
76    COMMUNICATIONS OF THE ACM    |   MARCH 2011  |   VOL.  54  |   NO.  3

review articles

problems with regular, slow-changing 
(or even static) communication and 
coordination patterns. Such problems 
arise in scientific computing or in 
graphics, but rarely in systems.

The future promises us multiple 
cores on anything from phones to lap-
tops, desktops, and servers, and there-
fore a plethora of applications char-
acterized by complex, fast-changing 
interactions and data exchanges.

Why are these dynamic interactions 
and data exchanges a problem? The 
formula we need in order to answer this 
question is called Amdahl’s Law. It cap-
tures the idea that the extent to which 
we can speed up any complex computa-
tion is limited by how much of the com-
putation must be executed sequentially.

Define the speedup S of a computa-
tion to be the ratio between the time 
it takes one processor to complete the 
computation (as measured by a wall 
clock) versus the time it takes n concur-
rent processors to complete the same 
computation. Amdahl’s Law character-
izes the maximum speedup S that can 
be achieved by n processors collaborat-
ing on an application, where p is the 
fraction of the computation that can be 
executed in parallel. Assume, for sim-
plicity, that it takes (normalized) time 
1 for a single processor to complete the 
computation. With n concurrent pro-
cessors, the parallel part takes time p/n, 
and the sequential part takes time 1− p. 
Overall, the parallelized computation 
takes time 1− p + pn . Amdahl’s Law says 
the speedup, that is, the ratio between 

“M ULTICORE PROC ESSORS  ARE  about to revolutionize 
the way we design and use data structures.”

You might be skeptical of this statement; after 
all, are multicore processors not a new class of 
multiprocessor machines running parallel programs, 
just as we have been doing for more than a quarter  
of a century?

The answer is no. The revolution is partly due to 
changes multicore processors introduce to parallel 
architectures; but mostly it is the result of the change 
in the applications that are being parallelized: 
multicore processors are bringing parallelism to 
mainstream computing.

Before the introduction of multicore processors, 
parallelism was largely dedicated to computational 
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the sequential (single-processor) time 
and the parallel time, is:

S =  1

1 –  p  +   p
n

In other words, S does not grow lin-
early in n. For example, given an ap-
plication and a 10-processor machine, 
Amdahl’s Law says that even if we man-
age to parallelize 90% of the applica-
tion, but not the remaining 10%, then 
we end up with a fivefold speedup, but 
not a 10-fold speedup. Doubling the 
number of cores to 20 will only raise us 
to a sevenfold speedup. So the remain-
ing 10%, those we continue to execute 
sequentially, cut our utilization of the 
10 processor machine in half, and limit 
us to a 10-fold speedup no matter how 
many cores we add.

What are the 10% we found difficult 
to parallelize? In many mainstream 
applications they are the parts of the 
program involving interthread inter-
action and coordination, which on 
multicore machines are performed by 
concurrently accessing shared data 
structures. Amdahl’s Law tells us it is 
worthwhile to invest an effort to derive 
as much parallelism as possible from 
these 10%, and a key step on the way to 
doing so is to have highly parallel con-
current data structures.

Unfortunately, concurrent data 
structures are difficult to design. 
There is a kind of tension between 
correctness and performance: the 
more one tries to improve perfor-
mance, the more difficult it becomes 
to reason about the resulting algo-
rithm as being correct. Some experts 
blame the widely accepted threads-
and-objects programming model 
(that is, threads communicating via 
shared objects), and predict its even-
tual demise will save us. My experi-
ence with the alternatives suggests 
this model is here to stay, at least 
for the foreseeable future. So let us, 
in this article, consider correctness 
and performance of data structures 
on multicore machines within the 
threads-and-objects model.

In the concurrent world, in contrast 
to the sequential one, correctness has 
two aspects: safety, guaranteeing that 
nothing bad happens, and liveness, 
guaranteeing that eventually some-
thing good will happen.

complexity model requires us to con-
sider a new element: stalls.2,7–10 When 
threads concurrently access a shared 
resource, one succeeds and others in-
cur stalls. The overall complexity of 
the algorithm, and hence the time it 
might take to complete, is correlated 
to the number of operations together 
with the number of stalls (obviously 
this is a crude model that does not take 
into account the details of cache co-
herence). From an algorithmic design 
point of view, this model introduces a 
continuum starting from centralized 
structures where all threads share data 
by accessing a small set of locations, 
incurring many stalls, to distributed 
structures with multiple locations, in 
which the number of stalls is greatly re-
duced, yet the number of steps neces-
sary to properly share data and move it 
around increases significantly.

