
76 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL. 54 | NO. 3

review articles

problems with regular, slow-changing
(or even static) communication and
coordination patterns. Such problems
arise in scientific computing or in
graphics, but rarely in systems.

The future promises us multiple
cores on anything from phones to lap-
tops, desktops, and servers, and there-
fore a plethora of applications char-
acterized by complex, fast-changing
interactions and data exchanges.

Why are these dynamic interactions
and data exchanges a problem? The
formula we need in order to answer this
question is called Amdahl’s Law. It cap-
tures the idea that the extent to which
we can speed up any complex computa-
tion is limited by how much of the com-
putation must be executed sequentially.

Define the speedup S of a computa-
tion to be the ratio between the time
it takes one processor to complete the
computation (as measured by a wall
clock) versus the time it takes n concur-
rent processors to complete the same
computation. Amdahl’s Law character-
izes the maximum speedup S that can
be achieved by n processors collaborat-
ing on an application, where p is the
fraction of the computation that can be
executed in parallel. Assume, for sim-
plicity, that it takes (normalized) time
1 for a single processor to complete the
computation. With n concurrent pro-
cessors, the parallel part takes time p/n,
and the sequential part takes time 1− p.
Overall, the parallelized computation
takes time 1− p + pn . Amdahl’s Law says
the speedup, that is, the ratio between

“M ULTICORE PROC ESSORS ARE about to revolutionize
the way we design and use data structures.”

You might be skeptical of this statement; after
all, are multicore processors not a new class of
multiprocessor machines running parallel programs,
just as we have been doing for more than a quarter
of a century?

The answer is no. The revolution is partly due to
changes multicore processors introduce to parallel
architectures; but mostly it is the result of the change
in the applications that are being parallelized:
multicore processors are bringing parallelism to
mainstream computing.

Before the introduction of multicore processors,
parallelism was largely dedicated to computational

 key insights
 We are experiencing a fundamental shift

in the properties required of concurrent
data structures and of the algorithms at
the core of their implementation.

 The data structures of our childhood—
stacks, queues, and heaps—will
soon disappear, replaced by looser
“unordered” concurrent constructs
based on distribution and randomization.

 Future software engineers will need
to learn how to program using these
novel structures, understanding
their performance benefits and their
fairness limitations.

Data
Structures
in the
Multicore Age

DOI:10.1145/1897852.1897873

The advent of multicore processors as the
standard computing platform will force major
changes in software design.

BY NIR SHAVIT

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
N

D
Y

 G
I

L
M

O
R

E

78 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL. 54 | NO. 3

review articles

the sequential (single-processor) time
and the parallel time, is:

S = 1

1 – p + p
n

In other words, S does not grow lin-
early in n. For example, given an ap-
plication and a 10-processor machine,
Amdahl’s Law says that even if we man-
age to parallelize 90% of the applica-
tion, but not the remaining 10%, then
we end up with a fivefold speedup, but
not a 10-fold speedup. Doubling the
number of cores to 20 will only raise us
to a sevenfold speedup. So the remain-
ing 10%, those we continue to execute
sequentially, cut our utilization of the
10 processor machine in half, and limit
us to a 10-fold speedup no matter how
many cores we add.

What are the 10% we found difficult
to parallelize? In many mainstream
applications they are the parts of the
program involving interthread inter-
action and coordination, which on
multicore machines are performed by
concurrently accessing shared data
structures. Amdahl’s Law tells us it is
worthwhile to invest an effort to derive
as much parallelism as possible from
these 10%, and a key step on the way to
doing so is to have highly parallel con-
current data structures.

Unfortunately, concurrent data
structures are difficult to design.
There is a kind of tension between
correctness and performance: the
more one tries to improve perfor-
mance, the more difficult it becomes
to reason about the resulting algo-
rithm as being correct. Some experts
blame the widely accepted threads-
and-objects programming model
(that is, threads communicating via
shared objects), and predict its even-
tual demise will save us. My experi-
ence with the alternatives suggests
this model is here to stay, at least
for the foreseeable future. So let us,
in this article, consider correctness
and performance of data structures
on multicore machines within the
threads-and-objects model.

In the concurrent world, in contrast
to the sequential one, correctness has
two aspects: safety, guaranteeing that
nothing bad happens, and liveness,
guaranteeing that eventually some-
thing good will happen.

complexity model requires us to con-
sider a new element: stalls.2,7–10 When
threads concurrently access a shared
resource, one succeeds and others in-
cur stalls. The overall complexity of
the algorithm, and hence the time it
might take to complete, is correlated
to the number of operations together
with the number of stalls (obviously
this is a crude model that does not take
into account the details of cache co-
herence). From an algorithmic design
point of view, this model introduces a
continuum starting from centralized
structures where all threads share data
by accessing a small set of locations,
incurring many stalls, to distributed
structures with multiple locations, in
which the number of stalls is greatly re-
duced, yet the number of steps neces-
sary to properly share data and move it
around increases significantly.

