
NOVEMBER 2011 | VOL. 54 | NO. 11 | COMMUNICATIONS OF THE ACM 53

SOMET I M ES , TH E E LE GAN T implementation is a
function. Not a method. Not a class. Not a framework.
Just a function. —John Carmack

Functional programming is an old idea with a
distinguished history. Lisp, a functional language
inspired by Alonzo Church’s lambda calculus, was
one of the first programming languages developed
at the dawn of the computing age. Statically typed
functional languages such as OCaml and Haskell
are newer, but their roots go deep—ML, from which
they descend, dates back to work by Robin Milner
in the early 1970s relating to the pioneering Logic
for Computable Functions (LCF) theorem prover.

Functional programming has also
been enormously influential. Many fun-
damental advances in programming
language design, from garbage collec-
tion to generics to type inference, came
out of the functional world and were
commonplace there decades before
they made it to other languages.

Yet functional languages never really
made it to the mainstream. They came
closest, perhaps, in the days of Symbol-
ics and the Lisp machines, but those
days seem quite remote now. Despite a
resurgence of functional programming
in the past few years, it remains a tech-
nology more talked about than used.

It is tempting to conclude from this
record that functional languages do
not have what it takes. They may make
sense for certain limited applications,
and contain useful concepts to be im-
ported into other languages; but im-
perative and object-oriented languages
are simply better suited to the vast ma-
jority of software engineering tasks.

Tempting as it is, this conclusion is
wrong. I have been using OCaml in a
production environment for nearly a de-
cade, and over that time I have become
convinced that functional languages,
and in particular, statically typed ones
such as OCaml and Haskell, are excel-

OCaml for
the Masses

DOI:10.1145/2018396.2018413

 Article development led by
 queue.acm.org

Why the next language you learn
should be functional.

BY YARON MINSKY

54 COMMUNICATIONS OF THE ACM | NOVEMBER 2011 | VOL. 54 | NO. 11

practice

lent general-purpose programming
tools—better than any existing main-
stream language. They also have an
enormous range, being well suited for
small scripting tasks, as well as large-
scale high-performance applications.
They are not the right tool for every job,
but they come surprisingly close.

The Move to OCaml
Most of my experience programming
in OCaml came through my work at
Jane Street, a financial firm founded
in 2000. Nine years ago, no one at Jane
Street had heard of OCaml. Today, Jane
Street is the biggest industrial user of
the language, with nearly two million
lines of OCaml code and, at last count,
65 employees who use the language on
a daily basis. Probably the best way to
explain what makes OCaml such an
effective tool is to start by explaining
how and why that transformation took
place. To understand that, you first
need to understand something about
what Jane Street does.

Jane Street’s core business is provid-
ing liquidity on the world’s electronic
markets. It is, essentially, a middle-
man. It continually places orders for
many different securities on many dif-
ferent exchanges. Each order expresses
a willingness to either buy or to sell a
given security at a given price, and, col-
lectively, they are an advertisement to
the markets of Jane Street’s services.
Through these orders, the firm buys
from people who need to sell and sells
to people who need to buy, making
money from the gap between the buy-
ing and selling prices. All the time it is
competing on price with other players
trying to do the same thing.

Electronic liquidity provision is
technologically intense, not only be-
cause of the computational resources
that need to be deployed (an enor-
mous amount of data needs to be con-
sumed, analyzed, and responded to
in real time), but also in terms of the
complexity of the enterprise—trading
can cross multiple exchanges, regula-
tory regimes, security classes, and time
zones. Managing that complexity is a
daunting task that requires a signifi-
cant investment in software.

All this technology carries risk.
There is no faster way for a trading firm
to destroy itself than to deploy a piece
of trading software that makes a bad

decision over and over in a tight loop.
Part of Jane Street’s reaction to these
technological risks was to put a very
strong focus on building software that
was easily understood—software that
was readable.

Reading code was part of the firm’s
approach to risk from before we had
written our first line of OCaml. Early
on, a couple of the most senior traders
(including one of the founders) com-
mitted to reading every line of code
that went into the core trading systems
before those systems went into produc-
tion. This was an enormous ongoing
time investment and reflected the high
level of concern about technology risk.

