
NOVEMBER 2011  |   VOL.  54  |   NO.  11  |   COMMUNICATIONS OF THE ACM     53

SOMET I M ES ,  TH E E LE GAN T  implementation is a 
function. Not a method. Not a class. Not a framework. 
Just a function.    —John Carmack 

Functional programming is an old idea with a 
distinguished history. Lisp, a functional language 
inspired by Alonzo Church’s lambda calculus, was 
one of the first programming languages developed 
at the dawn of the computing age. Statically typed 
functional languages such as OCaml and Haskell  
are newer, but their roots go deep—ML, from which 
they descend, dates back to work by Robin Milner  
in the early 1970s relating to the pioneering Logic  
for Computable Functions (LCF) theorem prover. 

Functional programming has also 
been enormously influential. Many fun-
damental advances in programming 
language design, from garbage collec-
tion to generics to type inference, came 
out of the functional world and were 
commonplace there decades before 
they made it to other languages. 

Yet functional languages never really 
made it to the mainstream. They came 
closest, perhaps, in the days of Symbol-
ics and the Lisp machines, but those 
days seem quite remote now. Despite a 
resurgence of functional programming 
in the past few years, it remains a tech-
nology more talked about than used. 

It is tempting to conclude from this 
record that functional languages do 
not have what it takes. They may make 
sense for certain limited applications, 
and contain useful concepts to be im-
ported into other languages; but im-
perative and object-oriented languages 
are simply better suited to the vast ma-
jority of software engineering tasks. 

Tempting as it is, this conclusion is 
wrong. I have been using OCaml in a 
production environment for nearly a de-
cade, and over that time I have become 
convinced that functional languages, 
and in particular, statically typed ones 
such as OCaml and Haskell, are excel-
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lent general-purpose programming 
tools—better than any existing main-
stream language. They also have an 
enormous range, being well suited for 
small scripting tasks, as well as large-
scale high-performance applications. 
They are not the right tool for every job, 
but they come surprisingly close. 

The Move to OCaml
Most of my experience programming 
in OCaml came through my work at 
Jane Street, a financial firm founded 
in 2000. Nine years ago, no one at Jane 
Street had heard of OCaml. Today, Jane 
Street is the biggest industrial user of 
the language, with nearly two million 
lines of OCaml code and, at last count, 
65 employees who use the language on 
a daily basis. Probably the best way to 
explain what makes OCaml such an 
effective tool is to start by explaining 
how and why that transformation took 
place. To understand that, you first 
need to understand something about 
what Jane Street does. 

Jane Street’s core business is provid-
ing liquidity on the world’s electronic 
markets. It is, essentially, a middle-
man. It continually places orders for 
many different securities on many dif-
ferent exchanges. Each order expresses 
a willingness to either buy or to sell a 
given security at a given price, and, col-
lectively, they are an advertisement to 
the markets of Jane Street’s services. 
Through these orders, the firm buys 
from people who need to sell and sells 
to people who need to buy, making 
money from the gap between the buy-
ing and selling prices. All the time it is 
competing on price with other players 
trying to do the same thing. 

Electronic liquidity provision is 
technologically intense, not only be-
cause of the computational resources 
that need to be deployed (an enor-
mous amount of data needs to be con-
sumed, analyzed, and responded to 
in real time), but also in terms of the 
complexity of the enterprise—trading 
can cross multiple exchanges, regula-
tory regimes, security classes, and time 
zones. Managing that complexity is a 
daunting task that requires a signifi-
cant investment in software. 

All this technology carries risk. 
There is no faster way for a trading firm 
to destroy itself than to deploy a piece 
of trading software that makes a bad 

decision over and over in a tight loop. 
Part of Jane Street’s reaction to these 
technological risks was to put a very 
strong focus on building software that 
was easily understood—software that 
was readable. 

Reading code was part of the firm’s 
approach to risk from before we had 
written our first line of OCaml. Early 
on, a couple of the most senior traders 
(including one of the founders) com-
mitted to reading every line of code 
that went into the core trading systems 
before those systems went into produc-
tion. This was an enormous ongoing 
time investment and reflected the high 
level of concern about technology risk. 

