
Bits &
 Bytes

36 acm Inroads 2012 September • Vol. 3 • No. 3

Recent versions of the Spin model checker support search
diversity, where the depth-first search of the state space of
computation can be randomized. We show how to use this
feature to demonstrate the efficacy of random and parallel
algorithms when applied to SAT solving: finding a satisfying
interpretation of a formula of propositional logic.

1 Introduction
In [2], the first author presented a survey of model checking, show-
ing that it can be effective for teaching concurrency and nonde-
terminism. In this article, we extend this claim and demonstrate
how the Spin model checker can be easily used to demonstrate the
efficacy of random and parallel algorithms. We suggest that the
reader review [2], in particular Section 8, before continuing.

The example used is that of a naive SAT solver: a program that
searches for a satisfying interpretation for a formula of proposi-
tional logic. The SAT problem is central in theoretical computer
science because it was the first problem to be proved NP-complete.
The SAT problem is also of significant practical importance
because many applications can be easily encoded in propositional
logic. Although the SAT problem is NP-complete, formulas arising
in practice can be efficiently solved using a variety of sophisticated
algorithmic and programming optimizations. See [5] for an intro-
duction to SAT solvers.

A model checker such as Spin [1] takes as input a nondetermin-
istic finite automaton that models a nondeterministic (or concur-
rent) computation and a correctness specification written as asser-
tions (or as a formula in temporal logic). It searches the state space
of the execution of the automaton for a counterexample: a state
that falsifies an assertion. The search is performed depth-first; since
the automaton is nondeterministic, at each node there are several
outgoing branches. Normally, the search tries these in a fixed order,
but recent versions of Spin support trying the branches in random
order. As you will see, the results can be surprising.

2 Implementing a Naive SAT Solver in Spin
The input to a SAT solver is a formula in conjunctive normal form: a
conjunction of disjunctions called clauses. For example:

It is straightforward to implement a naive SAT solver for this
set of clauses in Promela—the modeling language of Spin—using
nondeterministic if-statements to choose an assignment:

When a verification of this program is performed in Spin, the
model checker performs a depth-first search, checking all possible
assignments of truth values to the atomic propositions. If a satisfy-
ing interpretation is found, the assertion is violated (result is true,
so !result is false) and the verification terminates. Otherwise, the
model checker backtracks to continue the search for a counterex-
ample. Since this set of clauses is unsatisfiable, a verification will

DEMONSTRATING
RANDOM AND PARALLEL
ALGORITHMS WITH SPIN

Mordechai (Moti) Ben-Ari and Fatima Kaloti-Hallak

active proctype sat() {

 bool a, b, c, d, result;

 /* Select an assignment nondeterministically */

 if :: a = true :: a = false fi;

 if :: b = true :: b = false fi;

 if :: c = true :: c = false fi;

 if :: d = true :: d = false fi;

 /* Compute the truth value of the set of clauses */

 result = (a || b) && (!a || !b) && (a || !c) &&

 (!a || c) && (c || !d) && (!c || d) &&

 (b || !d) && (!b || d);

 printf(“Result = %d\n”, result);

 assert(!result)

}

(a V b) & (~a V ~b) & (a V ~c) & (~a V c) &

(c V ~d) & (~c V d) & (b V ~d) & (~b V d)

bits & bytes

2012 September • Vol. 3 • No. 3 acm Inroads 37

terminate successfully after searching the entire state space. See
Sidebar 1 that summarizes the relevant concepts.

3 Tseitin Clauses
For this small set of clauses, the verification terminates immedi-
ately, but the set is a member of a family of sets of clauses called
Tseitin clauses, which are built from arbitrary large connected
undirected graphs. The details of the construction are beyond
the scope of this note; the interested reader is referred to [3,
Section 4.5].

The above set of clauses was generated from the complete
bipartite graph K2,2. A program was written to generate Promela
programs for Tseitin clauses corresponding to Kn,n for any n and
to generate variants of the programs, where a random literal is
complemented in each variant, thereby making the set of clauses
satisfiable.