How will the introduction of multi-
core architectures affect the design of 
concurrent data structures? Unlike on 
uniprocessors, the choice of algorithm 
will continue, for years to come, to be 
greatly influenced by the underlying 
machine’s architecture. In particular, 
this includes the number of cores, 
their layout with respect to memory 
and to each other, and the added cost 
of synchronization instructions (on a 
multiprocessor, not all steps were cre-
ated equal).

However, I expect the greatest 
change we will see is that concurrent 
data structures will go through a sub-
stantiative “relaxation process.” As 
the number of cores grows, in each of 
the categories mentioned, consistency 
conditions, liveness conditions, and 
the level of structural distribution, the 
requirements placed on the data struc-
tures will have to be relaxed in order to 
support scalability. This will put a bur-
den on programmers, forcing them to 
understand the minimal conditions 
their applications require, and then 
use as relaxed a data structure as pos-
sible in the solution. It will also place a 
burden on data structure designers to 
deliver highly scalable structures once 
the requirements are relaxed.

This article is too short to allow a 
survey of the various classes of concur-
rent data structures (such a survey can 
be found in Moir and Shavit17) and how 
one can relax their definitions and im-
plementations in order to make them 

The safety aspects of concurrent 
data structures are complicated by the 
need to argue about the many possible 
interleavings of methods called by dif-
ferent threads. It is infinitely easier and 
more intuitive for us humans to specify 
how abstract data structures behave in 
a sequential setting, where there are no 
interleavings. Thus, the standard ap-
proach to arguing the safety properties 
of a concurrent data structure is to spec-
ify the structure’s properties sequential-
ly, and find a way to map its concurrent 
executions to these “correct” sequential 
ones. There are various approaches for 
doing this, called consistency condi-
tions. Some familiar conditions are se-
rializability, linearizability, sequential 
consistency, and quiescent consistency.

When considering liveness in a con-
current setting, the good thing one ex-
pects to happen is that method calls 
eventually complete. The terms un-
der which liveness can be guaranteed 
are called progress conditions. Some 
familiar conditions are deadlock-
freedom, starvation-freedom, lock-
freedom, and wait-freedom. These 
conditions capture the properties an 
implementation requires from the un-
derlying system scheduler in order to 
guarantee that method calls complete. 
For example, deadlock-free implemen-
tations depend on strong scheduler 
support, while wait-free ones do all the 
work themselves and are independent 
of the scheduler.

Finally, we have the performance 
of our data structures to consider. His-
torically, uniprocessors are modeled 
as Turing machines, and one can ar-
gue the theoretical complexity of data 
structure implementations on uni-
processors by counting the number of 
steps—the machine instructions—that 
method calls might take. There is an im-
mediate correlation between the theoret-
ical number of uniprocessor steps and 
the observed time a method will take.

In the multiprocessor setting, things 
are not that simple. In addition to the 
actual steps, one needs to consider 
whether steps by different threads re-
quire a shared resource or not, because 
these resources have a bounded capac-
ity to handle simultaneous requests. 
For example, multiple instructions ac-
cessing the same location in memory 
cannot be serviced at the same time. 
In its simplest form, our theoretical 
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scale. Instead, let us focus here on one 
abstract data structure—a stack—and 
use it as an example of how the design 
process might proceed.

I use as a departure point the ac-
ceptable sequentially specified notion 
of a Stack<T> object: a collection of 
items (of type T) that provides push() 
and pop() methods satisfying the last-
in-first-out (LIFO) property: the last 
item pushed is the first to be popped.

We will follow a sequence of refine-
ment steps in the design of concurrent 
versions of stacks. Each step will ex-
pose various design aspects and relax 
some property of the implementation. 
My hope is that as we proceed, the read-
er will grow to appreciate the complexi-
ties involved in designing a correct 
scalable concurrent data-structure.

A Lock-based Stack
We begin with a LockBasedStack<T> 
implementation, whose Java pseudo-
code appears in figures 1 and 2. The 
pseudocode structure might seem a bit 
cumbersome at first, this is done in or-
der to simplify the process of extending 
it later on.