I started at Jane Street the year after
I finished my Ph.D., working there part-
time while doing a post-doc. My work
there was focused on statistical analy-
sis and optimization of trading strate-
gies, and OCaml was the primary tool
I used to get the analysis done. Why
OCaml? I had learned it in grad school
and fell in love with the language then.
And OCaml was a great match for this
kind of rapid-prototyping work: highly
performant, yet faster and less error
prone than coding in C, C++, or Java.

I was convinced that my stint at Jane
Street would be short and the code
I was writing was all throwaway, so I
made a choice to maximize my own
productivity without worrying about
whether others could use the code
later. Six months and 80,000 lines of
code later, I realized I was wrong: I took
a full-time position at Jane Street and
soon started hiring to create a research
group there.

At this time, the firm was casting
around for a new approach to building
software. The systems that powered
the company in its first years were pri-
marily written in VBA and C#. Indeed,
the core trading systems were Excel
spreadsheets with a great deal of cus-
tom VBA code. This was a great way to
get up and running quickly, but it was
clear from the start that this was not a
sustainable approach.

In 2003, Jane Street began a rewrite
of its core trading systems in Java. The
rewrite was eventually abandoned, in
part because the resulting code was too
difficult to read and reason about—far
more difficult, indeed, than the VBA
that was being replaced. A big part
of this was Java’s verbosity, but it was

Programmers
who are new to
OCaml are often
taken aback by
the degree to which
the type system
catches bugs.

practice

NOVEMBER 2011 | VOL. 54 | NO. 11 | COMMUNICATIONS OF THE ACM 55

more than that. The VBA code was writ-
ten in a terse, straight-ahead style that
was fairly easy to follow. But somehow
when coding in Java we built up a nest
of classes that left people scratching
their heads when they wanted to un-
derstand just what piece of code was
actually being invoked when a given
method was called. Code that made
heavy use of inheritance was particu-
larly difficult to think about, in part be-
cause of the way that inheritance ducks
under abstraction boundaries.

In 2005, emboldened by the suc-
cess of the research group, Jane Street
initiated another rewrite of its core
trading systems, this time in OCaml.
The first prototype was done in three
months, and was up and trading three
months after that. The use of OCaml in
the company has only expanded since
then. Today it is used to solve prob-
lems in every part of the company, from
accounting to systems administration,
and that effort continues to grow. In re-
cent years, the trading side of the firm
has increased its use of the language,
and OCaml training is now a standard
part of the curriculum for new trading
hires. Overall, the transition to OCaml
has been a huge success, resulting in
far stronger technology than we could
have achieved otherwise.

Why OCaml?
What is it about the language that
makes it work so well? Here is a short
summary of what I perceive as OCaml’s
key strengths.

 ! Concision. Our experience with
OCaml on the research side convinced
us that we could build smaller, sim-
pler, easier-to-understand systems in
OCaml than we could in languages
such as Java or C#. For an organiza-
tion that valued readability, this was a
huge win.

 ! Bug detection. Programmers who
are new to OCaml are often taken aback
by the degree to which the type system
catches bugs. The impression you
get is that once you manage to get the
typechecker to approve of your code,
there are no bugs left. This isn’t really
true, of course; OCaml’s type system is
helpless against many bugs. There is,
however, a surprisingly wide swath of
bugs against which the type system is
effective, including many bugs that are
quite hard to get at through testing.

