. wait(S) may or may not block. 1. waitC(cond) always blocks.

2. signal(§) always has an effect. 2. signalC(cond) has no effect if
cond queue 1s empty.



Semaphore

Ben-Ari monitor

1. wait(S) may or may not block.

2. signal(§) always has an effect.

3. Process unblocked by signal(S)
might not resume execution
immediately.

1. waitC(cond) always blocks.

2. signalC(cond) has no effect if
cond queue 1s empty.

3. Process unblocked by
signalC(cond) resumes executing
immediately.




The Ben-Ari monitor

Ben-Ari defines his monitor to have “the immediate
resumption requirement.”

When signalC(cond) executes, the blocked process, if
any is blocked, immediately resumes.

The process that executed signalC is put in a signaling
queue. (No waiting queue necessary)

Known as “Hoare semantics’’.



Notes on monitors

Buhr, et. al., “Monitor Classification”, Computing
Surveys, March 1995.

Monitor Classification
Peter A. Buhr and Michel Fortier

Dept. of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Michael H. Coffin
EDS Research and Development, 901 Tower Drive, 1st Floor, Troy Michigan 48007-7019, U. S. A.



General monitor

All procedures are mutually exclusive. Each
monitor has

* One entry queue

* One queue for each condition variable
* One waiting queue

* One signaler queue



entry queue

condition | monitor waiting
A O O\ " variables | /O queue

condition signaller
B \ o / 0 queue

exit

@® active task O waiting task

Figure 3: Processes Waiting to use a Monitor



General actions

waitC(cond)
Blocked on condition queue for cond



General actions

waitC(cond)
Blocked on condition queue for cond
signalC(cond)
Signaler moved to signaler queue
Signaled moved from condition queue to
wait queue



General actions

waitC(cond)
Blocked on condition queue for cond
signalC(cond)
Signaler moved to signaler queue
Signaled moved from condition queue to
wait queue
Monitor is unlocked



General actions

waitC(cond)
Blocked on condition queue for cond

signalC(cond)

Signaler moved to signaler queue

Signaled moved from condition queue to

wait queue

Monitor is unlocked
Monitor chooses from one of the queues which

process gets to enter



entry queue

_________

condition | monitor waiting
A O O\ | variables | e queue

_________

condition ® signaller
B \ /07 queue

exit

Action of waitC(A)
Process blocked on condition queue A
Monitor is unlocked
An unblocked process is selected to continue



entry queue

condition | monitor_t———>" waiting
A O O-< —Variables | / O queuc

_________

condition < o — — signaller
B \ queue
. / O
—  signalC(A)

exit

Action of signalC(A)
Signaler to signaler queue, signaled to wait queue
Monitor is unlocked
An unblocked process is selected to continue



Types of monitors

The type of monitor is determined by how the
monitor chooses which process gets to enter.
Each queue has a specific precedence:

*E — entry precedence
*W — waiting precedence
*S — signaler precedence



entry queue

©|E — entry precedence

_________

condition | monitor ! waiting
A O O\ ' variables | /Qi queue
W — waiting precedence

condition signaller
B \ /Qi queue

S — signaler precedence

exit



relative priority traditional monitor name
1 | E, =W, =5,
2 | E, =W, < S, | Waitand Notify [Lampson and Redell 1980]
3 | E, =8, <W, Signal and Wait [Howard 1976al
4 | E,<W,=25,
5 | B, <W, <S5, Signal and Continue [Howard 1976b]
6 | E, <S5, <W, Signal and Urgent Wait [Hoare 1974]
7T | B, >W,=.5, (rejected)
8 | Ep, =5, > W, (rejected)
9 | Sp > Ep > W, (rejected)
10 | B, =W, > 5, (rejected)
11| W, > E, >S5, (rejected)
12 | E,>5, >W, (rejected)
13 | B, >W, > 5, (rejected)