I started at Jane Street the year after 
I finished my Ph.D., working there part-
time while doing a post-doc. My work 
there was focused on statistical analy-
sis and optimization of trading strate-
gies, and OCaml was the primary tool 
I used to get the analysis done. Why 
OCaml? I had learned it in grad school 
and fell in love with the language then. 
And OCaml was a great match for this 
kind of rapid-prototyping work: highly 
performant, yet faster and less error 
prone than coding in C, C++, or Java. 

I was convinced that my stint at Jane 
Street would be short and the code 
I was writing was all throwaway, so I 
made a choice to maximize my own 
productivity without worrying about 
whether others could use the code 
later. Six months and 80,000 lines of 
code later, I realized I was wrong: I took 
a full-time position at Jane Street and 
soon started hiring to create a research 
group there. 

At this time, the firm was casting 
around for a new approach to building 
software. The systems that powered 
the company in its first years were pri-
marily written in VBA and C#. Indeed, 
the core trading systems were Excel 
spreadsheets with a great deal of cus-
tom VBA code. This was a great way to 
get up and running quickly, but it was 
clear from the start that this was not a 
sustainable approach. 

In 2003, Jane Street began a rewrite 
of its core trading systems in Java. The 
rewrite was eventually abandoned, in 
part because the resulting code was too 
difficult to read and reason about—far 
more difficult, indeed, than the VBA 
that was being replaced. A big part 
of this was Java’s verbosity, but it was 
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more than that. The VBA code was writ-
ten in a terse, straight-ahead style that 
was fairly easy to follow.  But somehow 
when coding in Java we built up a nest 
of classes that left people scratching 
their heads when they wanted to un-
derstand just what piece of code was 
actually being invoked when a given 
method was called. Code that made 
heavy use of inheritance was particu-
larly difficult to think about, in part be-
cause of the way that inheritance ducks 
under abstraction boundaries. 

In 2005, emboldened by the suc-
cess of the research group, Jane Street 
initiated another rewrite of its core 
trading systems, this time in OCaml. 
The first prototype was done in three 
months, and was up and trading three 
months after that. The use of OCaml in 
the company has only expanded since 
then.  Today it is used to solve prob-
lems in every part of the company, from 
accounting to systems administration, 
and that effort continues to grow. In re-
cent years, the trading side of the firm 
has increased its use of the language, 
and OCaml training is now a standard 
part of the curriculum for new trading 
hires. Overall, the transition to OCaml 
has been a huge success, resulting in 
far stronger technology than we could 
have achieved otherwise. 

Why OCaml?
What is it about the language that 
makes it work so well? Here is a short 
summary of what I perceive as OCaml’s 
key strengths. 

 ! Concision. Our experience with 
OCaml on the research side convinced 
us that we could build smaller, sim-
pler, easier-to-understand systems in 
OCaml than we could in languages 
such as Java or C#. For an organiza-
tion that valued readability, this was a 
huge win. 

 ! Bug detection. Programmers who 
are new to OCaml are often taken aback 
by the degree to which the type system 
catches bugs. The impression you 
get is that once you manage to get the 
typechecker to approve of your code, 
there are no bugs left. This isn’t really 
true, of course; OCaml’s type system is 
helpless against many bugs. There is, 
however, a surprisingly wide swath of 
bugs against which the type system is 
effective, including many bugs that are 
quite hard to get at through testing. 