How will the introduction of multi-
core architectures affect the design of
concurrent data structures? Unlike on
uniprocessors, the choice of algorithm
will continue, for years to come, to be
greatly influenced by the underlying
machine’s architecture. In particular,
this includes the number of cores,
their layout with respect to memory
and to each other, and the added cost
of synchronization instructions (on a
multiprocessor, not all steps were cre-
ated equal).

However, I expect the greatest
change we will see is that concurrent
data structures will go through a sub-
stantiative “relaxation process.” As
the number of cores grows, in each of
the categories mentioned, consistency
conditions, liveness conditions, and
the level of structural distribution, the
requirements placed on the data struc-
tures will have to be relaxed in order to
support scalability. This will put a bur-
den on programmers, forcing them to
understand the minimal conditions
their applications require, and then
use as relaxed a data structure as pos-
sible in the solution. It will also place a
burden on data structure designers to
deliver highly scalable structures once
the requirements are relaxed.

This article is too short to allow a
survey of the various classes of concur-
rent data structures (such a survey can
be found in Moir and Shavit17) and how
one can relax their definitions and im-
plementations in order to make them

The safety aspects of concurrent
data structures are complicated by the
need to argue about the many possible
interleavings of methods called by dif-
ferent threads. It is infinitely easier and
more intuitive for us humans to specify
how abstract data structures behave in
a sequential setting, where there are no
interleavings. Thus, the standard ap-
proach to arguing the safety properties
of a concurrent data structure is to spec-
ify the structure’s properties sequential-
ly, and find a way to map its concurrent
executions to these “correct” sequential
ones. There are various approaches for
doing this, called consistency condi-
tions. Some familiar conditions are se-
rializability, linearizability, sequential
consistency, and quiescent consistency.

When considering liveness in a con-
current setting, the good thing one ex-
pects to happen is that method calls
eventually complete. The terms un-
der which liveness can be guaranteed
are called progress conditions. Some
familiar conditions are deadlock-
freedom, starvation-freedom, lock-
freedom, and wait-freedom. These
conditions capture the properties an
implementation requires from the un-
derlying system scheduler in order to
guarantee that method calls complete.
For example, deadlock-free implemen-
tations depend on strong scheduler
support, while wait-free ones do all the
work themselves and are independent
of the scheduler.

Finally, we have the performance
of our data structures to consider. His-
torically, uniprocessors are modeled
as Turing machines, and one can ar-
gue the theoretical complexity of data
structure implementations on uni-
processors by counting the number of
steps—the machine instructions—that
method calls might take. There is an im-
mediate correlation between the theoret-
ical number of uniprocessor steps and
the observed time a method will take.

In the multiprocessor setting, things
are not that simple. In addition to the
actual steps, one needs to consider
whether steps by different threads re-
quire a shared resource or not, because
these resources have a bounded capac-
ity to handle simultaneous requests.
For example, multiple instructions ac-
cessing the same location in memory
cannot be serviced at the same time.
In its simplest form, our theoretical

review articles

MARCH 2011 | VOL. 54 | NO. 3 | COMMUNICATIONS OF THE ACM 79

scale. Instead, let us focus here on one
abstract data structure—a stack—and
use it as an example of how the design
process might proceed.

I use as a departure point the ac-
ceptable sequentially specified notion
of a Stack<T> object: a collection of
items (of type T) that provides push()
and pop() methods satisfying the last-
in-first-out (LIFO) property: the last
item pushed is the first to be popped.

We will follow a sequence of refine-
ment steps in the design of concurrent
versions of stacks. Each step will ex-
pose various design aspects and relax
some property of the implementation.
My hope is that as we proceed, the read-
er will grow to appreciate the complexi-
ties involved in designing a correct
scalable concurrent data-structure.

A Lock-based Stack
We begin with a LockBasedStack<T>
implementation, whose Java pseudo-
code appears in figures 1 and 2. The
pseudocode structure might seem a bit
cumbersome at first, this is done in or-
der to simplify the process of extending
it later on.

The lock-based stack consists of a
linked list of nodes, each with value
and next fields. A special top field
points to the first list node or is null if
the stack is empty. To help simplify the
presentation, we will assume it is illegal
to add a null value to a stack.

Access to the stack is controlled
by a single lock, and in this particular
case a spin-lock: a software mechanism
in which a collection of competing
threads repeatedly attempt to choose
exactly one of them to execute a section
of code in a mutually exclusive man-
ner. In other words, the winner that
acquired the lock proceeds to execute
the code, while all the losers spin, wait-
ing for it to be released, so they can at-
tempt to acquire it next.