Table 1: Relative Priorities for Internal Monitor Queues




Mesa Semantics, E <W < S
Buhr, C++

entry queue

_________

condition | monitor ! waiting W
A O O\ | variables | /O queue

_________

condition signaller S
B —\ /07 queue

exit




Mesa Semantics, E <W < S

Buhr, C++

entry queue

“IE
O
condition o ;n_or;it_o; _1|
A O O\ | variables |
condition
B \

e

exit

Signaler always picked.
Signaler queue not necessary.

waiting
queue

\'A%



Mesa Semantics, E <W < S
Buhr, C++

entry queue

condition | monitor | waiting W
A O O\ | variables | /O queue

_________

condition
B \

When w eventually picked, condition may no longer be met.
May need waitC in the body of a loop instead of an fif.



Hoare Semantics,E < S <W
Ben-Ari, C--

entry queue

_________

condition | monitor ! waiting W
A O O\ | variables | /O queue

_________

condition signaller S
B —\ /07 queue

exit




Hoare Semantics,E < S <W
Ben-Ari, C--

entry queue

_________

condition I monitor !
A O O\ | variables |

_________

condition signaller S
B —\ /07 queue

exit
Signaled always picked
Waiting queue not necessary




Hoare Semantics,E < S <W
Ben-Ari, C--

entry queue

_________

condition I monitor !
A O O\ | variables |

_________

condition signaller S
B —\ /07 queue

exit
Can have waitC in the body of an if statement.
However, signalC should be the last statement of operation.




Java, Wait and Notify
E=W<S

entry queue

_________

condition | monitor ! waiting W
A O O\ | variables | /O queue

_________

condition signaller S
B —\ /07 queue

exit




Java, Wait and Notify
E=W<S

entry queue

=

O
| monitor | waiting
: variables | O queue

wait

exit
Signaler always picked. Signaled waits in entry queue.
There are no condition variables.



Java,Wait and Notify
E=W<S

* waitC is called wait in Java.

* signalC is called notify in Java.

* notifyAll moves all processes from the waiting
queue to the entry queue.

* Signaler usually executes notifyAll, and waiting
processes loop on their boolean expressions.



Sestoft, page 67

States and State Transitions of a Thread. A thread’s transition from one state to another may be caused
by a method call performed by the thread itself (shown in the monospace font), by a method call possibly
performed by another thread (shown in the slanted monospace font); and by timeouts and other actions.

o.notify() o.notifyAll ()

interrupt ()
timeout Waiting for o

got lock _ :
on o attempting to lock o o.wait ()
scheduled
start () Enabled preempted Running dies
yield()
timeout
, sleep ()
Created interrupt () Sleeping Dead

timeout

/_\ u.join ()

u died

interrupt




Java,Wait and Notify
E=W<S

E =WV criticized by Buhr:

“In all cases, the no-priority property
complicates the proof rules, makes
performance worse, and makes programming
more difficult. ... Therefore, we have rejected all
no-priority monitors from further
consideration.”



Semaphore / monitor equivalence

Semaphores and monitors have equivalent capabilities.
You can construct a semaphore with a monitor.

You can construct a monitor with a semaphore.



Algorithm 7.2: Semaphore simulated with a monitor

Hoare semantics
monitor Sem

integer s « k
condition notZero

operation wait
ifs=20
waitC(notZero)
s«—s—1

operation signal
s«<—s+1
signalC(notZero)

p

q

loop forever
non-critical section
pl: Sem.wait
critical section
p2: Sem.signal

loop forever
non-critical section
ql: Sem.wait
critical section
q2: Sem.signal

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 7.3



Algorithm 7.2: Semaphore simulated with a monitor

Hoare semantics
monitor Sem

integer s « k
condition notZero

operation wait
ifs=20
waitC(notZero)
s«—s—1

operation signal
s«<—s+1
signalC(notZero)

Mesa semantics
monitor Sem

integer s < k
condition notZero

operation wait

while s =0
waitC(notZero)
s —s— |

operation signal
s —s+ |

signalC(notZero)

p

q

loop forever
non-critical section
pl: Sem.wait
critical section
p2: Sem.signal

loop forever
non-critical section
ql: Sem.wait
critical section
q2: Sem.signal

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 7.3



Semaphore simulated with a monitor
C++ implementation of Algorithm 7.2

signal () uses lock guard for mutual exclusion.