 ! Performance. We found that 
OCaml’s performance was on par with 
or better than Java’s, and within spit-
ting distance of languages such as C 
or C++. In addition to having a high-

quality code generator, OCaml has an 
incremental GC (garbage collector). 
This means the GC can be tuned to do 
small chunks of work at a time, making 
it more suitable for soft real-time appli-

Figure 1. Expression type and evaluator in OCaml. 

type ’a expr = | True
            | False

               | And of ’a expr * ’a expr 
               | Or of ’a expr * ’a expr 
               | Not of ’a expr 
               | Base of ’a

let rec eval eval_base expr = 
let eval’ x = eval eval_base x in
match expr with

   | True  -> true
   | False -> false
   | Base base -> eval_base base 
   | And (x,y) -> eval’ x && eval’ y
   | Or (x,y)  -> eval’ x || eval’ y 
   | Not x     -> not (eval’ x)

Figure 2. Expression type and evaluator in Java. 

public abstract class Expr<T> {

public interface Evaluator<T> { boolean evaluate(T value); }
public abstract boolean eval(Evaluator<T> evaluator);

public class True<T> extends Expr<T> {
public boolean eval(Evaluator<T> evaluator) { return true; }

  } 
public class False<T> extends Expr<T> {

public boolean eval(Evaluator<T> evaluator) { return false; }
  } 

public class Base<T> extends Expr<T> {
public final T value;
public Base(T value) { this.value = value; }
public boolean eval(Evaluator<T> evaluator)

   { return evaluator.evaluate(value); }
  } 

public class And<T> extends Expr<T> {
public final Expr<T> expr1;
public final Expr<T> expr2;
public And(Expr<T> expr1, Expr<T> expr2) {

this.expr1 = expr1;
this.expr2 = expr2;

    } 
public boolean eval(Evaluator<T> evaluator) {

return expr1.eval(evaluator) && expr2.eval(evaluator);
    } 
  } 

public class Or<T> extends Expr<T> {
public final Expr<T> expr1;
public final Expr<T> expr2;
public Or(Expr<T> expr1, Expr<T> expr2) { 

this.expr1 = expr1;
this.expr2 = expr2;

    } 
public boolean eval(Evaluator<T> evaluator) {

return expr1.eval(evaluator) || expr2.eval(evaluator);
    } 
  } 

public class Not<T> extends Expr<T> {
public final Expr<T> expr;
public Not(Expr<T> expr) { this.expr = expr; }
public boolean eval(Evaluator<T> evaluator) 
{ return !expr.eval(evaluator); }

  } 
}



56    COMMUNICATIONS OF THE ACM    |   NOVEMBER 2011  |   VOL.  54  |   NO.  11

practice

cations such as electronic trading. 
 ! Pure, mostly. Despite how func-

tional programmers often talk about 
it, mutable state is a fundamental part 
of programming, and one that cannot 
and should not be done away with. 
Sending a network packet or writing 
to disk are examples of mutability. A 
complete commitment to immutabil-
ity is a commitment to never building 
anything real. 

Mutable state has its costs, however. 
Mutation-free code is generally easier 
to reason about, making interactions 
and dependencies between different 
parts of your codebase explicit and eas-
ier to manage. OCaml strikes a good 
balance here, making mutation easy, 
but making immutable data structures 
the default. A well-written OCaml sys-
tem almost always has mutable state, 
but that state is carefully limited. 

Perhaps the easiest of these ad-
vantages to demonstrate concretely 
is that of concision. The importance 
of concision is clear: other things 
being equal, shorter code is easier 
to read, easier to write, and easier to 

maintain. There are, of course, limits: 
no good is done by reducing all your 
function names to single characters, 
but brevity is nonetheless important, 
and OCaml does a lot to help keep the 
codebase small. 

One advantage OCaml brings to 
the table is type inference, which ob-
viates the need for many type declara-
tions. This leaves you with code that 
is roughly as compact as code written 
in dynamic languages such as Python 
or Ruby. At the same time, you get the 
performance and correctness ben-
efits of static types. 

Consider the following OCaml 
function map for transforming the 
elements of a tuple. 

let map f (x,y,z) =
   (f x, f y, f z)

Here, map is defined as a function 
with two arguments: a function f and 
a triple (x,y,z). Note that f x is the 
syntax for applying the function f to x. 

Now consider what this would look 
like in C# 4.0: 

Tuple<U,U,U> Map<T,U> 
  (Func <T,U> f, Tuple<T,T,T> t)
{
   return new Tuple<U,U,U>
   (f(t.item1), f(t.item2), f(t.item3));
}

The C# code, while functionally 
equivalent, looks cluttered, with the 
real structure obscured by syntactic 
noise.  