The lock-based stack consists of a 
linked list of nodes, each with value 
and next fields. A special top field 
points to the first list node or is null if 
the stack is empty. To help simplify the 
presentation, we will assume it is illegal 
to add a null value to a stack.

Access to the stack is controlled 
by a single lock, and in this particular 
case a spin-lock: a software mechanism 
in which a collection of competing 
threads repeatedly attempt to choose 
exactly one of them to execute a section 
of code in a mutually exclusive man-
ner. In other words, the winner that 
acquired the lock proceeds to execute 
the code, while all the losers spin, wait-
ing for it to be released, so they can at-
tempt to acquire it next.

The lock implementation must en-
able threads to decide on a winner. This 
is done using a special synchronization 
instruction called a compareAndSet() 
(CAS), available in one form or another 
on all of today’s mainstream multicore 
processors. The CAS operation executes 
a read operation followed by a write op-
eration, on a given memory location, in 
one indivisible hardware step. It takes 
two arguments: an expected value and 
an update value. If the memory loca-

tion’s value is equal to the expected 
value, then it is replaced by the update 
value, and otherwise the value is left 
unchanged. The method call returns a 
Boolean indicating whether the value 
changed. A typical CAS takes signifi-
cantly more machine cycles than a read 
or a write, but luckily, the performance 
of CAS is improving as new generations 
of multicore processors role out.

In Figure 1, the push() method cre-
ates a new node and then calls try-
Push() to try to acquire the lock. If the 
CAS is successful, the lock is set to true 
and the method swings the top refer-
ence from the current top-of-stack to 
its successor, and then releases the 
lock by setting it back to false. Other-
wise, the tryPush() lock acquisition 
attempt is repeated. The pop() method 

Figure 1. A lock-based Stack<T>: in the push() method, threads alternate between 
trying to push an item onto the stack and managing contention by backing off before  
retrying after a failed push attempt.

1      public  class  LockBasedStack<T> {
2        private AtomicBoolean lock =
3                new AtomicBoolean(false);
4        ...
5        protected boolean tryPush(Node node) {
6          boolean gotLock = lock.compareAndSet(false, true);
7          if (gotLock)  {
8           Node oldTop = top;
9           node.next = oldTop;
10          top = node;
11          lock.set ( false );
12          }
13       return gotLock;
14       }
15       public void push(T value) {
16         Node node = new Node(value);
17         while (true) {
18          if (tryPush(node)) {
19            return;
20          } else {
21            contentionManager.backoff();
22          }
23       }
24     }

Figure 2. The lock-based Stack<T>: The pop() method alternates between trying to pop 
and backing off before the next attempt.

1      protected Node tryPop() throws EmptyException {
2        boolean gotLock = lock.compareAndSet(false, true);
3        if (gotLock) {
4          Node oldTop = top;
5          if  (oldTop == null) {
6           lock . set ( false );
7           throw new EmptyException();
8          }
9        top = oldTop.next;
10       return oldTop;
11       lock . set ( false );
12       }
13       else return null ;
14     }
15     public T pop() throws EmptyException {
16       while (true) {
17         Node returnNode = tryPop();
18         if  (returnNode != null) {
19          return returnNode.value ;
20         } else {
21           contentionManager.backoff();
22         }
23       }
24     } 
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in Figure 2 calls tryPop(), which at-
tempts to acquire the lock and remove 
the first node from the stack. If it suc-
ceeds, it throws an exception if the 
stack is empty, and otherwise it returns 
the node referenced by top. If tryPop() 
fails to acquire the lock it returns null 
and is called again until it succeeds.

What are the safety, liveness, and 
performance properties of our imple-
mentation? Well, because we use a 
single lock to protect the structure, it 
is obvious its behavior is “atomic” (the 
technical term used for this is lineariz-
able15). In other words, the outcomes of 
our concurrent execution are equiva-
lent to those of a sequential execution 

in which each push or pop take effect 
at some non-overlapping instant dur-
ing their method calls. In particular, 
we could think of them taking effect 
when the executing thread acquired 
the lock. Linearizability is a desired 
property because linearizable objects 
can be composed without having to 
know anything about their actual im-
plementation.

