
CoSc 450: Programming Paradigms

Orders of Growth
and Tree Recursion

04



CoSc 450: Programming Paradigms

Graphics primitive operations

04



CoSc 450: Programming Paradigms

Graphics primitive operations

0 1-1

1

-1

Co-ordinate system

x

y

04



CoSc 450: Programming Paradigms

C-Curve code

(define c-curve
  (lambda (x0 y0 x1 y1 level)
    (if (= level 0)
        (line x0 y0 x1 y1)
        (let ((xmid (/ (+ x0 x1) 2))
              (ymid (/ (+ y0 y1) 2))
              (dx (- x1 x0))
              (dy (- y1 y0)))
          (let ((xa (- xmid (/ dy 2)))
                (ya (+ ymid (/ dx 2))))
            (overlay (c-curve x0 y0 xa ya (- level 1))
                     (c-curve xa ya x1 y1 (- level 1))))))))

04



CoSc 450: Programming Paradigms

C-Curve code

(define c-curve
  (lambda (x0 y0 x1 y1 level)
    (if (= level 0)
        (line x0 y0 x1 y1)
        (let ((xmid (/ (+ x0 x1) 2))
              (ymid (/ (+ y0 y1) 2))
              (dx (- x1 x0))
              (dy (- y1 y0)))
          (let ((xa (- xmid (/ dy 2)))
                (ya (+ ymid (/ dx 2))))
            (overlay (c-curve x0 y0 xa ya (- level 1))
                     (c-curve xa ya x1 y1 (- level 1))))))))

Base case

04



CoSc 450: Programming Paradigms

C-Curve code

(define c-curve
  (lambda (x0 y0 x1 y1 level)
    (if (= level 0)
        (line x0 y0 x1 y1)
        (let ((xmid (/ (+ x0 x1) 2))
              (ymid (/ (+ y0 y1) 2))
              (dx (- x1 x0))
              (dy (- y1 y0)))
          (let ((xa (- xmid (/ dy 2)))
                (ya (+ ymid (/ dx 2))))
            (overlay (c-curve x0 y0 xa ya (- level 1))
                     (c-curve xa ya x1 y1 (- level 1))))))))

Induction case

04



CoSc 450: Programming Paradigms 0498 Chapter 4 Orders of Growth and Tree Recursion

(x0, y0)

(x1, y1)

(xa, ya)

Figure 4.10 The three key points in a c-curve of level greater than zero.

(c-curve -1/2 0 0 1/2 3)
(c-curve 0 -1/2 -1/2 0 3)
(overlay (c-curve -1/2 0 0 1/2 3)

(c-curve 0 -1/2 -1/2 0 3))

(c-curve 0 -1/2 0 1/2 6)
(c-curve 0 -1/2 0 1/2 10)

(c-curve 0 0 1/2 1/2 0)
(c-curve 0 0 1/2 1/2 4)
(c-curve 1/2 1/2 0 0 4)

Exercise 4.5

A c-curve from point 0 to point 1 is composed of c-curves from point 0 to point a
and from point a to point 1. What happens if you define a d-curve similarly but with
the direction of the second half reversed, so the second half is a d-curve from point
1 to point a instead?

Exercise 4.6

Using the procedure c-curve as a model, define a procedure called length-
of-c-curve that, when given the same arguments as c-curve, returns the length
of the path that would be traversed by a pen drawing the c-curve specified.



CoSc 450: Programming Paradigms 0498 Chapter 4 Orders of Growth and Tree Recursion

(x0, y0)

(x1, y1)

(xa, ya)

Figure 4.10 The three key points in a c-curve of level greater than zero.

(c-curve -1/2 0 0 1/2 3)
(c-curve 0 -1/2 -1/2 0 3)
(overlay (c-curve -1/2 0 0 1/2 3)

(c-curve 0 -1/2 -1/2 0 3))

(c-curve 0 -1/2 0 1/2 6)
(c-curve 0 -1/2 0 1/2 10)

(c-curve 0 0 1/2 1/2 0)
(c-curve 0 0 1/2 1/2 4)
(c-curve 1/2 1/2 0 0 4)

Exercise 4.5

A c-curve from point 0 to point 1 is composed of c-curves from point 0 to point a
and from point a to point 1. What happens if you define a d-curve similarly but with
the direction of the second half reversed, so the second half is a d-curve from point
1 to point a instead?

Exercise 4.6

Using the procedure c-curve as a model, define a procedure called length-
of-c-curve that, when given the same arguments as c-curve, returns the length
of the path that would be traversed by a pen drawing the c-curve specified.

