Iteration and Invariants
Tail recursion:
Tail recursion:

• What our author calls “iteration” is more commonly called “tail recursion”.

Tail recursion:

• What our author calls “iteration” is more commonly called “tail recursion”.

• A good optimizing compiler can convert a tail recursive program into an iterative one (as a loop).
Not tail recursion:
Not tail recursion:

\[n! = n \times (n - 1)! \]
Not tail recursion:

\[n! = n \times (n - 1)! \]
Not tail recursion:

\[n! = n \times (n - 1)! \]

Because after the recursive call additional processing must be done before the value is returned.
General idea:
General idea:

• The function calls a helper function once.
General idea:

• The function calls a helper function once.

• The helper function is tail recursive, and calls itself.
General idea:

• The function calls a helper function once.

• The helper function is tail recursive, and calls itself.

• The helper function has an extra parameter.
General idea:

- The function calls a helper function once.
- The helper function is tail recursive, and calls itself.
- The helper function has an extra parameter.
- The extra processing is done in the parameters of the helper function.
Not tail recursion:

\[n! = n \times (n - 1)! \]
Not tail recursion:

\[n! = n \times (n - 1)! \]

Helper function, with two parameters a and b that computes a \(\times \) b!
Not tail recursion:

\[n! = n \ast (n - 1)! \]

Helper function, with two parameters a and b that computes \(a \ast b! \)

\[a \cdot b! = (a \cdot b) \ast (b - 1)! \]
Not tail recursion:

\[n! = n \times (n - 1)! \]

Helper function, with two parameters \(a \) and \(b \) that computes \(a \times b! \)

\[a \times b! = (a \times b) \times (b - 1)! \]

The main function calls the helper function with a value of one for \(a \) and \(n \) for \(b \).
Write factorial and factorial-product.
Prove `factorial-product` is correct.

```scheme
(define factorial-product
  (lambda (a b) ; Returns a*b!, b >= 0.
    (if (= b 0)
      a
      (factorial-product (* a b) (- b 1))))))
```
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Base case
\begin{verbatim}
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))
\end{verbatim}

Base case

Code inspection: \((\text{factorial-product} \ a \ 0)\) returns \(a\).
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1)))))

Base case
Code inspection: (factorial-product a 0) returns a.

Math: \[a \cdot 0! = a \]
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1)))))

Base case

Code inspection: \((\text{factorial-product} \ a \ 0)\)
returns \(a\).

Math: \(a \cdot 0! = a\)

Therefore, correct in base case.
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))

Inductive case
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Prove that

\[(\text{factorial-product } x \ b)\] terminates

with value \[x \cdot b!\]
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case
Prove that
(factorial-product x b) terminates
with value $x \cdot b!$
assuming that
(factorial-product y (- b 1)) terminates
with value $y \cdot (b - 1)!$
as the inductive hypothesis.
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1)))))

Inductive case
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1)))))

Inductive case

Value returned by \((factorial\text{-}product \ a \ b)\)
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b) = ⟨Code inspection⟩
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b)

= ⟨Code inspection⟩

(factorial-product (* a b) (- b 1))
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b)

= 〈Code inspection〉

(factorial-product (* a b) (- b 1))

= 〈Inductive hypothesis〉
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b)

= ⟨Code inspection⟩

(factorial-product (* a b) (- b 1))

= ⟨Inductive hypothesis⟩

(a · b) · (b − 1)!
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1)))))

Inductive case

Value returned by (factorial-product a b)

= 〈Code inspection〉

(factorial-product (* a b) (- b 1))

= 〈Inductive hypothesis〉

(a · b) · (b − 1)!

= 〈Math〉
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b)

= ⟨Code inspection⟩
 (factorial-product (* a b) (- b 1))

= ⟨Inductive hypothesis⟩
 (a·b)·(b−1)!

= ⟨Math⟩
 a·b·(b−1)!
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b)

= 〈Code inspection〉

(factorial-product (* a b) (- b 1))

= 〈Inductive hypothesis〉

(a · b) · (b − 1)!

= 〈Math〉

a · b · (b − 1)!

= 〈Math〉
(define factorial-product
 (lambda (a b) ; Returns a*b!, b >= 0.
 (if (= b 0)
 a
 (factorial-product (* a b) (- b 1))))))

Inductive case

Value returned by (factorial-product a b)

= ⟨Code inspection⟩
 (factorial-product (* a b) (- b 1))

= ⟨Inductive hypothesis⟩
 (a·b)·(b−1)!

= ⟨Math⟩
 a·b·(b−1)!