But there is a price for this obvious 
atomicity. The use of a lock introduces 
a dependency on the operating system: 
we must assume the scheduler will not 
involuntarily preempt threads (at least 
not for long periods) while they are 
holding the lock. Without such support 

from the system, all threads accessing 
the stack will be delayed whenever one 
is preempted. Modern operating sys-
tems can deal with these issues, and 
will have to become even better at han-
dling them in the future.

In terms of progress, the locking 
scheme is deadlock-free, that is, if sev-
eral threads all attempt to acquire the 
lock, one will succeed. But it is not 
starvation-free: some thread could be 
unlucky enough to always fail in its CAS 
when attempting to acquire the lock.

The centralized nature of the lock-
based stack implementation introduces 
a sequential bottleneck: only one thread 
at a time can complete the update of the 
data structure’s state. This, Amdahl’s 
Law tells us, will have a very negative ef-
fect on scalability, and performance will 
not improve as the number of cores/
threads increases. 

But there is another separate phe-
nomenon here: memory contention. 
Threads failing their CAS attempts on 
the lock retry the CAS again even while 
the lock is still held by the last CAS “win-
ner” updating the stack. These repeated 
attempts cause increased traffic on the 
machine’s shared bus or interconnect. 
Since these are bounded resources, the 
result is an overall slowdown in per-
formance, and in fact, as the number 
of cores increases, we will see perfor-
mance deteriorate below that obtain-
able on a single core. Luckily, we can 
deal with contention quite easily by add-
ing a contention manager into the code 
(Line 21 in figures 1 and 2).

The most popular type of conten-
tion manager is exponential backoff: 
every time a CAS fails in tryPush() or 
tryPop(), the thread delays for a cer-
tain random time before attempting 
the CAS again. A thread will double the 
range from which it picks the random 
delay upon CAS failure, and will cut 
it in half upon CAS success. The ran-
domized nature of the backoff scheme 
makes the timing of the thread’s at-
tempts to acquire the lock less depen-
dent on the scheduler, reducing the 
chance of threads falling into a repeti-
tive pattern in which they all try to CAS 
at the same time and end up starving. 
Contention managers1,12,19 are key tools 
in the design of multicore data struc-
tures, even when no locks are used, and 
I expect them to play an even greater 
role as the number of cores grows.

Figure 3. The lock-free tryPush() and tryPop() methods.

1     public  class   LockFreeStack<T>  {
2       private  AtomicReference<Node> top =
3                   new AtomicReference<Node>(null);
4     ...
5   
6       protected boolean tryPush(Node node) {
7         Node oldTop = top.get();
8         node.next = oldTop;
9        return top.compareAndSet(oldTop, node);
10      }
11
12      protected Node tryPop() throws EmptyException  {
13        Node oldTop = top.get();
14        if (oldTop == null) {
15           throw new EmptyException();
16        }
17        Node newTop = oldTop.next;
18        if  (top.compareAndSet(oldTop, newTop)) {
19            return oldTop;
20        } else {
21            return null ;
22        }
23      }

Figure 4. The EliminationBackoffStack<T>.

Each thread selects a random location in the array. If thread A’s pop() and thread B’s push() calls 
arrive at the same location at about the same time, then they exchange values without accessing the 
shared lock-free stack. A thread C, that does not meet another thread, eventually pops the shared lock-
free stack.

C:pop()

A:return(b)

C:return(d)

top

B:ok

A:pop()

B:push(b) d e f
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I expect the  
greatest change  
we will see is 
that concurrent 
data structures 
will go through 
a substantiative 
“relaxation 
process.”

A Lock-Free Stack
As noted, a drawback of our lock-based 
implementation, and in fact, of lock-
based algorithms in general, is that the 
scheduler must guarantee that threads 
are preempted infrequently (or not at 
all) while holding the locks. Otherwise, 
other threads accessing the same locks 
will be delayed, and performance will 
suffer. This dependency on the capri-
ciousness of the scheduler is particu-
larly problematic in hard real-time sys-
tems where one requires a guarantee 
on how long method calls will take to 
complete.

We can eliminate this dependency by 
designing a lock-free stack implemen-
tation.23 In the LockFreeStack<T>, 
instead of acquiring a lock to manipu-
late the stack, threads agree who can 
modify it by directly applying a CAS to 
the top variable. To do so, we only need 
to modify the code for the tryPush() 
and tryPop() methods, as in Figure 3. 
As before, if unsuccessful, the method 
calls are repeated after backing off, just 
as in the lock-based algorithm.