The lock implementation must en-
able threads to decide on a winner. This
is done using a special synchronization
instruction called a compareAndSet()
(CAS), available in one form or another
on all of today’s mainstream multicore
processors. The CAS operation executes
a read operation followed by a write op-
eration, on a given memory location, in
one indivisible hardware step. It takes
two arguments: an expected value and
an update value. If the memory loca-

tion’s value is equal to the expected
value, then it is replaced by the update
value, and otherwise the value is left
unchanged. The method call returns a
Boolean indicating whether the value
changed. A typical CAS takes signifi-
cantly more machine cycles than a read
or a write, but luckily, the performance
of CAS is improving as new generations
of multicore processors role out.

In Figure 1, the push() method cre-
ates a new node and then calls try-
Push() to try to acquire the lock. If the
CAS is successful, the lock is set to true
and the method swings the top refer-
ence from the current top-of-stack to
its successor, and then releases the
lock by setting it back to false. Other-
wise, the tryPush() lock acquisition
attempt is repeated. The pop() method

Figure 1. A lock-based Stack<T>: in the push() method, threads alternate between
trying to push an item onto the stack and managing contention by backing off before
retrying after a failed push attempt.

1 public class LockBasedStack<T> {
2 private AtomicBoolean lock =
3 new AtomicBoolean(false);
4 ...
5 protected boolean tryPush(Node node) {
6 boolean gotLock = lock.compareAndSet(false, true);
7 if (gotLock) {
8 Node oldTop = top;
9 node.next = oldTop;
10 top = node;
11 lock.set (false);
12 }
13 return gotLock;
14 }
15 public void push(T value) {
16 Node node = new Node(value);
17 while (true) {
18 if (tryPush(node)) {
19 return;
20 } else {
21 contentionManager.backoff();
22 }
23 }
24 }

Figure 2. The lock-based Stack<T>: The pop() method alternates between trying to pop
and backing off before the next attempt.

1 protected Node tryPop() throws EmptyException {
2 boolean gotLock = lock.compareAndSet(false, true);
3 if (gotLock) {
4 Node oldTop = top;
5 if (oldTop == null) {
6 lock . set (false);
7 throw new EmptyException();
8 }
9 top = oldTop.next;
10 return oldTop;
11 lock . set (false);
12 }
13 else return null ;
14 }
15 public T pop() throws EmptyException {
16 while (true) {
17 Node returnNode = tryPop();
18 if (returnNode != null) {
19 return returnNode.value ;
20 } else {
21 contentionManager.backoff();
22 }
23 }
24 }

80 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL. 54 | NO. 3

review articles

in Figure 2 calls tryPop(), which at-
tempts to acquire the lock and remove
the first node from the stack. If it suc-
ceeds, it throws an exception if the
stack is empty, and otherwise it returns
the node referenced by top. If tryPop()
fails to acquire the lock it returns null
and is called again until it succeeds.

What are the safety, liveness, and
performance properties of our imple-
mentation? Well, because we use a
single lock to protect the structure, it
is obvious its behavior is “atomic” (the
technical term used for this is lineariz-
able15). In other words, the outcomes of
our concurrent execution are equiva-
lent to those of a sequential execution

in which each push or pop take effect
at some non-overlapping instant dur-
ing their method calls. In particular,
we could think of them taking effect
when the executing thread acquired
the lock. Linearizability is a desired
property because linearizable objects
can be composed without having to
know anything about their actual im-
plementation.

But there is a price for this obvious
atomicity. The use of a lock introduces
a dependency on the operating system:
we must assume the scheduler will not
involuntarily preempt threads (at least
not for long periods) while they are
holding the lock. Without such support

from the system, all threads accessing
the stack will be delayed whenever one
is preempted. Modern operating sys-
tems can deal with these issues, and
will have to become even better at han-
dling them in the future.

In terms of progress, the locking
scheme is deadlock-free, that is, if sev-
eral threads all attempt to acquire the
lock, one will succeed. But it is not
starvation-free: some thread could be
unlucky enough to always fail in its CAS
when attempting to acquire the lock.

The centralized nature of the lock-
based stack implementation introduces
a sequential bottleneck: only one thread
at a time can complete the update of the
data structure’s state. This, Amdahl’s
Law tells us, will have a very negative ef-
fect on scalability, and performance will
not improve as the number of cores/
threads increases.

But there is another separate phe-
nomenon here: memory contention.
Threads failing their CAS attempts on
the lock retry the CAS again even while
the lock is still held by the last CAS “win-
ner” updating the stack. These repeated
attempts cause increased traffic on the
machine’s shared bus or interconnect.
Since these are bounded resources, the
result is an overall slowdown in per-
formance, and in fact, as the number
of cores increases, we will see perfor-
mance deteriorate below that obtain-
able on a single core. Luckily, we can
deal with contention quite easily by add-
ing a contention manager into the code
(Line 21 in figures 1 and 2).