Another source of concision is 
OCaml’s notation for describing 
types. At the heart of that notation is 
the notion of an algebraic datatype. 
Algebraic datatypes are what you get 
when you have a system that includes 
two ways of building up new types: 
products and sums. 

A product type is the more familiar 
of the two. Tuples, records, structs, 
and objects are all examples of prod-
uct types. A product type combines 
multiple values of different types into 
a single value. These are called product 
types because they correspond math-
ematically to Cartesian products of the 
constituent types. 

A sum type corresponds to a dis-
joint union of the constituent types, 
and it is used to express multiple pos-
sibilities. Where product types are 
used when you have multiple things 
at the same time (a and b and c), sum 
types are used when you want to enu-
merate different possibilities (a or 
b or c). Sum types can be simulated 
(albeit somewhat clumsily) in object-
oriented languages such as Java us-
ing subclasses, and they show up as 
union types in C. But the support in 
the type systems of most languages 
for interacting with sum types in a 
safe way is surprisingly weak. 

Figure 1 provides an example of al-
gebraic datatypes at work. The code 
defines a type for representing Boolean 
expressions over a set of base predi-
cates and a function for evaluating 
those expressions. The code is generic 
over the set of base predicates, so the 
subject of these expressions could be 
anything from integer inequalities to 
the settings of compiler flags.

The sum type expr is indicated 
by the pipes separating the different 
arms of the declaration. Some of those 
arms, such as True and False, are 
simple tags, not materially different 
from the elements of an enumeration 
in Java or C. Others, such as And and 

Figure 3. Destuttering a list.

# Removes sequential duplicates, e.g., 
# destutter([1,1,4,3,3,2]) = [1,4,3,2] 

def destutter (list):
l = [] 
for i in range(len(list)):

for i in range(len(list)):

if list [i] != list[i+1]:
l.append(list[i])

l.append(list[i])

return l

def destutter (list):
l = [] 

if i + 1 >= len(list) or list[i] != list[i+1]:

return l

Now let’s see what happens when writing more or less the same function in OCaml, with
more or less the same bug:

This code looks pretty straightforward, but it has a bug: it doesn’t properly handle the 
end of the list. Here’s one way of fixing it:

let rec destutter l=
match l with

  | [] -> []
| x :: y :: rest -> 
if x = y then destutter (y :: rest)
else x :: destutter (y :: rest)
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Not, have associated data, and that 
data varies between the cases. This 
type actually contains both sums and 
products, with the And and Or branch-
es containing tuples. Types consisting 
of layered combinations of products 
and sums are a common and powerful 
idiom in OCaml. 

One notable bit of syntax is the type 
variable ’a. A type variable can be in-
stantiated with any type, and this is 
what allows the code to be generic 
over the set of base predicates. This 
is similar to how generic types are 
handled in Java or C#. Thus, Java’s 
<A>List would be rendered as ’a 
list in OCaml. 

The function eval takes two argu-
ments: expr, the expression to be 
evaluated; and eval _ base, a func-
tion for evaluating base predicates. 
The code is generic in the sense that 
eval could be used for expressions 
over any type of base predicate, but 
eval _ base must be provided in or-
der to evaluate the truth or falsehood 
of those base predicates. The func-
tion eval’ is defined as shorthand 
for invoking recursive calls to eval 
with eval _ base as an argument. Fi-
nally, the match statement is used for 
doing a case analysis of the possible 
structures of the expression, calling 
out to eval _ base when evaluating 
a base predicate, and otherwise acting 
as a straightforward recursion over the 
structure of the datatypes. 

Figure 2 shows how the same code 
might be rendered in Java. The verbosi-
ty is immediately striking. Adding a sin-
gle case such as And takes two (short) 

lines in OCaml and eight in Java—and 
the Java code is actually pretty minimal 
as these things go. If you wanted to al-
low the creation of other algorithms 
around this expression type that are 
not baked into the class definition, 
then you probably want to use the visi-
tor pattern, which will inflate the line 
count considerably. 