A quick analysis shows the comple-
tion of a push (respectively pop) meth-
od call cannot be delayed by the preemp-
tion of some thread: the stack’s state is 
changed by a single CAS operation that 
either completes or not, leaving the 
stack ready for the next operation. Thus, 
a thread can only be delayed by schedul-
ing infinitely many calls that successful-
ly modify the top of the stack and cause 
the tryPush() to continuously fail. In 
other words, the system as a whole will 
always make progress no matter what 
the scheduler does. We call this form 
of progress lock-freedom. In many data 
structures, having at least some of the 
structure’s methods be lock-free tends 
to improve overall performance.

It is easy to see that the lock-free 
stack is linearizable: it behaves like a 
sequential stack whose methods “take 
effect” at the points in time where their 
respective CAS on the top variable suc-
ceeded (or threw the exception in case of 
a pop on an empty stack). We can thus 
compose this stack with other lineariz-
able objects without worrying about the 
implementation details: as far as safety 
goes, there is no difference between the 
lock-based and lock-free stacks.

An Elimination Backoff Stack
Like the lock-based stack, the lock-free 

stack implementation scales poorly, 
primarily because its single point of 
access forms a sequential bottleneck: 
method calls can proceed only one 
after the other, ordered by successful 
CAS calls applied to the stack’s lock 
or top fields. A sad fact we should ac-
knowledge is this sequential bottle-
neck is inherent: in the worst case it 
takes a thread at least Ω (n) steps and/or 
stalls (recall, a stall is the delay a thread 
incurs when it must wait for another 
thread taking a step) to push or pop a 
linearizable lock-free stack.9 In other 
words, the theory tells us there is no 
way to avoid this bottleneck by distrib-
uting the stack implementation over 
multiple locations; there will always be 
an execution of linear complexity. 

Surprisingly, though, we can intro-
duce parallelism into many of the com-
mon case executions of a stack imple-
mentation. We do so by exploiting the 
following simple observation: if a push 
call is immediately followed by a pop 
call, the stack’s state does not change; 
the two calls eliminate each other and 
it is as if both operations never hap-
pened. By causing concurrent pushes 
and pops to meet and pair up in sepa-
rate memory locations, the thread call-
ing push can exchange its value with a 
thread calling pop, without ever having 
to access the shared lock-free stack. 

As depicted in Figure 4, in the 
EliminationBackoffStack<T>11 
one achieves this effect by adding an 
EliminationArray to the lock-free 
stack implementation. Each location 
in the array is a coordination structure 
called an exchanger,16,18 an object that al-
lows a pair of threads to rendezvous and 
exchange values.

Threads pick random array entries 
and try to pairup with complementary 
operations. The calls exchange values 
in the location in which they met, and 
return. A thread whose call cannot be 
eliminated, either because it has failed 
to find a partner, or because it found a 
partner with the wrong type of method 
call (such as a push meeting a push), 
can either try again to eliminate at a 
new location, or can access the shared 
lock-free stack. The combined data 
structure, array and stack, is lineariz-
able because the lock-free stack is lin-
earizable, and we can think of the elim-
inated calls as if they occurred at the 
point in which they exchanged values. 



82    COMMUNICATIONS OF THE ACM    |   MARCH 2011  |   VOL.  54  |   NO.  3

review articles

It is lock-free because we can easily 
implement a lock-free exchanger using 
a CAS operation, and the shared stack 
itself is already lock-free.

In the EliminationBackoff-
Stack, the EliminationArray is 
used as a backoff scheme to a shared 
lock-free stack. Each thread first ac-
cesses the stack, and if it fails to com-
plete its call (that is, the CAS attempt 
on top fails) because there is conten-
tion, it attempts to eliminate using 
the array instead of simply backing off 
in time. If it fails to eliminate, it calls 
the lockfree stack again, and so on. A 
thread dynamically selects the sub-
range of the array within which it tries 
to eliminate, growing and shrinking it 
exponentially in response to the load. 
Picking a smaller subrange allows a 
greater chance of a successful rendez-
vous when there are few threads, while 
a larger range lowers the chances of 
threads waiting on a busy Exchanger 
when the load is high.