The most popular type of conten-
tion manager is exponential backoff:
every time a CAS fails in tryPush() or
tryPop(), the thread delays for a cer-
tain random time before attempting
the CAS again. A thread will double the
range from which it picks the random
delay upon CAS failure, and will cut
it in half upon CAS success. The ran-
domized nature of the backoff scheme
makes the timing of the thread’s at-
tempts to acquire the lock less depen-
dent on the scheduler, reducing the
chance of threads falling into a repeti-
tive pattern in which they all try to CAS
at the same time and end up starving.
Contention managers1,12,19 are key tools
in the design of multicore data struc-
tures, even when no locks are used, and
I expect them to play an even greater
role as the number of cores grows.

Figure 3. The lock-free tryPush() and tryPop() methods.

1 public class LockFreeStack<T> {
2 private AtomicReference<Node> top =
3 new AtomicReference<Node>(null);
4 ...
5
6 protected boolean tryPush(Node node) {
7 Node oldTop = top.get();
8 node.next = oldTop;
9 return top.compareAndSet(oldTop, node);
10 }
11
12 protected Node tryPop() throws EmptyException {
13 Node oldTop = top.get();
14 if (oldTop == null) {
15 throw new EmptyException();
16 }
17 Node newTop = oldTop.next;
18 if (top.compareAndSet(oldTop, newTop)) {
19 return oldTop;
20 } else {
21 return null ;
22 }
23 }

Figure 4. The EliminationBackoffStack<T>.

Each thread selects a random location in the array. If thread A’s pop() and thread B’s push() calls
arrive at the same location at about the same time, then they exchange values without accessing the
shared lock-free stack. A thread C, that does not meet another thread, eventually pops the shared lock-
free stack.

C:pop()

A:return(b)

C:return(d)

top

B:ok

A:pop()

B:push(b) d e f

review articles

MARCH 2011 | VOL. 54 | NO. 3 | COMMUNICATIONS OF THE ACM 81

I expect the
greatest change
we will see is
that concurrent
data structures
will go through
a substantiative
“relaxation
process.”

A Lock-Free Stack
As noted, a drawback of our lock-based
implementation, and in fact, of lock-
based algorithms in general, is that the
scheduler must guarantee that threads
are preempted infrequently (or not at
all) while holding the locks. Otherwise,
other threads accessing the same locks
will be delayed, and performance will
suffer. This dependency on the capri-
ciousness of the scheduler is particu-
larly problematic in hard real-time sys-
tems where one requires a guarantee
on how long method calls will take to
complete.

We can eliminate this dependency by
designing a lock-free stack implemen-
tation.23 In the LockFreeStack<T>,
instead of acquiring a lock to manipu-
late the stack, threads agree who can
modify it by directly applying a CAS to
the top variable. To do so, we only need
to modify the code for the tryPush()
and tryPop() methods, as in Figure 3.
As before, if unsuccessful, the method
calls are repeated after backing off, just
as in the lock-based algorithm.

A quick analysis shows the comple-
tion of a push (respectively pop) meth-
od call cannot be delayed by the preemp-
tion of some thread: the stack’s state is
changed by a single CAS operation that
either completes or not, leaving the
stack ready for the next operation. Thus,
a thread can only be delayed by schedul-
ing infinitely many calls that successful-
ly modify the top of the stack and cause
the tryPush() to continuously fail. In
other words, the system as a whole will
always make progress no matter what
the scheduler does. We call this form
of progress lock-freedom. In many data
structures, having at least some of the
structure’s methods be lock-free tends
to improve overall performance.

It is easy to see that the lock-free
stack is linearizable: it behaves like a
sequential stack whose methods “take
effect” at the points in time where their
respective CAS on the top variable suc-
ceeded (or threw the exception in case of
a pop on an empty stack). We can thus
compose this stack with other lineariz-
able objects without worrying about the
implementation details: as far as safety
goes, there is no difference between the
lock-based and lock-free stacks.

An Elimination Backoff Stack
Like the lock-based stack, the lock-free

stack implementation scales poorly,
primarily because its single point of
access forms a sequential bottleneck:
method calls can proceed only one
after the other, ordered by successful
CAS calls applied to the stack’s lock
or top fields. A sad fact we should ac-
knowledge is this sequential bottle-
neck is inherent: in the worst case it
takes a thread at least Ω (n) steps and/or
stalls (recall, a stall is the delay a thread
incurs when it must wait for another
thread taking a step) to push or pop a
linearizable lock-free stack.9 In other
words, the theory tells us there is no
way to avoid this bottleneck by distrib-
uting the stack implementation over
multiple locations; there will always be
an execution of linear complexity.