wait () uses unique lock for mutual exclusion and
the condition on which to wait.

wait () takes two parameters:
* A unique lock

* A predicate that must be true to unblock the process



Uti1l450.cpp

class Semaphore {

private:
int s;
condition_variable notZero;
mutex semMutex;

public:
Semaphore(int k) { s = k; }

void wait() {
unique_lock<mutex> guard(semMutex) ;
notZero.wait (guard, [this]{return s != 0;});
S—-; : : :
} Lambda expression passing function as a parameter.

void signal() {
lock_guard<mutex> guard(semMutex);
S++;
notZero.notify one();



Spurious wakeup — Problem

Mesa semantics: E <W < §; signaled unblocked, signaler
continues.

There is no guarantee to the waiting process that the
boolean expression it waited on is still true.

Another process may have changed the value of the
expression between the signal execution and the
resumption of the waiting.



Spurious wakeup — Solution

Signaled must first execute a loop on the condition to
guarantee that the condition is met.

C++ condition variable wait() method does the
spurious wakeup loop automatically.

walt (unique lock lock, Predicate pred)
is equivalent to

while (!pred()) { wait(lock); }



C++ lambda syntax

[ captured variables ] (parameters) { function code }

In class Semaphore: [this]{return s != 0;}
the captured variable this allows access to class
attribute s in the function code.

Suppose you also have local variable n that you need to
access in your function:

[this, n]{return s != n;}



C++ lambda syntax

[ captured variables ] (parameters) { function code }

In class Semaphore: [this]{return s != 0;}
the function has no parameters, so you can omit the
parentheses ().



Scheme

(lambda (n)
(* n n))

(define square
(lambda (n)

(* nn)))

> (square 5)
25
>

Functional programming!

C++
function< int(int) > square;

square = [](int n) { return n * n; };
cout << square(5);

25



lock guard vs unique 1lock

Constructor for both lock the mutex.
Destructor for both unlock the mutex.

unique lock is required for condition variables.

Programmer can lock and unlock a unique lock.
guard.lock()
guard.unlock()



The producer-consumer problem
with a finite buffer

Two condition variables: notEmpty and notFull

The producer calls append(D). Only the producer can
be in the notFull queue of blocked processes.

The consumer calls take( ). Only the consumer can be
in the notEmpty queue of blocked processes.



Algorithm 7.3: Producer-consumer (finite buffer, monitor) (continued)

producer consumer
datatype D datatype D
loop forever loop forever
pl: D « produce ql: D « PC.take
p2: PC.append(D) q2:  consume(D)

. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition © M. Ben-Ari 2006

Slide 7.7



Algorithm 7.3: Producer-consumer (finite buffer, monitor)

monitor PC Hoare semantics:E < S <W

buffer Type buffer « empty
condition notEmpty
condition notFull
operation append(datatype V)

if buffer is full

waitC(notFull) <€ waitc in the body of an if
append(V, buffer)
signalC(notEmpty) <= signalc the last statement of the operation

operation take()
datatype W
if buffer is empty

waitC(notEmpty) <= waitc in the body of an if
W « head(buffer)

signalC(notFull) <€ signalc the last possible statement of the operation
return W




Java implementation
of
the producer-consumer problem with a finite buffer

Java implementation has four classes/files:

* Algorithm0703.java for main program
* PCMonitor.java for the monitor

* Producer.java for the producer

* Consumer.java for the consumer



Algorithm0703

The main program:

*A
*A
t

locates the monitor
locates the consumer, passing it a pointer to

ne monitor, so the consumer can access the

monitor

A

llocates the producer, passing it a pointer to

the monitor, so the producer can access the
monitor



Algorithm0703. java

class Algorithm0703 {

public static void main(String[] args) {

PCMonitor pc = new PCMonitor();
Consumer consumer = new Consumer (pc);
consumer.start ();
Producer producer = new Producer (pc);
producer.start();
try {

consumer.join();

producer.join();
} catch (InterruptedException e) {

}



PCMonitor. java

final class PCMonitor { Java semantics: E =S <W
final int n = 5;

int out = 0, in = 0;
volatile int count =
final int[] buffer

0;
new int[n];

synchronized void append(int v) {

while (count == n) ({ <€ Wiaiting processes loop on their conditions
try {
wait();
} catch (InterruptedException e) {
}
}
buffer[in] = v;
in = (in + 1) % n;

count = count + 1;
System.out.println("Producer put " + v);

notifyAll(); D — Signaler executes notifyAll



PCMonitor. java

synchronized int take() {
int temp;
while (count == 0) { <€ Wiaiting processes loop on their conditions
try {
wait();
} catch (InterruptedException e) {

}

}
temp = buffer[out];

out = (out + 1) 3 n;
count = count - 1;
System.out.println("Consumer got + temp);

notifyAll(); <€  Signaler executes notifyAll
return temp;



Producer. java

class Producer extends Thread {
private final PCMonitor pc;

Producer (PCMonitor pc) {
this.pc = pc;
}

public void run() {
int d;
System.out.println("Producer started.");
for (int i = 0; i < 15; i++) {
try {
randomDelay (60) ;
d =10 * i;
pc.append(d);
} catch (InterruptedException e) {
}
}

System.out.println("Producer finished.");



Consumer. java

class Consumer extends Thread {
private final PCMonitor pc;

Consumer (PCMonitor pc) {
this.pc = pc;
}

public void run() {
int d;
System.out.println("Consumer started.");
for (int i = 0; i < 15; i++) {
try {
randomDelay (100) ;
d = pc.take(); // Ignore returned value
} catch (InterruptedException e) {

}
}

System.out.println("Consumer finished.");



C++ implementation
of
the producer-consumer problem with a finite buffer



Algorithm-7-3.cpp

class PCMonitor ({ Mesa semantics: E <W < S
private:

static const int n = 5;

int out = 0, in = 0;

volatile int count = 0;

int buffer[n];
mutex pcMutex;
condition variable notEmpty;
condition_variable notFull;

public:
void append(int v) {
unique lock<mutex> guard(pcMutex); Automatic spurious wakeup loop
notFull.wait(guard, [this]{return count != n;});
buffer[in] = v;
in = (in + 1) % n;

count = count + 1;
cout << "Producer put " << v << endl;

notEmpty.notify one(); <€  Signaler executes notify_one



Algorithm-7-3.cpp

int take() {
unique_ lock<mutex> guard(pcMutex);

notEmpty.wait (guard, [this]{return count != 0;});

int temp = buffer[out]; Automatic spurious wakeup loop
out = (out + 1) 3 n;

count = count - 1;

cout << "Consumer got " << temp << endl;

notFull.notify one(); <€ Signaler executes notify_one

return temp;



Algorithm-7-3.cpp

PCMonitor pc;

void producerRun() {

int d;

cout << "Producer started." << endl;

for (int i = 0; i < 15; i++) {
randomDelay (60) ;
d =10 * i;
pc.append(d);

}

cout << "Producer finished." << endl;

}

void consumerRun() {
int 4;
cout << "Consumer started." << endl;
for (int i = 0; i < 15; i++) {
randomDelay (100);
d = pc.take(); // Ignore returned value

}

cout << "Consumer finished." << endl;



Algorithm-7-3.cpp

int main() {
thread consumer (consumerRun);
thread producer (producerRun);
consumer.join();
producer.join();
return EXIT SUCCESS;



The dining philosopher’s problem

* fork[i] is how many forks are available to
philosopherf(i]. Initialized to 2 because two
forks are initially available.



The dining philosopher’s problem

* fork[i] is how many forks are available to
philosopherf(i]. Initialized to 2 because two
forks are initially available.

* Before eating, decrement number of forks
available to neighbor by | each. No interleaving.