In the worst case a thread can still 
fail on both the stack and the elimi-
nation. However, if contention is low, 
threads will quickly succeed in access-
ing the stack, and as it grows, there will 
be a higher number of successful elim-
inations, allowing many operations to 
complete in parallel in only a constant 
number of steps. Moreover, contention 
at the lock-free stack is reduced be-
cause eliminated operations never ac-

cess the stack. Note that we described 
a lock-free implementation, but, as 
with many concurrent data structures, 
on some systems a lock-based imple-
mentation might be more fitting and 
deliver better performance.

An Elimination Tree
A drawback of the elimination backoff 
stack is that under very high loads the 
number of un-eliminated threads ac-
cessing the shared lock-free stack may 
remain high, and these threads will con-
tinue to have linear complexity. More-
over, if we have, say, bursts of push calls 
followed by bursts of pop calls, there 
will again be no elimination and there-
fore no parallelism. The problem seems 
to be our insistence on having a lineariz-
able stack: we devised a distributed so-
lution that cuts down on the number of 
stalls, but the theoretical worst case lin-
ear time scenario can happen too often.

This leads us to try an alternative 
approach: relaxing the consistency 
condition for the stack. Instead of a 
linearizable stack, let’s implement a 
quiescently consistent one.4,14 A stack 
is quiescently consistent if in any exe-
cution, whenever there are no ongoing 
push and pop calls, it meets the LIFO 
stack specification for all the calls that 
preceded it. In other words, quiescent 
consistency is like a game of musical 
chairs, we map the object to the se-
quential specification when and only 

when the music stops. As we will see, 
this relaxation will nevertheless pro-
vide quite powerful semantics for the 
data structure. In particular, as with 
linearizability, quiescent consistency 
allows objects to be composed as black 
boxes without having to know anything 
about their actual implementation.

Consider a binary tree of objects 
called balancers with a single input wire 
and two output wires, as depicted in Fig-
ure 5. As threads arrive at a balancer, it 
repeatedly sends them to the top wire 
and then the bottom one, so its top wire 
always has one more thread than the 
bottom wire. The Tree[k] network is 
a binary tree of balancers constructed 
inductively by placing a balancer before 
two Tree[k/2] networks of balancers 
and not shuffling their outputs.22

We add a collection of lock-free 
stacks to the output wires of the tree. 
To perform a push, threads traverse the 
balancers from the root to the leaves and 
then push the item onto the appropri-
ate stack. In any quiescent state, when 
there are no threads in the tree, the out-
put items are balanced out so that the 
top stacks have at most one more than 
the bottom ones, and there are no gaps.

We can implement the balancers in 
a straightforward way using a bit that 
threads toggle: they fetch the bit and 
then complement it (a CAS operation), 
exiting on the output wire they fetched 
(zero or one). How do we perform 
a pop? Magically, to perform a pop 
threads traverse the balancers in the 
opposite order of the push, that is, in 
each balancer, after complementing 
the bit, they follow this complement, 
the opposite of the bit they fetched. 
Try this; you will see that from one 
quiescent state to the next, the items 
removed are the last ones pushed onto 
the stack. We thus have a collection of 
stacks that are accessed in parallel, yet 
act as one quiescent LIFO stack.

The bad news is that our imple-
mentation of the balancers using a bit 
means that every thread that enters the 
tree accesses the same bit in the root 
balancer, causing that balancer to be-
come a bottleneck. This is true, though 
to a lesser extent, with balancers lower 
in the tree.

We can parallelize the tree by ex-
ploiting a simple observation similar 
to one we made about the elimination 
backoff stack: 

Figure 5. A Tree[4] network leading to four lock-free stacks. 