 ! Performance. We found that
OCaml’s performance was on par with
or better than Java’s, and within spit-
ting distance of languages such as C
or C++. In addition to having a high-

quality code generator, OCaml has an
incremental GC (garbage collector).
This means the GC can be tuned to do
small chunks of work at a time, making
it more suitable for soft real-time appli-

Figure 1. Expression type and evaluator in OCaml.

type ’a expr = | True
 | False

 | And of ’a expr * ’a expr
 | Or of ’a expr * ’a expr
 | Not of ’a expr
 | Base of ’a

let rec eval eval_base expr =
let eval’ x = eval eval_base x in
match expr with

 | True -> true
 | False -> false
 | Base base -> eval_base base
 | And (x,y) -> eval’ x && eval’ y
 | Or (x,y) -> eval’ x || eval’ y
 | Not x -> not (eval’ x)

Figure 2. Expression type and evaluator in Java.

public abstract class Expr<T> {

public interface Evaluator<T> { boolean evaluate(T value); }
public abstract boolean eval(Evaluator<T> evaluator);

public class True<T> extends Expr<T> {
public boolean eval(Evaluator<T> evaluator) { return true; }

 }
public class False<T> extends Expr<T> {

public boolean eval(Evaluator<T> evaluator) { return false; }
 }

public class Base<T> extends Expr<T> {
public final T value;
public Base(T value) { this.value = value; }
public boolean eval(Evaluator<T> evaluator)

 { return evaluator.evaluate(value); }
 }

public class And<T> extends Expr<T> {
public final Expr<T> expr1;
public final Expr<T> expr2;
public And(Expr<T> expr1, Expr<T> expr2) {

this.expr1 = expr1;
this.expr2 = expr2;

 }
public boolean eval(Evaluator<T> evaluator) {

return expr1.eval(evaluator) && expr2.eval(evaluator);
 }
 }

public class Or<T> extends Expr<T> {
public final Expr<T> expr1;
public final Expr<T> expr2;
public Or(Expr<T> expr1, Expr<T> expr2) {

this.expr1 = expr1;
this.expr2 = expr2;

 }
public boolean eval(Evaluator<T> evaluator) {

return expr1.eval(evaluator) || expr2.eval(evaluator);
 }
 }

public class Not<T> extends Expr<T> {
public final Expr<T> expr;
public Not(Expr<T> expr) { this.expr = expr; }
public boolean eval(Evaluator<T> evaluator)
{ return !expr.eval(evaluator); }

 }
}

56 COMMUNICATIONS OF THE ACM | NOVEMBER 2011 | VOL. 54 | NO. 11

practice

cations such as electronic trading.
 ! Pure, mostly. Despite how func-

tional programmers often talk about
it, mutable state is a fundamental part
of programming, and one that cannot
and should not be done away with.
Sending a network packet or writing
to disk are examples of mutability. A
complete commitment to immutabil-
ity is a commitment to never building
anything real.

Mutable state has its costs, however.
Mutation-free code is generally easier
to reason about, making interactions
and dependencies between different
parts of your codebase explicit and eas-
ier to manage. OCaml strikes a good
balance here, making mutation easy,
but making immutable data structures
the default. A well-written OCaml sys-
tem almost always has mutable state,
but that state is carefully limited.

Perhaps the easiest of these ad-
vantages to demonstrate concretely
is that of concision. The importance
of concision is clear: other things
being equal, shorter code is easier
to read, easier to write, and easier to

maintain. There are, of course, limits:
no good is done by reducing all your
function names to single characters,
but brevity is nonetheless important,
and OCaml does a lot to help keep the
codebase small.

One advantage OCaml brings to
the table is type inference, which ob-
viates the need for many type declara-
tions. This leaves you with code that
is roughly as compact as code written
in dynamic languages such as Python
or Ruby. At the same time, you get the
performance and correctness ben-
efits of static types.

Consider the following OCaml
function map for transforming the
elements of a tuple.

let map f (x,y,z) =
 (f x, f y, f z)

Here, map is defined as a function
with two arguments: a function f and
a triple (x,y,z). Note that f x is the
syntax for applying the function f to x.

Now consider what this would look
like in C# 4.0:

Tuple<U,U,U> Map<T,U>
 (Func <T,U> f, Tuple<T,T,T> t)
{
 return new Tuple<U,U,U>
 (f(t.item1), f(t.item2), f(t.item3));
}

The C# code, while functionally
equivalent, looks cluttered, with the
real structure obscured by syntactic
noise.