Level = 0



CoSc 450: Programming Paradigms 0498 Chapter 4 Orders of Growth and Tree Recursion

(x0, y0)

(x1, y1)

(xa, ya)

Figure 4.10 The three key points in a c-curve of level greater than zero.

(c-curve -1/2 0 0 1/2 3)
(c-curve 0 -1/2 -1/2 0 3)
(overlay (c-curve -1/2 0 0 1/2 3)

(c-curve 0 -1/2 -1/2 0 3))

(c-curve 0 -1/2 0 1/2 6)
(c-curve 0 -1/2 0 1/2 10)

(c-curve 0 0 1/2 1/2 0)
(c-curve 0 0 1/2 1/2 4)
(c-curve 1/2 1/2 0 0 4)

Exercise 4.5

A c-curve from point 0 to point 1 is composed of c-curves from point 0 to point a
and from point a to point 1. What happens if you define a d-curve similarly but with
the direction of the second half reversed, so the second half is a d-curve from point
1 to point a instead?

Exercise 4.6

Using the procedure c-curve as a model, define a procedure called length-
of-c-curve that, when given the same arguments as c-curve, returns the length
of the path that would be traversed by a pen drawing the c-curve specified.

Level = 1



CoSc 450: Programming Paradigms 0498 Chapter 4 Orders of Growth and Tree Recursion

(x0, y0)

(x1, y1)

(xa, ya)

Figure 4.10 The three key points in a c-curve of level greater than zero.

(c-curve -1/2 0 0 1/2 3)
(c-curve 0 -1/2 -1/2 0 3)
(overlay (c-curve -1/2 0 0 1/2 3)

(c-curve 0 -1/2 -1/2 0 3))

(c-curve 0 -1/2 0 1/2 6)
(c-curve 0 -1/2 0 1/2 10)

(c-curve 0 0 1/2 1/2 0)
(c-curve 0 0 1/2 1/2 4)
(c-curve 1/2 1/2 0 0 4)

Exercise 4.5

A c-curve from point 0 to point 1 is composed of c-curves from point 0 to point a
and from point a to point 1. What happens if you define a d-curve similarly but with
the direction of the second half reversed, so the second half is a d-curve from point
1 to point a instead?

Exercise 4.6

Using the procedure c-curve as a model, define a procedure called length-
of-c-curve that, when given the same arguments as c-curve, returns the length
of the path that would be traversed by a pen drawing the c-curve specified.

Level = 2



CoSc 450: Programming Paradigms

Sierpinski’s gasket — Exercise for the student

04

4.3 An Application: Fractal Curves 95

4.3 An Application: Fractal Curves

The tree-recursive mod-expt turned out not to be such a good idea because the two
half-sized problems were identical to one another, so it was redundant to solve each
of them separately. By contrast, the tree-recursive merge sort makes sense, because
the two half-sized problems are distinct, although similar. Both are problems of the
form “sort these n/2 cards,” but the specific cards to sort are different. This typifies
the situation in which tree recursion is natural: when the problem can be broken
into two (or more) equal-sized subproblems that are all of the same general form as
the original but are distinct from one another.

Fractal curves are geometric figures that fit this description; we say that they
possess self-similarity. Each fractal curve can be subdivided into a certain number
of subcurves, each of which is a smaller version of the given curve. Mathematicians
are interested in the case where this subdividing process continues forever so that
the subcurves are quite literally identical to the original except in size and position.
Because we can’t draw an infinitely detailed picture on the computer screen, we’ll
stop the subdivision at some point and use a simple geometric figure, such as a line
or triangle, as the basis for the curve. We call that basis the level 0 curve; a level 1
curve is composed out of level 0 curves, a level 2 curve is composed out of level 1
curves, and so forth.

As a first example, consider the fractal curve in Figure 4.6, known as Sierpinski’s
gasket. As indicated in Figure 4.7, the gasket contains three equally sized subgaskets,
each of which is a smaller version of the larger gasket. Figure 4.8 shows Sierpinski’s
gaskets of levels 0, 1, and 2.

A level n Sierpinski’s gasket is composed of three smaller Sierpinski’s gaskets of
level n ! 1, arranged in a triangular fashion. Furthermore, the level 0 Sierpinski’s
gasket is itself a triangle. Therefore, triangles play two different roles in Sierpinski’s

Figure 4.6 An example of Sierpinski’s gasket.