Algorithm 7.5: Dining philosophers with a monitor

monitor ForkMonitor

integer array[0..4] fork « [2, ..., 2]
condition array[0..4] OKtoEat
operation takeForks(integer i)

if fork[i] # 2

waitC(OKtoEat[i])
fork[i+1] « fork[i+1] — 1
fork[i—1] « fork[i—1] — 1

operation releaseForks(integer i)
fork[i+1] « fork[i+1] + 1
fork[i—1] « fork[i—1] + 1
if fork[i+1] = 2

signal C(OKtoEat|[i+1])
if fork[i—1] = 2
signal C(OKtoEat[i—1])




Algorithm 7.5: Dining philosophers with a monitor (continued)

philosopher i

loop forever
think
takeForks(i)
eat
releaseForks(i)




The dining philosopher’s problem
Algorithm 7.5

*This solution has mutual exclusion and is
deadlock-free but can starve.



Scenario for starvation of Philosopher 2

n | phill ohil2 ohil3 0l f1l 2| 73| f4
1 | take(1) | take(2) take(3) 2221212
2 | release(1l) | take(2) take(3) 1| 2|12 |2
3 | release(1l) | take(2) and release(3) 1121021
waitC(OK]2])
4 | release(1) | (blocked) release(3) 1 {210 2|1
5 | take(1) (blocked) release(3) 2 12 (1] 2|1
6 | release(1l) | (blocked) release(3) | 1 | 2 | O | 2 | 1
7 | release(1l) | (blocked) take(3) 1| 21122




The readers and writers problem

*There is a shared database with many readers
and writers.

*There can be many readers at one time.
* But there can only be one writer.

* Following solution is starvation-free.



Algorithm 7.4: Readers and writers with a monitor

Hoare semantics: E < S <W
monitor RW -
integer readers < 0
integer writers « 0
condition OKtoRead, OKtoWrite
operation StartRead
if writers # 0 or not empty(OKtoWrite)

waitC(OKtoRead) <€ waitc in the body of an if
readers « readers + 1
signalC(OKtoRead) <€ signalc the last statement of the operation

operation EndRead
readers « readers — 1

if readers = 0
signal C(OKtoWrite) <€ signalc the last statement of the operation




Algorithm 7.4: Readers and writers with a monitor (continued)

Hoare semantics: E < S <W
operation StartWrite

if writers # 0 or readers # 0

waitC(OKtoWrite) <€ waitc in the body of an if
writers < writers + 1

operation EndWrite
writers « writers — 1
if empty(OKtoRead)
then signal C(OKtoWrite) €= signalc the last statement of the operation
else signalC(OKtoRead) <« signalc the last statement of the operation

reader writer
pl: RW.StartRead ql: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite




Readers and Writers

* New writers are blocked if any readers are
active or if a writer is active.

* An exiting writer unblocks any blocked reader
rather than a blocked writer. Consequently, all
blocked readers enter.

* Any subsequent incoming readers will be
blocked by the blocked writer, who will eventually
enter when the last active reader exits.



rogramming Faradigms Algorithm 7.4

RRRRRWWRRW Hoare semantics:E < S <W

R

R

R E
OKtoRead | _
OKtoWrite ( E— - ) S

Database

Initial state




rogramming raradigms Algorithm 7.4

RRRRRWW Hoare semantics:E < S <W

il

StartRead
Three readers enter because
OKtoRead writers = 0 and OKtoWrite is empty.
OKtoWrite ( _ _ ) S
R R

Database R




Algorithm 7.4

Hoare semantics:E < S <W

StartWrite
Writer 1s blocked on OKtoWrite
OKtoRead _
because readers = 3
OKtoWrite _ _ S
< W >
R g

Database R




Algorithm 7.4

Hoare semantics:E < S <W

StartRead
Reader 1s blocked on OKtoRead
OKtoRead R because OKtoWrite is not empty
OKtoWrite _ _ S
< \WY >
I —
R g
Database R




Algorithm 7.4

Hoare semantics:E < S <W

EndRead

The first reader to exit does not signal.
The second reader to exit does not
signal.