Another source of concision is
OCaml’s notation for describing
types. At the heart of that notation is
the notion of an algebraic datatype.
Algebraic datatypes are what you get
when you have a system that includes
two ways of building up new types:
products and sums.

A product type is the more familiar
of the two. Tuples, records, structs,
and objects are all examples of prod-
uct types. A product type combines
multiple values of different types into
a single value. These are called product
types because they correspond math-
ematically to Cartesian products of the
constituent types.

A sum type corresponds to a dis-
joint union of the constituent types,
and it is used to express multiple pos-
sibilities. Where product types are
used when you have multiple things
at the same time (a and b and c), sum
types are used when you want to enu-
merate different possibilities (a or
b or c). Sum types can be simulated
(albeit somewhat clumsily) in object-
oriented languages such as Java us-
ing subclasses, and they show up as
union types in C. But the support in
the type systems of most languages
for interacting with sum types in a
safe way is surprisingly weak.

Figure 1 provides an example of al-
gebraic datatypes at work. The code
defines a type for representing Boolean
expressions over a set of base predi-
cates and a function for evaluating
those expressions. The code is generic
over the set of base predicates, so the
subject of these expressions could be
anything from integer inequalities to
the settings of compiler flags.

The sum type expr is indicated
by the pipes separating the different
arms of the declaration. Some of those
arms, such as True and False, are
simple tags, not materially different
from the elements of an enumeration
in Java or C. Others, such as And and

Figure 3. Destuttering a list.

Removes sequential duplicates, e.g.,
destutter([1,1,4,3,3,2]) = [1,4,3,2]

def destutter (list):
l = []
for i in range(len(list)):

for i in range(len(list)):

if list [i] != list[i+1]:
l.append(list[i])

l.append(list[i])

return l

def destutter (list):
l = []

if i + 1 >= len(list) or list[i] != list[i+1]:

return l

Now let’s see what happens when writing more or less the same function in OCaml, with
more or less the same bug:

This code looks pretty straightforward, but it has a bug: it doesn’t properly handle the
end of the list. Here’s one way of fixing it:

let rec destutter l=
match l with

 | [] -> []
| x :: y :: rest ->
if x = y then destutter (y :: rest)
else x :: destutter (y :: rest)

practice

NOVEMBER 2011 | VOL. 54 | NO. 11 | COMMUNICATIONS OF THE ACM 57

Not, have associated data, and that
data varies between the cases. This
type actually contains both sums and
products, with the And and Or branch-
es containing tuples. Types consisting
of layered combinations of products
and sums are a common and powerful
idiom in OCaml.

One notable bit of syntax is the type
variable ’a. A type variable can be in-
stantiated with any type, and this is
what allows the code to be generic
over the set of base predicates. This
is similar to how generic types are
handled in Java or C#. Thus, Java’s
<A>List would be rendered as ’a
list in OCaml.

The function eval takes two argu-
ments: expr, the expression to be
evaluated; and eval _ base, a func-
tion for evaluating base predicates.
The code is generic in the sense that
eval could be used for expressions
over any type of base predicate, but
eval _ base must be provided in or-
der to evaluate the truth or falsehood
of those base predicates. The func-
tion eval’ is defined as shorthand
for invoking recursive calls to eval
with eval _ base as an argument. Fi-
nally, the match statement is used for
doing a case analysis of the possible
structures of the expression, calling
out to eval _ base when evaluating
a base predicate, and otherwise acting
as a straightforward recursion over the
structure of the datatypes.

Figure 2 shows how the same code
might be rendered in Java. The verbosi-
ty is immediately striking. Adding a sin-
gle case such as And takes two (short)

lines in OCaml and eight in Java—and
the Java code is actually pretty minimal
as these things go. If you wanted to al-
low the creation of other algorithms
around this expression type that are
not baked into the class definition,
then you probably want to use the visi-
tor pattern, which will inflate the line
count considerably.

Another facet of the language that de-
mands some further explanation is the
ability of the type system to catch bugs.
People who are not familiar with OCaml
and related languages (and some who
are) often make the mistake of underes-
timating the power of the type system. It
is easy to conclude that all the type sys-
tem does for you is ensure you passed in
your parameters correctly (for example,
that you provided a float where you were
supposed to provide a float).