Threads pushing items arrive at the balancers in the order of their numbers, eventually pushing items onto 
the stacks located on their output wires. In each balancer, a pushing thread fetches and then comple-
ments the bit, following the wire indicated by the fetched value (If the state is 0 the pushing thread it 
will change it to 1 and continue to wire 0, and if it was 1 will change it to 0 and continue on wire 1). The 
tree and stacks will end up in the balanced state seen in the figure. The state of the bits corresponds to 
5 being the last item, and the next location a pushed item will end up on is the lock-free stack containing 
item 2. Try it! A popping thread does the opposite of the pushing one: it complements the bit and follows 
the complemented value. Thus, if a thread executes a pop in the depicted state, it will end up switching a 
1 to a 0 at the top balancer, and leave on wire 0, then reach the top 2nd level balancer, again switching a 1 
to a 0 and following its 0 wire, ending up popping the last value 5 as desired. This behavior will be true for 
concurrent executions as well: the sequences of values in the stacks in all quiescent states can be shown 
to preserve LIFO order.
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If an even number of threads passes 
through a balancer, the outputs are 
evenly balanced on the top and bot-
tom wires, but the balancer’s state re-
mains unchanged.

The idea behind the Elimination-
Tree<T>20,22 is to place an Elimina-
tionArray in front of the bit in every 
balancer as in Figure 6. If two popping 
threads meet in the array, they leave 
on opposite wires, without a need to 
touch the bit, as anyhow it would have 
remained in its original state. If two 
pushing threads meet in the array, they 
also leave on opposite wires. If a push 
or pop call does not manage to meet 
another in the array, it toggles the bit 
and leaves accordingly. Finally, if a 
push and a pop meet, they eliminate, 
exchanging items as in the Elimina-
tionBackoffStack. It can be shown 
that this implementation provides 
a quiescently consistent stack,a in 
which, in most cases, it takes a thread 
O(log k) steps to complete a push or a 
pop, where k is the number of lock-free 
stacks on its output wires.

A Pool Made of Stacks
The collection of stacks accessed in 
parallel in the elimination tree provides 
quiescently consistent LIFO ordering 
with a high degree of parallelism. How-
ever, each method call involves a loga-
rithmic number of memory accesses, 
each involving a CAS operation, and 
these accesses are not localized, that 
is, threads are repeatedly accessing lo-
cations they did not access recently.

This brings us to the final two is-
sues one must take into account when 
designing concurrent data structures: 
the machine’s memory hierarchy and 
its coherence mechanisms. Main-
stream multicore architectures are 
cache coherent, where on most ma-
chines the L2 cache (and in the near fu-
ture the L3 cache as well) is shared by 
all cores. A large part of the machine’s 
performance on shared data is derived 
from the threads’ ability to find the 
data cached. The shared caches are 
unfortunately a bounded resource, 
both in their size and in the level of ac-
cess parallelism they offer. Thus, the 
data structure design needs to attempt 
to lower the overall number of access-

a To keep things simple, pop operations should 
block until a matching push appears.

es to memory, and to maintain locality 
as much as possible.

What are the implications for our 
stack design? Consider completely re-
laxing the LIFO property in favor of a 
Pool<T> structure in which there is 
no temporal ordering on push() and 
pop() calls. We will provide a concur-
rent lock-free implementation of a pool 
that supports high parallelism, high lo-
cality, and has a low cost in terms of the 
overall number of accesses to memory. 
How useful is such a concurrent pool? 
I would like to believe that most con-
current applications can be tailored to 
use pools in place of queues and stacks 

(perhaps with some added liveness 
conditions)…time will tell.

Our overall concurrent pool design 
is quite simple. As depicted in Figure 
7, we allocate a collection of n concur-
rent lock-free stacks, one per com-
puting thread (alternately we could 
allocate one stack per collection of 
threads on the same core, depending 
on the specific machine architecture). 
Each thread will push and pop from 
its own assigned stack. If, when it at-
tempts to pop, it finds its own stack 
is empty, it will repeatedly attempt 
to “steal” an item from another ran-
domly chosen stack.b The pool has, in 

b One typically adds a termination detection pro-
tocol14 to the structure to guarantee that threads 
will know when there remain no items to pop.

Figure 7. The concurrent Pool<T>. 

Each thread performs push() and 
pop() calls on a lock-free stack 
and attempts to steal from other 
stacks when a pop() finds the 
local stack empty. In the figure, 
thread C will randomly select the 
top lock-free stack, stealing the 
value 5. If the lock-free stacks 
are replaced by lock-free deques, 
thread C will pop the oldest value, 
returning 1.
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A:push(5)
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C:pop()

D:pop()

choose  
random  
stack to  
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Figure 6. The EliminationTree<T>. 