The third reader to exit signals
OKtoWrite S — )8 OKtoWrite because readers = 0.
The writer 1s unblocked and
writers = 1.

OKtoRead

Database \%Y%




Algorithm 7.4

Hoare semantics:E < S <W

StartRead
The next reader to enter 1s blocked on
OKtoRead because writers = 1.

StartWrite
OKtoWrite - — S The next writer to enter is blocked on

OKtoWrite because writers = 1.

OKtoRead

Database \%Y%




Algorithm 7.4

OKtoRead
R R
OKtoWrite _
\YY

Database

Hoare semantics:E < S <W

EndWrite

writers = 0.

The exiting writer signals OKtoRead
because OKtoRead 1s not empty.

The exiting writer may be blocked on
S, but that is inconsequential because
signalc 1s the last statement of the
operation. It will immediately exit
because E < S.



Algorithm 7.4

OKtoRead _

OKtoWrite _

Database

Hoare semantics:E < S <W

EndWrite, continued

The first signaled reader resumes.
readers = 1.

It signals the next reader, which
immediately resumes by Hoare
semantics. If there were a waiting
queue with Mesa semantics, the next
reader would be blocked.

So, the next reader resumes and
readers = 2.



C++ implementation
of the readers and writers problem

Ben-Ari’s solution depends on Hoare semantics.

Problem: C++ condition variables use Mesa semantics.
Algorithm 7.4 will deadlock with Mesa semantics.

Solution: Use shared mutex type and shared lock
type with C++17.



shared mutex and shared lock

Two levels of access:

® Shared - Several threads can share ownership of the
same mutex.

® Exclusive - Only one thread can own the mutex.

If one thread has acquired the exclusive lock, no other
threads can acquire the lock.The shared lock can be
acquired by multiple threads (readers) only when the

exclusive lock has not been acquired by any thread (a
writer).



C++ implementation
of the readers and writers problem

ReadersWritersA

C++ has built in the Terekhov algorithm for shared and
exclusive use of the shared mutex as a solution for
the readers and writers problem.



ReadersWritersA

-CPP

class RWDataBase {
private:
int myData = 5;
shared mutex rwMutex;
mutex coutMutex;

public:
void readMyData(int readerID) {

shared_lock<shared_mutex> guard(rwMutex); <= Shared access
coutMutex.lock();
cout << "Reader " << readerlID << " 1is about to read" << endl;
coutMutex.unlock();
randomDelay (60) ;
coutMutex.lock();
cout << "Reader " << readerID << " read " << myData << endl;
coutMutex.unlock();

}

void writeMyData(int writerID) ({
lock guard<shared mutex> guard(rwMutex); (_ Exclusive access
cout << "Writer " << writerID << " is about to write" << endl;
randomDelay (60) ;
myData += 5;
cout << "Writer " << writerID << " wrote " << myData << endl;



ReadersWritersA

-CPP

RWDataBase rwDataBase;

void readerRun(int readerID) {
for (int i = 0; i < 3; i++) {
randomDelay (60) ;
rwDataBase.readMyData (readerID);

}

void writerRun(int writerID) {
for (int i = 0; i < 3; i++) {
randomDelay (60) ;
rwDataBase.writeMyData(writerID);



ReadersWritersA

-CPP

int main() {

thread readerO(readerRun, 0);
thread readerl (readerRun, 1);
thread reader2(readerRun, 2);
thread writerO(writerRun, 0);
thread writerl(writerRun, 1);
reader0.join();
readerl.join();
reader2.join();
writer0.join();
writerl.join();

return EXIT SUCCESS;



C++ implementations
of the readers and writers problem

ReadersWritersA —With shared mutex
ReadersWritersB — l'he Terekhov algorithm without
shared mutex
ReadersWritersC — The optimized Terekhov algorithm
ReadersWritersD —Algorithm 7.4, which deadlocks



ReadersWritersA

When a lock is allocated on the run-time stack, its
constructor locks the mutex.
The lock operation is not visible in the code.