= ⟨Math⟩
 a·b!
The power function
The power function

\[
> \text{(power 4 5)} \\
1024
\]
The `power` function

>` (power 4 5)`
> 1024

`(power 4 5)` returns 4 to the power 5.
Not tail recursion:

\[b^e = b \cdot b^{e-1} \]
Not tail recursion:

\[b^e = b \cdot b^{e-1} \]

Tail recursion:

\[(a) \cdot b^e = (ab) \cdot b^{e-1} \]
Write power and power-product.
Exponentiation is not associative

\[(3^4)^5 \neq 3^{(4^5)}\]
Exponentiation is not associative

\[(3^4)^5 \neq 3^{(4^5)}\]

\[3^{20} \neq 3^{1024}\]
Fermat numbers

\[F_n = 2^{(2^n)} + 1 \]
Fermat numbers

\[F_n = 2^{(2^n)} + 1 \]

The first few Fermat numbers
Fermat numbers

\[F_n = 2^{2^n} + 1 \]

The first few Fermat numbers

\[n = 0 \Rightarrow 2 + 1 = 3 \]
Fermat numbers

\[F_n = 2^{(2^n)} + 1 \]

The first few Fermat numbers

\[n = 0 \implies 2 + 1 = 3 \]
\[n = 1 \implies 2^2 + 1 = 5 \]
Fermat numbers

\[F_n = 2^{(2^n)} + 1 \]

The first few Fermat numbers

\[n = 0 \Rightarrow 2 + 1 = 3 \]
\[n = 1 \Rightarrow 2^2 + 1 = 5 \]
\[n = 2 \Rightarrow (2^2)^2 + 1 = 17 \]
Fermat numbers

\[F_n = 2^{(2^n)} + 1 \]

The first few Fermat numbers

\[n = 0 \Rightarrow 2 + 1 = 3 \]
\[n = 1 \Rightarrow 2^2 + 1 = 5 \]
\[n = 2 \Rightarrow (2^2)^2 + 1 = 17 \]
\[n = 3 \Rightarrow ((2^2)^2)^2 + 1 = 257 \]
Fermat numbers

\[n = 3 \implies ((2^2)^2)^2 + 1 = 257 \]
Fermat numbers

\[n = 3 \Rightarrow ((2^2)^2)^2 + 1 = 257 \]

2 repeatedly squared 3 times
Fermat numbers

\[n = 3 \Rightarrow ((2^2)^2)^2 + 1 = 257 \]

2 repeatedly squared 3 times

(repeatedly-square 2 0) should return 2
Fermat numbers

\[n = 3 \Rightarrow \left((2^2)^2 \right)^2 + 1 = 257 \]

2 repeatedly squared 3 times

(repeatedly-square 2 0) should return \(2\)

(repeatedly-square 2 1) should return \(2^2 = 4\)
Fermat numbers

\[n = 3 \Rightarrow (\left(2^2\right)^2)^2 + 1 = 257 \]

2 repeatedly squared 3 times

(repeatedly-square 2 0) should return 2

(repeatedly-square 2 1) should return \(2^2 = 4\)

(repeatedly-square 2 2) should return \((2^2)^2 = 16\)
Fermat numbers

\[b^{(2^n)} \]
Fermat numbers

\[b^{(2^n)} = \langle \text{Math, } 2^n = 2 \cdot 2^{n-1} \rangle \]
Fermat numbers

\[b^{(2^n)} = \langle \text{Math}, 2^n = 2 \cdot 2^{n-1} \rangle \]

\[b^{2 \cdot (2^{n-1})} \]
Fermat numbers

\[b^{(2^n)} \]

\[= \langle \text{Math}, 2^n = 2 \cdot 2^{n-1} \rangle \]

\[b^{2 \cdot (2^{n-1})} \]

\[= \langle \text{Math}, x^{y \cdot z} = (x^y)^z \rangle \]
Fermat numbers

\[b^{(2^n)} \]

\[= \langle \text{Math, } 2^n = 2 \cdot 2^{n-1} \rangle \]

\[b^{2 \cdot (2^{n-1})} \]

\[= \langle \text{Math, } x^{y \cdot z} = (x^y)^z \rangle \]

\[(b^2)^{2^{n-1}} \]
Fermat numbers

\[b^{(2^n)} \]

\[= \left\langle \text{Math, } 2^n = 2 \cdot 2^{n-1} \right\rangle \]

\[b^{2 \cdot (2^{n-1})} \]

\[= \left\langle \text{Math, } x^{y \cdot z} = (x^y)^z \right\rangle \]

\[(b^2)^{2^{n-1}} \]

\(b \) repeatedly squared \(n \) times equals
\(b^2 \) repeatedly squared \(n - 1 \) times.
Write fermat-number and repeatedly-square.
Perfect number

• The sum of its divisors is twice the number, or
• The number is equal to the sum of its divisors other than itself.
Perfect number