For the unsatisfiable sets of clauses, the search must try all pos-
sible assignments of true or false to the atomic propositions and
this demonstrates the exponential nature of the naive algorithm for
SAT. The verification of the programs for the clauses associated
with K2,2, K3,3 and K4,4 terminated immediately, whereas for the
clauses associated with K5,5 the verification took 48 seconds. An
attempt to verify the clauses associated with K6,6 terminated for
lack of memory.1

4 SAT solving with Search Diversity
Holzmann, Joshi and Groce [4] showed that time, not memory, is
currently the limiting factor is the application of the Spin model

checker to large problems. They suggest using search diversity and
parallelism: running many verifications in parallel on a multicore
machine, where each run differs in the way the search is conducted.
As noted in [4], one need not actually run several verifications in
parallel to become convinced that search diversity will work. It
is sufficient to run a number of verifications equal to the number
of processors that are assumed to be available and to examine the
execution times.

We carried out an experiment with search diversity applied
to the naive SAT solver. We configured the verifier to search the
transitions from each state randomly and ran each verification with
several seeds. The unsatisfiable Tseitin clauses give upper bounds
on the resources needed, while the satisfiable variants are intended
to represent practical problems that have a solution that we are
looking for. Eight variants and eight verifications (with different
seeds) for each variant were run for Tseitin clauses corresponding to
K5,5 and K6,6.

As noted above, the unsatisfiable Tseitin clauses for K5,5 took
48 seconds to verify. Out of the eight satisfiable variants, seven
were verified in just a few seconds, but one variant showed more
interesting behavior. The verification of this variant using the non-
random algorithm took 37 seconds, while the random verifications
finished in the following times.

11, 6, 6, 39, 35, 2, 12, 39.

Suppose that you have a computer with four cores running the
random algorithm with four different seeds. At worst, the running
times would be 39, 35, 12, 39, so the program would output an
answer in only 12 seconds, a third of the time of the non-random
sequential algorithm. With a bit of luck, the answer would be
received in 6 or even 2 seconds. With eight cores, of course, the
answer would be received in 2 seconds. While these improvements
might not seem impressive, a real problem could see its running
time reduced from 37 hours (you would probably cancel the run
before receiving the result ...) to a reasonable 2 hours!

The clauses for K6,6 demonstrate more realistic scenarios. Recall
that the unsatisfiable clauses could not be verified, so we are not
surprised that the results for the satisfiable variants are not uni-
formly positive. Nevertheless, they are encouraging in some cases,
as shown in Table 1.

The verifications of variants 3, 5 and 7 remain infeasible, but
those for variants 2, 4, 6, 8 would terminate on a four-core proces-
sor because any choice of four out of the eight seeds includes at

SIDEBAR 1

Efficient nondeterministic algorithm (generate and check)
! Generate an assignment: a=false, b=true, c=true,
d=false.

! Evaluate the formula (this takes very little time) and check if
result is true:

result =

 (false V true) & ... (~true V false) =

 true & ... & false =

 false

! By definition of a nondeterministic algorithm: if there exists a
computation where result is true, then the formula is satisfiable.

Inefficient deterministic implementation (brute-force search)
! For all of the 2n assignments of true or false to the n atomic

propositions, compute result.
! Use a fixed ordering (such as lexicographic ordering) to ensure that

you check all possible assignments.
! If the formula is satisfiable, a satisfying assignment will eventually

be found, but in the worst case the formula must be evaluated for
all 2n assignments.

Variant Time (– = out of memory)

1 – – – – – – 0 –

2 21 0 0 – 21 0 21 21

3 – – – – – – – –

4 – 0 0 0 21 – 0 0

5 – – – – – – – –

6 21 20 0 – 0 21 – –

7 – – – – – – – –

8 0 0 0 21 – 0 – –

1 All times are rounded to the nearest second. We used a garden-variety Windows
PC like the one a student might use: a low-end Intel i3 processor with two cores
and 4 GB of memory. If you use more powerful computers, simply scale up the
problem to use Kn,n for larger n.