When a lock is deallocated on function termination, its
destructor unlocks the mutex.

The unlock operation is not visible in the code.

That is why the code is simple to write.



ReadersWritersB

ReadersWritersB shows the lock( ) and unlock( )
operations of a shared mutex by programming them
explicitly without using a shared mutex.

StartRead corresponds to lock shared().
EndRead corresponds to unlock shared().

StartWrite corresponds to lock().

EndWrite corresponds to unlock().



The Terekhov algorithm

Two condition variables, gatel and gate2.

One int readers for the number of readers inside
gatel.

One bool writer if a writer is inside gatel or
gate?2.

There are four rules: (next slide)



When a reader enters gatel, it has read access. However,

a writer must enter first gatel and then gate2 to have
write access.

There can be any number of readers and at most one writer
inside gatel.There cannot be any readers inside gate2.

No one can enter gatel if a writer is inside gatel or
gate?2.If a reader or writer tries to enter it is blocked on
gatel.

A writer can only enter gate2 when the number of
readers inside gatel drops to O. If it tries to enter gate?2
when there are readers inside gatel it is blocked on
gate?2.



rogramming Paradigms

R R
R Wr"
R
gatel ]
readers’
exit
ate?2 —_— 111
g N Initial state
writer’s
exit




gatel

gate?

R R
\\
R " R
R
R
R

rogramming Paradigms

readers’

exit

writer’s
exit

Some readers enter gatel and exit.



gatel

gate?2

rogramming Paradigms

readers’

exit

writer’s
exit

A writer enters gatel .
Readers and writers are blocked on gatel.



rogramming Paradigms

W
R xR
gatel T
readers’
\\ exit
gate2  —— The number of readers inside gatel drops to 0.

writer’s
exit




gatel

gate?2

——

rogramming Paradigms

readers’

exit

writer’s
exit

The writer enters gate?2.
Readers and writers are still blocked on gatel.
When the writer exits, the system returns to its initial state.



ReadersWritersB

.CPp
1 RWMonit :
;r?‘s,:te. onitor { The Terekhov Algorithm
mutex rwMutex; Mesa semantics: E <W < §

condition_variable gatel;
condition variable gate2;
int readers = 0;

bool writer = false;

public:
void startRead() {
unique_lock<mutex> guard(rwMutex);

gatel.wait (guard, [this] { return !writer; });
readers++;

}

void endRead () {

unique lock<mutex> guard(rwMutex);

readers--;

if (writer && (readers == 0)) {
gate2.notify one();

}



ReadersWritersB

-CPP

void startWrite() {

unique lock<mutex> guard(rwMutex); 'TheTérekhoY/Hgormhn1
gatel.wait(guard, [this] { return !writer; }); Mesa semantics:E <W <SS
writer = true;

gate2.wait (guard, [this] { return readers == 0; });

}

void endWrite() {
unique_ lock<mutex> guard(rwMutex) ;
readers = 0;
writer = false;
gatel.notify all();



ReadersWritersB

-CPP

class RWDataBase {
private:
RWMonitor rwMonitor;
int myData = 5;
mutex coutMutex;
public:
void readMyData(int readerID) {
rwMonitor.startRead();
coutMutex.lock();
cout << "Reader " << readerID << " 1is about to read" << endl;
coutMutex.unlock();
randomDelay (60) ;
coutMutex.lock();
cout << "Reader " << readerID << " read " << myData << endl;
coutMutex.unlock();
rwMonitor.endRead();

void writeMyData(int writerID) ({
rwMonitor.startWrite();
cout << "Writer " << writerID << " is about to write" << endl;
randomDelay (60) ;
myData += 5;
cout << "Writer " << writerID << " wrote " << myData << endl;
rwMonitor.endWrite();



ReadersWritersC

ReadersWriterscC is an optimized version of
ReadersWritersB. It is the reference implementation
for shared mutex in C++17.