But there is more to it than that.
Even naive use of the type system is ee-
rily good at catching bugs. Consider the
Python code for destuttering a list (that
is, removing sequential duplicates) as
shown in Figure 3. It uses OCaml’s pat-
tern-matching syntax to get access to
the elements of the list. Here :: is the
list constructor, and [] indicates an
empty list. Thus, the [] case matches
the empty list, and the x::y::rest case
matches lists that have at least two el-
ements, x and y. The variable rest re-
fers to the (potentially empty) remain-
der of the list.

Like the Python example, this code
fails to contemplate what happens
when you get to the end of the list and
have only one element left. In this case,
however, you find out about the prob-
lem not at runtime but at compile time.

The compiler gives the following error:

File “destutter.ml”, line 2,
characters 2-125:
Warning 8: this pattern-
matching is not exhaustive.
Here is an example of a val-
ue that is not matched:
_ ::[]

The missing case, _ ::[], is a list with a
single element.

You can fix the code (and satisfy the
compiler) by adding a handler for the
missing case:

let rec destutter l =
 match l with
 | [] -> []
 | x :: [] -> x :: []
 | x :: y :: rest ->
 if x = y then destutter (y

:: rest)
 else x :: destutter (y ::

rest)

The error here is a trivial one that
would be found easily by testing. But
the type system does just as well in
exposing errors that are hard to test,
either because they show up only in
odd corner cases that are easy to miss
in testing, or because they show up in
complex systems that are difficult to
mock up and exercise exhaustively.

Straight out of the box, OCaml is
pretty good at catching bugs, but it can
do even more if you design your types
carefully. Consider as an example the
following types for representing the
state of a network connection as illus-
trated in Figure 4.

Figure 4. Connection types.

type connection_state =
| Connecting
| Connected
| Disconnected

type connection_info = {
 state: connection_state;
 server: inet_addr;
 last_ping_time: time option;
 last_ping_id: int option;
 session_id: string option;
 when_initiated: time option;
 when_disconnected: time option;
}

Figure 5. Connection types revisited.

type connecting = { when_initiated: time; }
type connected = { last_ping : (time * int) option;

session_id : string; }
type disconnected = { when_disconnected: time; }

type connection_state =
| Connecting of connecting
| Connected of connected
| Disconnected of disconnected

type connection_info = {
 state: connection_state;
 server: inet_addr;
}

58 COMMUNICATIONS OF THE ACM | NOVEMBER 2011 | VOL. 54 | NO. 11

practice

The connection _ state type is
a simple enumeration of three named
states that the connection can be in;
connection _ info is a record type
containing a number of fields describ-
ing different aspects of a connection.
Note that the fields that have option
at the end of the type are essentially
nullable fields. (By default, values in
OCaml are guaranteed to be non-null).
Otherwise, there is nothing about this
code that is all that different from what
you might write in Java or C#.

Here is some information on the in-
dividual record fields and how they re-
late to each other:

 ! server indicates the identity of
the server on the other side of the con-
nection.

 ! last _ ping _ time and last _
ping _ id are intended to be used
as part of a keep-alive protocol. Note
that either both of those fields should
be present, or neither of them should.
Also, they should be present only when
state is Connected.

 ! The session _ id is a unique
identifier that is chosen afresh every
time the connection is reestablished. It
also should be present only when state
is Connected.

 ! when _ initiated is for keep-
ing track of when the attempt to start
the connection began, which can be
used to determine when the attempt
to connect should be abandoned. This
should be present only when state is
Connecting.

 ! when _ disconnected keeps
track of when the connection entered
the Disconnected state, and should
be present only in that state.

As you can see, a number of invari-
ants tie the different record fields to-
gether. Maintaining such invariants
takes real work. You need to document
them carefully so you do not trip over
them later; you need to write tests to
verify the invariants; and you must ex-
ercise continuing caution not to break
the invariants as the code evolves.