TABLE 1

Bits &
 Bytes

38 acm Inroads 2012 September • Vol. 3 • No. 3

6 Conclusion
Random algorithms are rather unintuitive for students brought up
to think of algorithms as sequential deterministic procedures, or as
a set of deterministic processes in the case of concurrency. Further-
more, while concurrency as the time-shared execution of high-level
processes is also familiar, demonstrating speedup from parallelism is
more difficult. We have shown how the support for search diversity
in Spin makes it very easy to demonstrate both randomness and
parallelism for solving a nondeterministic algorithm.

The programs described in this paper are open-source and can
be downloaded from: http://code.google.com/p/mlcs/. Ir

References

 [1] Ben-Ari, M. Principles of the Spin Model Checker. Springer, London, 2008.
 [2] Ben-Ari, M. A primer on model checking. ACM Inroads, 1(1):40–47,

2010.
 [3] Ben-Ari, M. Mathematical Logic for Computer Science (Third Edition).

Springer, London, 2012.
 [4] Holzmann, G.J., Joshi, R., and Groce, A. Swarm verification techniques.

IEEE Transactions on SoftwareEngineering, 37(6):845–857, 2011.
 [5] Malik, S. and Zhang, L. Boolean satisfiability: From theoretical hard-

ness to practical success. Communications ACM, 52(8):76–82, 2009.

MORDECHAI (MOTI) BEN-ARI
Department of Science Teaching
Weizmann Institute of Science, Rehovot 76100 Israel

moti.ben-ari@weizmann.ac.il

FATIMA KALOTI-HALLAK
Department of Science Teaching
Weizmann Institute of Science, Rehovot 76100 Israel

fatima.hallak@weizmann.ac.il

Categories and Subject Descriptors: D.2.4 [Software/Program
Verification (F.3.1)]-Model checking; D.1.3 [Concurrent Programming]-
Parallel programming
General Terms: Algorithms
Keywords: model checking, Spin, random algorithm, multicore

DOI: 10.1145/2339055.2339069 ©2012 ACM 2153-2184/12/09 $15.00

least one that terminates in at most 21 seconds. The verification
of variant 1 would succeed on an eight-core processor because for
one seed out of the eight, the verification terminates immediately.
Sidebar 2 expresses random search and parallel search diversity in
terms of throwing dice.

5 From Search Diversity to Parallelism
Even on a two-core processor, parallelism is easy to demonstrate by
opening multiple command windows. Consider the variant of the
program for the clauses associated with K5,5 that took 37 seconds to
verify using the standard search method. It was run simultaneously in
two windows: one with the seed that led to a 35-second execution and
one with the seed that needed only about 12 seconds. Since they ran
in parallel on the two cores, the faster verification finished in just over
12 seconds, while the slower verification continued to run. However,
when two slow verifications were initiated in parallel with the fast
verification, the latter’s run time increased to almost 18 seconds, indi-
cating that it was time-sharing the cores with the other programs.

SIDEBAR 2

Random search diversity
! Compute result for all the 2n assignments taken in some random

order.
! If you get “lucky”, the random search will find a satisfying

assignment faster than a search in a fixed ordering!
! For example, if the fifth assignment out of six is satisfying, then the

fixed-order search will perform 5 steps to find it, but if you throw
a die to determine where to start the search, you might get lucky
and start from 4 or even 5.

Parallel random search diversity
! On a multicore computer, compute result in parallel for different

random orders of the 2n assignments.
! This increases your chance of getting “lucky” quickly.
! For example, if you throw four dice at the same time, the

probability of getting a 5 is much higher (1-(5/6)4=62%) than if
you just throw one die (17%).

Dozenal Society of America
" " " " "

www.dozenal.org

http://code.google.com/p/mlcs/
mailto:moti.ben-ari@weizmann.ac.il
mailto:fatima.hallak@weizmann.ac.il
http://www.dozenal.org