Surprisingly, though, we can intro-
duce parallelism into many of the com-
mon case executions of a stack imple-
mentation. We do so by exploiting the
following simple observation: if a push
call is immediately followed by a pop
call, the stack’s state does not change;
the two calls eliminate each other and
it is as if both operations never hap-
pened. By causing concurrent pushes
and pops to meet and pair up in sepa-
rate memory locations, the thread call-
ing push can exchange its value with a
thread calling pop, without ever having
to access the shared lock-free stack.

As depicted in Figure 4, in the
EliminationBackoffStack<T>11
one achieves this effect by adding an
EliminationArray to the lock-free
stack implementation. Each location
in the array is a coordination structure
called an exchanger,16,18 an object that al-
lows a pair of threads to rendezvous and
exchange values.

Threads pick random array entries
and try to pairup with complementary
operations. The calls exchange values
in the location in which they met, and
return. A thread whose call cannot be
eliminated, either because it has failed
to find a partner, or because it found a
partner with the wrong type of method
call (such as a push meeting a push),
can either try again to eliminate at a
new location, or can access the shared
lock-free stack. The combined data
structure, array and stack, is lineariz-
able because the lock-free stack is lin-
earizable, and we can think of the elim-
inated calls as if they occurred at the
point in which they exchanged values.

82 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL. 54 | NO. 3

review articles

It is lock-free because we can easily
implement a lock-free exchanger using
a CAS operation, and the shared stack
itself is already lock-free.

In the EliminationBackoff-
Stack, the EliminationArray is
used as a backoff scheme to a shared
lock-free stack. Each thread first ac-
cesses the stack, and if it fails to com-
plete its call (that is, the CAS attempt
on top fails) because there is conten-
tion, it attempts to eliminate using
the array instead of simply backing off
in time. If it fails to eliminate, it calls
the lockfree stack again, and so on. A
thread dynamically selects the sub-
range of the array within which it tries
to eliminate, growing and shrinking it
exponentially in response to the load.
Picking a smaller subrange allows a
greater chance of a successful rendez-
vous when there are few threads, while
a larger range lowers the chances of
threads waiting on a busy Exchanger
when the load is high.

In the worst case a thread can still
fail on both the stack and the elimi-
nation. However, if contention is low,
threads will quickly succeed in access-
ing the stack, and as it grows, there will
be a higher number of successful elim-
inations, allowing many operations to
complete in parallel in only a constant
number of steps. Moreover, contention
at the lock-free stack is reduced be-
cause eliminated operations never ac-

cess the stack. Note that we described
a lock-free implementation, but, as
with many concurrent data structures,
on some systems a lock-based imple-
mentation might be more fitting and
deliver better performance.

An Elimination Tree
A drawback of the elimination backoff
stack is that under very high loads the
number of un-eliminated threads ac-
cessing the shared lock-free stack may
remain high, and these threads will con-
tinue to have linear complexity. More-
over, if we have, say, bursts of push calls
followed by bursts of pop calls, there
will again be no elimination and there-
fore no parallelism. The problem seems
to be our insistence on having a lineariz-
able stack: we devised a distributed so-
lution that cuts down on the number of
stalls, but the theoretical worst case lin-
ear time scenario can happen too often.

This leads us to try an alternative
approach: relaxing the consistency
condition for the stack. Instead of a
linearizable stack, let’s implement a
quiescently consistent one.4,14 A stack
is quiescently consistent if in any exe-
cution, whenever there are no ongoing
push and pop calls, it meets the LIFO
stack specification for all the calls that
preceded it. In other words, quiescent
consistency is like a game of musical
chairs, we map the object to the se-
quential specification when and only

when the music stops. As we will see,
this relaxation will nevertheless pro-
vide quite powerful semantics for the
data structure. In particular, as with
linearizability, quiescent consistency
allows objects to be composed as black
boxes without having to know anything
about their actual implementation.

Consider a binary tree of objects
called balancers with a single input wire
and two output wires, as depicted in Fig-
ure 5. As threads arrive at a balancer, it
repeatedly sends them to the top wire
and then the bottom one, so its top wire
always has one more thread than the
bottom wire. The Tree[k] network is
a binary tree of balancers constructed
inductively by placing a balancer before
two Tree[k/2] networks of balancers
and not shuffling their outputs.22

We add a collection of lock-free
stacks to the output wires of the tree.
To perform a push, threads traverse the
balancers from the root to the leaves and
then push the item onto the appropri-
ate stack. In any quiescent state, when
there are no threads in the tree, the out-
put items are balanced out so that the
top stacks have at most one more than
the bottom ones, and there are no gaps.