- The sum of its divisors is twice the number, or
- The number is equal to the sum of its divisors other than itself.

\[
\begin{align*}
2 \cdot 6 &= 1 + 2 + 3 + 6 \\
6 &= 1 + 2 + 3
\end{align*}
\} \implies 6 \text{ is perfect.}
\]
Perfect number

• The sum of its divisors is twice the number, or
• The number is equal to the sum of its divisors other than itself.

\[
2 \cdot 6 = 1 + 2 + 3 + 6 \quad \text{and} \quad 6 = 1 + 2 + 3 \Rightarrow 6 \text{ is perfect.}
\]

There are no known odd perfect numbers.
Suppose you have a function `sum-of-divisors` such that

- `(sum-of-divisors 4)` returns `1+2+4`,
- `(sum-of-divisors 5)` returns `1+5`,
- `(sum-of-divisors 6)` returns `1+2+3+6`, etc.
Suppose you have a function `sum-of-divisors` such that

- `(sum-of-divisors 4)` returns `1+2+4`,
- `(sum-of-divisors 5)` returns `1+5`,
- `(sum-of-divisors 6)` returns `1+2+3+6`, etc.

Write `perfect?` such that

- `(perfect? 4)` returns `#f`,
- `(perfect? 5)` returns `#f`,
- `(perfect? 6)` returns `#t`, etc.
The shape of \texttt{sum-of-divisors}

\begin{verbatim}
(define sum-of-divisors
 (lambda (n)
 (sum-from-plus 1 0)))
\end{verbatim}
The shape of \texttt{sum-of-divisors}

\begin{quote}
(\texttt{define sum-of-divisors}
 (lambda (n)

 \texttt{sum-from-plus} is defined inside \texttt{sum-of-divisors}.
 So, it has access to \texttt{n}.

 (sum-from-plus 1 0)))
\end{quote}
The shape of \texttt{sum-of-divisors} \\

\begin{verbatim}
(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 ; >= low, plus addend
 (lambda (low addend) ;
 (if (> low n)
 addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1)
 (if (divides? low n)
 (+ addend low)
 addend))))
 (sum-from-plus 1 0)))
\end{verbatim}

\texttt{sum-from-plus} is defined inside \texttt{sum-of-divisors}.
So, it has access to \texttt{n}.

\begin{verbatim}
(sum-from-plus 1 0))
\end{verbatim}

\texttt{low} \hspace{1cm} \texttt{addend}
The shape of \textit{sum-of-divisors}

\define{sum-of-divisors}{(lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1)
 (if (divides? low n)
 (+ addend low)
 addend))))
 (sum-from-plus 1 0)))}

\textit{sum-from-plus} returns the sum of all the divisors of n that are greater than or equal to \textit{low} plus the \textit{addend}.

\texttt{(sum-from-plus 1 0))}
sum-from-plus returns the sum of all the divisors of \(n \) that are greater than or equal to \(\text{low} \) plus the \text{addend}.
sum-from-plus returns the sum of all the divisors of n that are greater than or equal to low plus the addend.

Is 12 perfect?
sum-from-plus returns the sum of all the divisors of \(n \) that are greater than or equal to low plus the addend.

Is 12 perfect?

1 2 3 4 5 6 7 8 9 10 11 12
sum-from-plus returns the sum of all the divisors of \(n \) that are greater than or equal to \(\text{low} \) plus the addend.

Is 12 perfect?

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

\(n = 12 \)
sum-from-plus returns the sum of all the divisors of \(n \) that are greater than or equal to \(\text{low} \) plus the addend.

Is 12 perfect?

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

\[
\text{low} = 6 \quad \text{n} = 12
\]
sum-from-plus returns the sum of all the divisors of n that are greater than or equal to low plus the addend.

Is 12 perfect?

$$\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \quad \begin{array}{cccccc}
6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}$$

- addend $= 1+2+3+4$
- low $= 6$
- $n = 12$
sum-from-plus returns the sum of all the divisors of n that are greater than or equal to low plus the addend.