In place of int readers and bool writer is a single
unsigned integer named state. The first bit of state is
| if writer is true and 0 otherwise. The remaining bits
are the count of readers. 8-bit example:

state: 0000 0110, 6 readers and no writer
state: 1000 0l 11,7 readers and | writer



Masks for accessing readers and writer

readerMask: First bit |, remaining bits 0.
writerMask: First bit 0, remaining bits | .



Expression

state & writerMask
state & readerMask

(state & readerMask)
== readerMask

readers == readerMask - 1

unsigned readers =

(state & readerMask) + 1;
state &= writerMask;
state |= readers;

state |= writerMask;

Meaning
True iff a writer is inside gatel or gate2
Number of readers inside gatel

True iff the number of readers inside gatel
1s the maximum we can count

True iff the number of readers inside gatel is one less
than the maximum we can count

Adds 1 to number of readers

Sets state to specify that a writer is inside



The optimized code also programs the spurious wakeup
loop explicitly without the predicate parameter in the
wait () function.

gatel.wait(guard, [this] { return !writer; });
1s coded as

while (state & writerMask)
gatel.wait(guard);



ReadersWritersC

-CPP

class RWMonitor {
private:
mutex rwMutex;
condition_variable gatel;
condition variable gate2;
unsigned state = 0;
static const unsigned writerMask = 1U << (sizeof(unsigned) * CHAR BIT - 1);
static const unsigned readerMask = ~writerMask;

public:
void startRead() {
unique_lock<mutex> guard(rwMutex);

while ((state & writerMask) || (state & readerMask) == readerMask)
gatel.wait (guard);

unsigned readers = (state & readerMask) + 1;

state &= writerMask;

state |= readers;



ReadersWritersC

-CPP

void endRead () {
unique_lock<mutex> guard(rwMutex);

unsigned readers = (state & readerMask) - 1;
state &= writerMask;
state |= readers;
if (state & writerMask) {

if (readers == 0)

gate2.notify one();

} else {

if (readers == readerMask - 1)

gatel.notify one();



ReadersWritersC

-CPP

void startWrite() {
unique lock<mutex> guard(rwMutex);
while (state & writerMask)
gatel.wait (guard);
state |= writerMask;
while (state & readerMask)
gate2.wait (guard);

}

void endWrite() {
unique lock<mutex> guard(rwMutex);
state = 0;
gatel.notify all();



ReadersWritersD

ReadersWritersD is Algorithm 7.4, which assumes
Hoare semantics. C++17 uses Mesa semantics.
Allgorithm 7.4 deadlocks with Mesa semantics.

There is no empty () method in C++17 for checking
the status of the condition variable queue. This
implementation maintains a count of blocked processes
for that purpose.



ReadersWritersD

-CPP

class RWMonitor {

private:
mutex rwMutex;
condition_variable okToRead;
condition_variable okToWrite;
int readers = 0;
int writers = 0;
int blockedOnOKtoRead = O0;
int blockedOnOKtoWrite = O0;



ReadersWritersD

-CPP

public:
void startRead() {
unique_ lock<mutex> guard(rwMutex);
if (writers == | | blockedOnOKtoWrite != 0) {
blockedOnOKtoRead++;
okToRead.wait (guard,

[this] { return writers != 0 && blockedOnOKtoWrite == 0; });
blockedOnOKtoRead--;

}

readers++;
okToRead.notify one();

}

void endRead() {
unique_ lock<mutex> guard(rwMutex);
readers--;
if (readers == 0) {
okToWrite.notify one();

}



ReadersWritersD

-CPP

void startWrite() {

unique lock<mutex> guard(rwMutex);

if (blockedOnOKtoRead == 0) {
blockedOnOKtoWrite++;
okToWrite.wait (guard,

[this] { return writers == 0 && readers == 0; });

blockedOnOKtoWrite--;

}

writers++;

}

void endWrite() {
unique_lock<mutex> guard(rwMutex);
if (blockedOnOKtoRead == 0) {
okToWrite.notify one();
} else {
okToRead.notify one();