We can implement the balancers in
a straightforward way using a bit that
threads toggle: they fetch the bit and
then complement it (a CAS operation),
exiting on the output wire they fetched
(zero or one). How do we perform
a pop? Magically, to perform a pop
threads traverse the balancers in the
opposite order of the push, that is, in
each balancer, after complementing
the bit, they follow this complement,
the opposite of the bit they fetched.
Try this; you will see that from one
quiescent state to the next, the items
removed are the last ones pushed onto
the stack. We thus have a collection of
stacks that are accessed in parallel, yet
act as one quiescent LIFO stack.

The bad news is that our imple-
mentation of the balancers using a bit
means that every thread that enters the
tree accesses the same bit in the root
balancer, causing that balancer to be-
come a bottleneck. This is true, though
to a lesser extent, with balancers lower
in the tree.

We can parallelize the tree by ex-
ploiting a simple observation similar
to one we made about the elimination
backoff stack:

Figure 5. A Tree[4] network leading to four lock-free stacks.

Threads pushing items arrive at the balancers in the order of their numbers, eventually pushing items onto
the stacks located on their output wires. In each balancer, a pushing thread fetches and then comple-
ments the bit, following the wire indicated by the fetched value (If the state is 0 the pushing thread it
will change it to 1 and continue to wire 0, and if it was 1 will change it to 0 and continue on wire 1). The
tree and stacks will end up in the balanced state seen in the figure. The state of the bits corresponds to
5 being the last item, and the next location a pushed item will end up on is the lock-free stack containing
item 2. Try it! A popping thread does the opposite of the pushing one: it complements the bit and follows
the complemented value. Thus, if a thread executes a pop in the depicted state, it will end up switching a
1 to a 0 at the top balancer, and leave on wire 0, then reach the top 2nd level balancer, again switching a 1
to a 0 and following its 0 wire, ending up popping the last value 5 as desired. This behavior will be true for
concurrent executions as well: the sequences of values in the stacks in all quiescent states can be shown
to preserve LIFO order.

5

5 5

4

4 4

2

2

2

3

3

3

1

1 1

1

1

0

wire 0

lock-free
balancer top

lock-free stack

wire 1

review articles

MARCH 2011 | VOL. 54 | NO. 3 | COMMUNICATIONS OF THE ACM 83

If an even number of threads passes
through a balancer, the outputs are
evenly balanced on the top and bot-
tom wires, but the balancer’s state re-
mains unchanged.

The idea behind the Elimination-
Tree<T>20,22 is to place an Elimina-
tionArray in front of the bit in every
balancer as in Figure 6. If two popping
threads meet in the array, they leave
on opposite wires, without a need to
touch the bit, as anyhow it would have
remained in its original state. If two
pushing threads meet in the array, they
also leave on opposite wires. If a push
or pop call does not manage to meet
another in the array, it toggles the bit
and leaves accordingly. Finally, if a
push and a pop meet, they eliminate,
exchanging items as in the Elimina-
tionBackoffStack. It can be shown
that this implementation provides
a quiescently consistent stack,a in
which, in most cases, it takes a thread
O(log k) steps to complete a push or a
pop, where k is the number of lock-free
stacks on its output wires.

A Pool Made of Stacks
The collection of stacks accessed in
parallel in the elimination tree provides
quiescently consistent LIFO ordering
with a high degree of parallelism. How-
ever, each method call involves a loga-
rithmic number of memory accesses,
each involving a CAS operation, and
these accesses are not localized, that
is, threads are repeatedly accessing lo-
cations they did not access recently.

This brings us to the final two is-
sues one must take into account when
designing concurrent data structures:
the machine’s memory hierarchy and
its coherence mechanisms. Main-
stream multicore architectures are
cache coherent, where on most ma-
chines the L2 cache (and in the near fu-
ture the L3 cache as well) is shared by
all cores. A large part of the machine’s
performance on shared data is derived
from the threads’ ability to find the
data cached. The shared caches are
unfortunately a bounded resource,
both in their size and in the level of ac-
cess parallelism they offer. Thus, the
data structure design needs to attempt
to lower the overall number of access-

a To keep things simple, pop operations should
block until a matching push appears.

es to memory, and to maintain locality
as much as possible.

What are the implications for our
stack design? Consider completely re-
laxing the LIFO property in favor of a
Pool<T> structure in which there is
no temporal ordering on push() and
pop() calls. We will provide a concur-
rent lock-free implementation of a pool
that supports high parallelism, high lo-
cality, and has a low cost in terms of the
overall number of accesses to memory.
How useful is such a concurrent pool?
I would like to believe that most con-
current applications can be tailored to
use pools in place of queues and stacks

(perhaps with some added liveness
conditions)…time will tell.

Our overall concurrent pool design
is quite simple. As depicted in Figure
7, we allocate a collection of n concur-
rent lock-free stacks, one per com-
puting thread (alternately we could
allocate one stack per collection of
threads on the same core, depending
on the specific machine architecture).
Each thread will push and pop from
its own assigned stack. If, when it at-
tempts to pop, it finds its own stack
is empty, it will repeatedly attempt
to “steal” an item from another ran-
domly chosen stack.b The pool has, in

b One typically adds a termination detection pro-
tocol14 to the structure to guarantee that threads
will know when there remain no items to pop.