Each balancer in Tree[4] is an elimination balancer. The state depicted is the same as in Figure 5. From 
this state, a push of item 6 by thread A will not meet any others on the elimination arrays and so will 
toggle the bits and end up on the 2nd stack from the top. Two pops by threads B and C will meet in the 
top balancer’s array and end up going up and down without touching the bit, ending up popping the last 
two values 5 and 6 from the top two lock-free stacks. Finally, threads D and E will meet in the top array 
and “eliminate” each other, exchanging the value 7 and leaving the tree. This does not ruin the tree’s state 
since the states of all the balancers would have been the same even if the threads had both traversed 
all the way down without meeting: they would have anyhow followed the same path down and ended up 
exchanging values via the same stack.
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the common case, the same O(1) com-
plexity per method call as the original 
lockfree stack, yet provides a very high 
degree of parallelism. The act of steal-
ing itself may be expensive, especially 
when the pool is almost empty, but 
there are various techniques to reduce 
the number of steal attempts if they 
are unlikely to succeed. The random-
ization serves the purpose of guaran-
teeing an even distribution of threads 
over the stacks, so that if there are 
items to be popped, they will be found 
quickly. Thus, our construction has 
relaxed the specification by removing 
the causal ordering on method calls 
and replacing the deterministic live-
ness and complexity guarantees with 
probabilistic ones.

As the reader can imagine, the O(1) 
step complexity does not tell the whole 
story. Threads accessing the pool will 
tend to pop items that they them-
selves recently pushed onto their own 
designated stack, therefore exhibit-
ing good cache locality. Moreover, 
since chances of a concurrent stealer 
are low, most of the time a thread ac-
cesses its lock-free stack alone. This 
observation allows designers to create 
a lockfree “stack-like” structure called 
a Dequec that allows the frequently ac-
cessing local thread to use only loads 
and stores in its methods, resorting 
to more expensive CAS based method 
calls only when chances of synchro-
nization with a conflicting stealing 
thread are high.3,6

The end result is a pool implemen-
tation that is tailored to the costs of 
the machine’s memory hierarchy and 
synchronization operations. The big 
hope is that as we go forward, many of 
these architecture-conscious optimiza-
tions, which can greatly influence per-
formance, will move into the realm of 
compilers and concurrency libraries, 
and the need for everyday program-
mers to be aware of them will diminish.

What Next?
The pool structure ended our se-
quence of relaxations. I hope the read-
er has come to realize how strongly 
the choice of structure depends on 

c This Deque supports push() and pop() 
methods with the traditional LIFO semantics 
and an additional popTop() method for steal-
ers that pops the first-in (oldest) item.5

the machine’s size and the applica-
tion’s concurrency requirements. For 
example, small collections of threads 
can effectively share a lock-based or 
lock-free stack, slightly larger ones an 
elimination stack, but for hundreds 
of threads we will have to bite the bul-
let and move from a stack to a pool 
(though within the pool implementa-
tion threads residing on the same core 
or machine cluster could use a single 
stack quite effectively).

In the end, we gave up the stack’s 
LIFO ordering in the name of perfor-
mance. I imagine we will have to do the 
same for other data structure classes. 
For example, I would guess that search 
structures will move away from being 
comparison based, allowing us to use 
hashing and similar naturally parallel 
techniques, and that priority queues 
will have a relaxed priority ordering 
in place of the strong one imposed by 
deleting the minimum key. I can’t wait 
to see what these and other structures 
will look like.

As we go forward, we will also need 
to take into account the evolution of 
hardware support for synchroniza-
tion. Today’s primary construct, the 
CAS operation, works on a single 
memory location. Future architectures 
will most likely support synchroniza-
tion techniques such as transactional 
memory,13,21 allowing threads to instan-
taneously read and write multiple loca-
tions in one indivisible step. Perhaps 
more important than the introduction 
of new features like transactional mem-
ory is the fact that the relative costs of 
synchronization and coherence are 
likely to change dramatically as new 
generations of multicore chips role out. 
We will have to make sure to consider 
this evolution path carefully as we set 
our language and software develop-
ment goals.

Concurrent data structure design 
has, for many years, been moving for-
ward at glacial pace. Multicore proces-
sors are about to heat things up, leav-
ing us, the data structure designers 
and users, with the interesting job of 
directing which way they flow. Let’s try 
to get it right. 
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