Another facet of the language that de-
mands some further explanation is the 
ability of the type system to catch bugs. 
People who are not familiar with OCaml 
and related languages (and some who 
are) often make the mistake of underes-
timating the power of the type system. It 
is easy to conclude that all the type sys-
tem does for you is ensure you passed in 
your parameters correctly (for example, 
that you provided a float where you were 
supposed to provide a float). 

But there is more to it than that. 
Even naive use of the type system is ee-
rily good at catching bugs. Consider the 
Python code for destuttering a list (that 
is, removing sequential duplicates) as 
shown in Figure 3. It uses OCaml’s pat-
tern-matching syntax to get access to 
the elements of the list. Here :: is the 
list constructor, and [] indicates an 
empty list. Thus, the [] case matches 
the empty list, and the x::y::rest case 
matches lists that have at least two el-
ements, x and y. The variable rest re-
fers to the (potentially empty) remain-
der of the list. 

Like the Python example, this code 
fails to contemplate what happens 
when you get to the end of the list and 
have only one element left. In this case, 
however, you find out about the prob-
lem not at runtime but at compile time. 

The compiler gives the following error: 

File “destutter.ml”, line 2, 
characters 2-125:
Warning 8: this pattern-
matching is not exhaustive.
Here is an example of a val-
ue that is not matched:
_ ::[]

The missing case, _ ::[], is a list with a 
single element. 

You can fix the code (and satisfy the 
compiler) by adding a handler for the 
missing case: 

let rec destutter l =
  match l with
  | []                -> []
  | x :: []           -> x :: []
  | x :: y :: rest ->
      if x = y then destutter (y 

:: rest)
      else x :: destutter (y :: 

rest)

The error here is a trivial one that 
would be found easily by testing. But 
the type system does just as well in 
exposing errors that are hard to test, 
either because they show up only in 
odd corner cases that are easy to miss 
in testing, or because they show up in 
complex systems that are difficult to 
mock up and exercise exhaustively. 

Straight out of the box, OCaml is 
pretty good at catching bugs, but it can 
do even more if you design your types 
carefully. Consider as an example the 
following types for representing the 
state of a network connection as illus-
trated in Figure 4. 

Figure 4. Connection types.

type connection_state = 
| Connecting
| Connected
| Disconnected

type connection_info = { 
  state: connection_state; 
  server: inet_addr; 
  last_ping_time: time option; 
  last_ping_id: int option; 
  session_id: string option; 
  when_initiated: time option; 
  when_disconnected: time option; 
}

Figure 5. Connection types revisited.

type connecting   = { when_initiated: time; } 
type connected    = { last_ping  :  (time * int) option; 

session_id : string; } 
type disconnected = { when_disconnected: time; } 

type connection_state = 
| Connecting    of connecting 
| Connected     of connected 
| Disconnected of disconnected 

type connection_info = { 
   state:  connection_state; 
   server: inet_addr; 
}
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The connection _ state type is 
a simple enumeration of three named 
states that the connection can be in; 
connection _ info is a record type 
containing a number of fields describ-
ing different aspects of a connection. 
Note that the fields that have option 
at the end of the type are essentially 
nullable fields. (By default, values in 
OCaml are guaranteed to be non-null). 
Otherwise, there is nothing about this 
code that is all that different from what 
you might write in Java or C#. 

Here is some information on the in-
dividual record fields and how they re-
late to each other: 

 ! server indicates the identity of 
the server on the other side of the con-
nection. 

 ! last _ ping _ time and last _
ping _ id are intended to be used 
as part of a keep-alive protocol. Note 
that either both of those fields should 
be present, or neither of them should. 
Also, they should be present only when 
state is Connected. 

 ! The session _ id is a unique 
identifier that is chosen afresh every 
time the connection is reestablished. It 
also should be present only when state 
is Connected. 

 ! when _ initiated is for keep-
ing track of when the attempt to start 
the connection began, which can be 
used to determine when the attempt 
to connect should be abandoned. This 
should be present only when state is 
Connecting. 