Is 12 perfect?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

addend = 1+2+3+4

low = 6

n = 12

(sum-from-plus 6 10)
sum-of-divisors

(define sum-of-divisors
 (lambda (n)
 (sum-from-plus 1 0)))
sum-of-divisors

(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n) addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1) ; recur
 (if (divides? low n)
 (+ addend low) ; add low to sum
 addend))))))

(sum-from-plus 1 0)))

 low addend
(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend
 (sum-from-plus (+ low 1)
 (if (divides? low n)
 (+ addend low)
 addend))))
 (sum-from-plus 1 0))))
sum-of-divisors

(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend ; no divisors of n are greater than n
 (if (divides? low n)
 (+ addend low)
 addend)))))

(sum-from-plus 1 0))
(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1)
 (sum-from-plus 1 0)))))))
sum-of-divisors

(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1))
 (if (divides? low n)
 (+ addend low)
 addend))
 (sum-from-plus 1 0))))

 (sum-from-plus 1 0)))
sum-of-divisors

(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1)
 (if (divides? low n)
 (+ addend low)
 addend))))
 (sum-from-plus 1 0)))

low addend
(define sum-of-divisors
 (lambda (n)
 (define sum-from-plus ; sum of all divisors of n which are
 (lambda (low addend) ; >= low, plus addend
 (if (> low n)
 addend ; no divisors of n are greater than n
 (sum-from-plus (+ low 1)
 (if (divides? low n)
 (+ addend low)
 addend)))))
 (sum-from-plus 1 0)))
Hallmarks of pure functional programming

- A function returns a value.
- There is no call by reference.
- All parameters are called by value.
- There are no loops.
- Repetition is achieved by recursion.
- There is no assignment statement.
The Golden Ratio
The Golden Ratio
The Golden Ratio
The Golden Ratio

A

A

A

B
The Golden Ratio

\[
\frac{A}{B} = \frac{A + B}{A}
\]

Illustration:

- A
- B
- A
- A
- B
- A
The Golden Ratio

\[
\frac{A}{B} = \frac{A + B}{A} = 1 + \frac{B}{A}
\]
The Golden Ratio

\[
\frac{A}{B} = \frac{A + B}{A} = 1 + \frac{B}{A} = 1 + \frac{1}{A/B}
\]
The Golden Ratio

\[\frac{A}{B} = \frac{A + B}{A} \]

\[= 1 + \frac{B}{A} \]

\[= 1 + \frac{1}{A/B} \]

\[\phi = \frac{A}{B} \]
The Golden Ratio

\[
\frac{A}{B} = \frac{A + B}{A} = 1 + \frac{B}{A} = 1 + \frac{1}{A/B}
\]

\[
\phi = \frac{A}{B} = 1 + \frac{1}{\phi}
\]
Successive approximations of the Golden Ratio
Successive approximations of the Golden Ratio

$$\phi_0 = 1$$
Successive approximations of the Golden Ratio

\[\phi_0 = 1 \]

\[\phi_1 = 1 + \frac{1}{\phi_0} = 2 \]
Successive approximations of the Golden Ratio

\[\phi_0 = 1 \]

\[\phi_1 = 1 + \frac{1}{\phi_0} = 2 \]

\[\phi_2 = 1 + \frac{1}{\phi_1} = \frac{3}{2} \]
Successive approximations of the Golden Ratio

\[\phi_0 = 1 \]
\[\phi_1 = 1 + \frac{1}{\phi_0} = 2 \]
\[\phi_2 = 1 + \frac{1}{\phi_1} = \frac{3}{2} \]
\[\phi_3 = 1 + \frac{1}{\phi_2} = \frac{5}{3} \]
Successive approximations of the Golden Ratio

\[\phi_0 = 1 \]
\[\phi_1 = 1 + \frac{1}{\phi_0} = 2 \]
\[\phi_2 = 1 + \frac{1}{\phi_1} = \frac{3}{2} \]
\[\phi_3 = 1 + \frac{1}{\phi_2} = \frac{5}{3} \]
\[\phi_4 = 1 + \frac{1}{\phi_3} = \frac{8}{5} \]
Successive approximations of the Golden Ratio

\((\text{phi 0})\) returns 1,
\((\text{phi 1})\) returns 2,
\((\text{phi 2})\) returns 3/2,
\((\text{phi 3})\) returns 5/3,
\((\text{phi 4})\) returns 8/5, etc.

Write \text{phi}
The Josephus Problem

Rule:
Everybody stands in a circle.
Starting with the first, kill every third person.
Which two people remain alive?
The Josephus Problem

[Diagram of a circle with numbers 1 through 8, with numbers 1, 3, 5, and 7 crossed out.]
The Josephus Problem
The Josephus Problem

(survives? 4 8) returns #t
The Josephus Problem

(survives? 4 8) returns #t
(survives? 7 8) returns #t
The Josephus Problem

(survives? 4 8) returns #t
(survives? 7 8) returns #t
(survives? k 8) returns #f
for all other values of k
The Josephus Problem

(survives? 4 8) returns #t
(survives? 7 8) returns #t
(survives? k 8) returns #f
for all other values of k

Exercise for the student:
Write survives?
The Josephus Problem

Hint:
Parentheses are the new numbers after the first person is killed.
The Josephus Problem

Hint:
Parentheses are the new numbers after the first person is killed.

(survives? 6 8)
is recursively the same as
(survives? 3 7)