Figure 7. The concurrent Pool<T>.

Each thread performs push() and
pop() calls on a lock-free stack
and attempts to steal from other
stacks when a pop() finds the
local stack empty. In the figure,
thread C will randomly select the
top lock-free stack, stealing the
value 5. If the lock-free stacks
are replaced by lock-free deques,
thread C will pop the oldest value,
returning 1.

5

6

4

1

2

A:push(5)

B:push(6)

C:pop()

D:pop()

choose
random
stack to
steal from

Figure 6. The EliminationTree<T>.

Each balancer in Tree[4] is an elimination balancer. The state depicted is the same as in Figure 5. From
this state, a push of item 6 by thread A will not meet any others on the elimination arrays and so will
toggle the bits and end up on the 2nd stack from the top. Two pops by threads B and C will meet in the
top balancer’s array and end up going up and down without touching the bit, ending up popping the last
two values 5 and 6 from the top two lock-free stacks. Finally, threads D and E will meet in the top array
and “eliminate” each other, exchanging the value 7 and leaving the tree. This does not ruin the tree’s state
since the states of all the balancers would have been the same even if the threads had both traversed
all the way down without meeting: they would have anyhow followed the same path down and ended up
exchanging values via the same stack.

5

4

2

3

1

1

A:push(6)

E:push(7)

E: ok

elimination
balancer

D:return(7)

C:return(5)

B:return(6)

A: ok

B:pop()

C:pop()

D:pop()

1

0

½ width
elimination

balancer

84 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL. 54 | NO. 3

review articles

the common case, the same O(1) com-
plexity per method call as the original
lockfree stack, yet provides a very high
degree of parallelism. The act of steal-
ing itself may be expensive, especially
when the pool is almost empty, but
there are various techniques to reduce
the number of steal attempts if they
are unlikely to succeed. The random-
ization serves the purpose of guaran-
teeing an even distribution of threads
over the stacks, so that if there are
items to be popped, they will be found
quickly. Thus, our construction has
relaxed the specification by removing
the causal ordering on method calls
and replacing the deterministic live-
ness and complexity guarantees with
probabilistic ones.

As the reader can imagine, the O(1)
step complexity does not tell the whole
story. Threads accessing the pool will
tend to pop items that they them-
selves recently pushed onto their own
designated stack, therefore exhibit-
ing good cache locality. Moreover,
since chances of a concurrent stealer
are low, most of the time a thread ac-
cesses its lock-free stack alone. This
observation allows designers to create
a lockfree “stack-like” structure called
a Dequec that allows the frequently ac-
cessing local thread to use only loads
and stores in its methods, resorting
to more expensive CAS based method
calls only when chances of synchro-
nization with a conflicting stealing
thread are high.3,6

The end result is a pool implemen-
tation that is tailored to the costs of
the machine’s memory hierarchy and
synchronization operations. The big
hope is that as we go forward, many of
these architecture-conscious optimiza-
tions, which can greatly influence per-
formance, will move into the realm of
compilers and concurrency libraries,
and the need for everyday program-
mers to be aware of them will diminish.

What Next?
The pool structure ended our se-
quence of relaxations. I hope the read-
er has come to realize how strongly
the choice of structure depends on

c This Deque supports push() and pop()
methods with the traditional LIFO semantics
and an additional popTop() method for steal-
ers that pops the first-in (oldest) item.5

the machine’s size and the applica-
tion’s concurrency requirements. For
example, small collections of threads
can effectively share a lock-based or
lock-free stack, slightly larger ones an
elimination stack, but for hundreds
of threads we will have to bite the bul-
let and move from a stack to a pool
(though within the pool implementa-
tion threads residing on the same core
or machine cluster could use a single
stack quite effectively).

In the end, we gave up the stack’s
LIFO ordering in the name of perfor-
mance. I imagine we will have to do the
same for other data structure classes.
For example, I would guess that search
structures will move away from being
comparison based, allowing us to use
hashing and similar naturally parallel
techniques, and that priority queues
will have a relaxed priority ordering
in place of the strong one imposed by
deleting the minimum key. I can’t wait
to see what these and other structures
will look like.

As we go forward, we will also need
to take into account the evolution of
hardware support for synchroniza-
tion. Today’s primary construct, the
CAS operation, works on a single
memory location. Future architectures
will most likely support synchroniza-
tion techniques such as transactional
memory,13,21 allowing threads to instan-
taneously read and write multiple loca-
tions in one indivisible step. Perhaps
more important than the introduction
of new features like transactional mem-
ory is the fact that the relative costs of
synchronization and coherence are
likely to change dramatically as new
generations of multicore chips role out.
We will have to make sure to consider
this evolution path carefully as we set
our language and software develop-
ment goals.