But we can do better. The rewrite in
Figure 5 uses a combination of prod-
uct and sum types that more precisely
represents the set of allowable states
of a connection. In particular, there is
a different record type for each of the
three states, each containing the in-
formation that is relevant just to that
state. Information that is always rel-

evant (in this case, just the server)
is pushed to the top-level record. Also,
we have made it explicit that last _
ping _ time and last _ ping _ id
are either both present or both absent
by representing them as last _ ping,
which is an optional pair.

By doing all of this, we have embed-
ded into the type many of the required
invariants. Now that the invariants are
part of the types, the compiler can de-
tect and reject code that would violate
these invariants. This is both less work
and more reliable than maintaining
such invariants by hand.

This example uses algebraic
datatypes to encode invariants, but
OCaml has other tools for doing the
same. OCaml’s module system is one
example, allowing you to specify invari-
ants in the interface of a module. Un-
like most object-oriented languages, it
is possible to express complex joint in-
variants over multiple different types.
More generally, OCaml’s modules are
a powerful tool for breaking down a
codebase into small, understandable
pieces, where the interactions between
those pieces is under the program-
mer’s explicit control.

The type system’s ability to catch
bugs is valuable even for small solitary
projects, but it truly shines in a collab-
orative environment where multiple
developers work together on a long-
lived codebase. In addition to finding
bugs, type signatures play a surpris-
ingly valuable role as a kind of guaran-
teed-to-be-correct documentation. In
the context of an evolving codebase,
invariants enforced by the type system
have the benefit of being more durable
than those enforced by convention, in
that they are less likely to be broken ac-
cidentally by another developer.

Limitations
None of this is to say that OCaml is
without its flaws. There are, of course,
all of the problems associated with be-
ing a minority language. OCaml has a
great community that has generated a
rich set of libraries, but that collection
of libraries pales in comparison with
what is available for Python, C, or Java.
Similarly, development tools such
as IDEs, profilers, and debuggers are
there, but are considerably less ma-
ture and feature-full than their cous-
ins in more mainstream languages.

Another limitation of OCaml has to
do with parallelism. The OCaml run-
time has a single runtime lock, which
means that one must use multiple
processes to take advantage of multi-
ple cores on a single machine. For the
most part, this fits our development
model well: we prefer message passing
to shared-memory threads as a pro-
gramming model for parallelism, since
it leads to code that is easier to reason
about and it scales better to systems
that cross multiple physical machines.
The tools available in the wider OCaml
world for doing this kind of multipro-
cess programming, however, are still
maturing.

But OCaml’s limitations are not fun-
damental in nature. They have more to
do with the details of the implementa-
tion or the popularity of the language
and not with the language itself. In the
end, that is what I find most puzzling.
I am now quite convinced that the core
ideas behind OCaml are enormously
valuable, as evidenced by the fact that
OCaml itself, whatever its limitations,
is a profoundly effective and powerful
tool. Yet, those ideas remain stubborn-
ly outside of the mainstream.

Perhaps this is finally on the verge
of changing. Languages such as F#
and Scala are bringing some of the
ideas behind OCaml and Haskell to a
wider audience by integrating them-
selves within the Dotnet and Java eco-
systems, respectively. Maybe 10 years
from now, we will no longer need to
ask why these ideas have failed to
catch on in the wider world. But there
is no reason to wait. You can add
OCaml to your toolbox now.

 Related articles
 on queue.acm.org

A Conversation with Arthur Whitney
http://queue.acm.org/detail.cfm?id=1531242

Passing a Language through
the Eye of a Needle
Roberto Ierusalimschy,
Luiz Henrique de Figueiredo,
and Waldemar Celes
http://queue.acm.org/detail.cfm?id=1983083

The Next Big Thing
George Neville-Neil
http://queue.acm.org/detail.cfm?id=1317398

Yaron Minsky joined Jane Street in 2003, where he
founded the quantitative research group. Since 2007 he
has managed the firms’s technology group.

© 2011 ACM 0001-0782/11/11 $10.00

