
CoSc 450: Programming Paradigms

Trees

08

CoSc 450: Programming Paradigms

The definition of a tree

08

CoSc 450: Programming Paradigms

• The empty tree is a tree.
• A nonempty tree tree has three parts.

• root — an element.
• left-subtree — a tree.
• right-subtree — a tree.

08

The definition of a tree

CoSc 450: Programming Paradigms 08

my-tree
(define my-tree
'(4 (2 (1 () ()) (3 () ())) (6 (5 () ()) (7 () ()))))

CoSc 450: Programming Paradigms 08

my-tree
(define my-tree
'(4 (2 (1 () ()) (3 () ())) (6 (5 () ()) (7 () ()))))

CoSc 450: Programming Paradigms 08

my-tree
(define my-tree
'(4 (2 (1 () ()) (3 () ())) (6 (5 () ()) (7 () ()))))

4

2 6

1 3 5 7

CoSc 450: Programming Paradigms 08

The definition of a binary search tree (BST)

CoSc 450: Programming Paradigms

• Every element in the left subtree is less than the
root.
• Every element in the right subtree is greater
than the root.
• The left subtree is a BST.
• The right subtree is a BST.

08

The definition of a binary search tree (BST)

CoSc 450: Programming Paradigms 08

Preorder traversal

Returns a list

CoSc 450: Programming Paradigms

If the tree is not empty
• Visit the root.
• Do a preorder traversal of the left subtree.
• Do a preorder traversal of the right subtree.

08

Preorder traversal

Returns a list

CoSc 450: Programming Paradigms 08

Preorder traversal

Returns a list

4

2 6

1 3 5 7

What is the preorder traversal?

CoSc 450: Programming Paradigms 08

Preorder traversal

Returns a list

4

2 6

1 3 5 7

(4 2 1 3 6 5 7)

CoSc 450: Programming Paradigms 07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

CoSc 450: Programming Paradigms 07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

CoSc 450: Programming Paradigms 07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

(preorder-onto ‘(a b c))6

5 7

CoSc 450: Programming Paradigms

(6 5 7 a b c)

07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

(preorder-onto ‘(a b c))6

5 7

CoSc 450: Programming Paradigms 07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

CoSc 450: Programming Paradigms 07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

(preorder-onto ‘(6 5 7 a b c))2

1 3

CoSc 450: Programming Paradigms

(2 1 3 6 5 7 a b c)

07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

(preorder-onto ‘(6 5 7 a b c))2

1 3

CoSc 450: Programming Paradigms

(2 1 3 6 5 7 a b c)

07

(preorder-onto ‘(a b c))4

2 6

1 3 5 7

(preorder-onto ‘(6 5 7 a b c))2

1 3

4

CoSc 450: Programming Paradigms

If the tree is not empty
• Do an inorder traversal of the left subtree.
• Visit the root.
• Do an inorder traversal of the right subtree.

08

Inorder traversal

Returns a list

CoSc 450: Programming Paradigms

• A number is an expression tree.
• A non-number tree has three parts.

• A left operand — an expression tree.
• An operator name.
• A right operand — an expression tree.

08

The definition of an expression tree

CoSc 450: Programming Paradigms 08

my-expression
(define my-expression
 '(1 + (2 * (3 - 5))))

226 Chapter 8 Trees

Privacy Issues (Continued)

This imperative implies that only the necessary amount of personal information be
collected in a system, that retention and disposal periods for that information be
clearly defined and enforced, and that personal information gathered for a specific
purpose not be used for other purposes without consent of the individual(s). These
principles apply to electronic communications, including electronic mail, and pro-
hibit procedures that capture or monitor electronic user data, including messages,
without the permission of users or bona fide authorization related to system operation
and maintenance. User data observed during the normal duties of system operation
and maintenance must be treated with strictest confidentiality, except in cases where
it is evidence for the violation of law, organizational regulations, or this Code. In
these cases, the nature or contents of that information must be disclosed only to proper
authorities.

8.3 Expression Trees

So far, we’ve used binary trees and binary search trees as a way of storing a collection
of numbers or records. What makes these trees different from lists is the way we
can access the elements. A list has one special element, the first element, and all
the rest of the elements are clumped together into another list. Binary trees also
have a special element, the root, but they divide the rest of the elements into two
subtrees, instead of just one, which gives a hierarchical structure that is useful in
many different settings. In this section we’ll look at another kind of tree that uses this
hierarchical structure to represent arithmetical expressions. In these trees, the way a
tree is structured indicates the operands for each operation in the expression.

Consider an arithmetic expression, such as the one we’d write in Scheme notation
as (+ 1 (* 2 (- 3 5))). We can think of this as being a tree-like structure with
numbers at the leaves and operators at the other nodes:

–

3 5

+

∗

2

1