 ! when _ disconnected keeps 
track of when the connection entered 
the Disconnected state, and should 
be present only in that state. 

As you can see, a number of invari-
ants tie the different record fields to-
gether. Maintaining such invariants 
takes real work. You need to document 
them carefully so you do not trip over 
them later; you need to write tests to 
verify the invariants; and you must ex-
ercise continuing caution not to break 
the invariants as the code evolves. 

But we can do better. The rewrite in  
Figure 5 uses a combination of prod-
uct and sum types that more precisely 
represents the set of allowable states 
of a connection. In particular, there is 
a different record type for each of the 
three states, each containing the in-
formation that is relevant just to that 
state. Information that is always rel-

evant (in this case, just the server) 
is pushed to the top-level record. Also, 
we have made it explicit that last _
ping _ time and last _ ping _ id 
are either both present or both absent 
by representing them as last _ ping, 
which is an optional pair. 

By doing all of this, we have embed-
ded into the type many of the required 
invariants. Now that the invariants are 
part of the types, the compiler can de-
tect and reject code that would violate 
these invariants. This is both less work 
and more reliable than maintaining 
such invariants by hand. 

This example uses algebraic 
datatypes to encode invariants, but 
OCaml has other tools for doing the 
same. OCaml’s module system is one 
example, allowing you to specify invari-
ants in the interface of a module. Un-
like most object-oriented languages, it 
is possible to express complex joint in-
variants over multiple different types. 
More generally, OCaml’s modules are 
a powerful tool for breaking down a 
codebase into small, understandable 
pieces, where the interactions between 
those pieces is under the program-
mer’s explicit control. 

The type system’s ability to catch 
bugs is valuable even for small solitary 
projects, but it truly shines in a collab-
orative environment where multiple 
developers work together on a long-
lived codebase. In addition to finding 
bugs, type signatures play a surpris-
ingly valuable role as a kind of guaran-
teed-to-be-correct documentation. In 
the context of an evolving codebase, 
invariants enforced by the type system 
have the benefit of being more durable 
than those enforced by convention, in 
that they are less likely to be broken ac-
cidentally by another developer. 

Limitations
None of this is to say that OCaml is 
without its flaws. There are, of course, 
all of the problems associated with be-
ing a minority language. OCaml has a 
great community that has generated a 
rich set of libraries, but that collection 
of libraries pales in comparison with 
what is available for Python, C, or Java. 
Similarly, development tools such 
as IDEs, profilers, and debuggers are 
there, but are considerably less ma-
ture and feature-full than their cous-
ins in more mainstream languages. 

Another limitation of OCaml has to 
do with parallelism. The OCaml run-
time has a single runtime lock, which 
means that one must use multiple 
processes to take advantage of multi-
ple cores on a single machine. For the 
most part, this fits our development 
model well: we prefer message passing 
to shared-memory threads as a pro-
gramming model for parallelism, since 
it leads to code that is easier to reason 
about and it scales better to systems 
that cross multiple physical machines. 
The tools available in the wider OCaml 
world for doing this kind of multipro-
cess programming, however, are still 
maturing. 

But OCaml’s limitations are not fun-
damental in nature. They have more to 
do with the details of the implementa-
tion or the popularity of the language 
and not with the language itself. In the 
end, that is what I find most puzzling. 
I am now quite convinced that the core 
ideas behind OCaml are enormously 
valuable, as evidenced by the fact that 
OCaml itself, whatever its limitations, 
is a profoundly effective and powerful 
tool. Yet, those ideas remain stubborn-
ly outside of the mainstream. 

Perhaps this is finally on the verge 
of changing. Languages such as F# 
and Scala are bringing some of the 
ideas behind OCaml and Haskell to a 
wider audience by integrating them-
selves within the Dotnet and Java eco-
systems, respectively. Maybe 10 years 
from now, we will no longer need to 
ask why these ideas have failed to 
catch on in the wider world. But there 
is no reason to wait. You can add 
OCaml to your toolbox now. 
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