Concurrent data structure design
has, for many years, been moving for-
ward at glacial pace. Multicore proces-
sors are about to heat things up, leav-
ing us, the data structure designers
and users, with the interesting job of
directing which way they flow. Let’s try
to get it right.

References
1. Agarwal, A. and Cherian, M. Adaptive backoff

synchronization techniques. In Proceedings of
the 16th International Symposium on Computer
Architecture (May 1989), 396−406.

2. Anderson, J. and Kim, Y. An improved lower bound
for the time complexity of mutual exclusion. In
Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing (2001), 90−99.

3. Arora, N.S., Blumofe, R.D. and Plaxton, C.G. Thread
scheduling for multiprogrammed multiprocessors.
Theory of Computing Systems 34, 2 (2001), 115−144.

4. Aspnes, J., Herlihy, M. and Shavit, N. Counting
networks. J. ACM 41, 5 (1994), 1020−1048.

5. Blumofe, R.D. and Leiserson, C.E. Scheduling
multithreaded computations by work stealing. J. ACM
46, 5 (1999), 720−748.

6. Chase, D. and Lev, Y. Dynamic circular work-
stealing deque. In Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and
Architectures (2005). ACM Press, NY, 21−28.

7. Cypher, R. The communication requirements of
mutual exclusion. In ACM Proceedings of the Seventh
Annual Symposium on Parallel Algorithms and
Architectures (1995), 147-156.

8. Dwork, C., Herlihy, M. and Waarts, O. Contention in
shared memory algorithms. J. ACM 44, 6 (1997),
779−805.

9. Fich, F.E., Hendler, D. and Shavit, N. Linear lower
bounds on real-world implementations of concurrent
objects. In Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science
(2005).IEEE Computer Society, Washington, D.C.,
165−173.

10. Gibbons, P.B., Matias, Y. and Ramachandran, V. The
queue-read queue-write PRAM model: Accounting for
contention in parallel algorithms. SIAM J. Computing
28, 2 (1999), 733−769.

11. Hendler, D., Shavit, N. and Yerushalmi, L. A scalable
lock-free stack algorithm. J. Parallel and Distributed
Computing 70, 1 (Jan. 2010), 1−12.

12. Herlihy, M., Luchangco, V., Moir, M. and Scherer III,
W.N. Software transactional memory for dynamic-
sized data structures. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed
Computing. ACM, NY, 2003, 92−101.

13. Herlihy, M. and Moss, E. Transactional memory:
architectural support for lock-free data structures.
SIGARCH Comput. Archit. News 21, 2 (1993),
289−300.

14. Herlihy, M. and Shavit, N. The Art of Multiprocessor
Programming. Morgan Kaufmann, San Mateo, CA,
2008.

15. Herlihy, M. and Wing, J. Linearizability: A correctness
condition for concurrent objects. ACM Trans.
Programming Languages and Systems 12, 3 (July
1990), 463−492.

16. Moir, M., Nussbaum, D., Shalev, O. and Shavit, N.
Using elimination to implement scalable and lock-
free fifo queues. In Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and
Architectures. ACM Press, NY, 2005, 253−262.

17. Moir, M. and Shavit, N. Concurrent data structures.
Handbook of Data Structures and Applications, D.
Metha and S. Sahni, eds. Chapman and Hall/CRC
Press, 2007, 47-14, 47-30.

18. Scherer III, W.N., Lea, D. and Scott, M.L. Scalable
synchronous queues. In Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM Press, NY, 2006, 147−156.

19. Scherer III, W.N. and Scott, M.L. Advanced contention
management for dynamic software transactional
memory. In Proceedings of the 24th Annual ACM
Symposium on Principles of Distributed Computing.
ACM, NY, 2005, 240−248.

20. Shavit, N. and Touitou, D. Elimination trees and the
construction of pools and stacks. Theory of Computing
Systems 30 (1997), 645−670.

21. Shavit, N. and Touitou, D. Software transactional
memory. Distributed Computing 10, 2 (Feb. 1997),
99−116.

22. Shavit, N. and Zemach, A. Diffracting trees. ACM
Transactions on Computer Systems 14, 4 (1996),
385−428.

23. Treiber, R.K. Systems programming: Coping with
parallelism. Technical Report RJ 5118 (Apr. 1986).
IBM Almaden Research Center, San Jose, CA.

Nir Shavit is a professor of computer science at Tel-Aviv
University and a member of the Scalable Synchronization
Group at Oracle Labs. He is a recipient of the 2004 ACM/
EATCS Gödel Prize.

© 2011 ACM 0001-0782/11/0300 $10.00

