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Recent versions of the Spin model checker support search 
diversity, where the depth-first search of the state space of 
computation can be randomized. We show how to use this 
feature to demonstrate the efficacy of random and parallel 
algorithms when applied to SAT solving: finding a satisfying 
interpretation of a formula of propositional logic.

1 Introduction
In [2], the first author presented a survey of model checking, show-
ing that it can be effective for teaching concurrency and nonde-
terminism. In this article, we extend this claim and demonstrate 
how the Spin model checker can be easily used to demonstrate the 
efficacy of random and parallel algorithms. We suggest that the 
reader review [2], in particular Section 8, before continuing.

The example used is that of a naive SAT solver: a program that 
searches for a satisfying interpretation for a formula of proposi-
tional logic. The SAT problem is central in theoretical computer 
science because it was the first problem to be proved NP-complete. 
The SAT problem is also of significant practical importance 
because many applications can be easily encoded in propositional 
logic. Although the SAT problem is NP-complete, formulas arising 
in practice can be efficiently solved using a variety of sophisticated 
algorithmic and programming optimizations. See [5] for an intro-
duction to SAT solvers.

A model checker such as Spin [1] takes as input a nondetermin-
istic finite automaton that models a nondeterministic (or concur-
rent) computation and a correctness specification written as asser-
tions (or as a formula in temporal logic). It searches the state space 
of the execution of the automaton for a counterexample: a state 
that falsifies an assertion. The search is performed depth-first; since 
the automaton is nondeterministic, at each node there are several 
outgoing branches. Normally, the search tries these in a fixed order, 
but recent versions of Spin support trying the branches in random 
order. As you will see, the results can be surprising.

2  Implementing a Naive SAT Solver in Spin
The input to a SAT solver is a formula in conjunctive normal form: a 
conjunction of disjunctions called clauses. For example:

It is straightforward to implement a naive SAT solver for this 
set of clauses in Promela—the modeling language of Spin—using 
nondeterministic if-statements to choose an assignment:

When a verification of this program is performed in Spin, the 
model checker performs a depth-first search, checking all possible 
assignments of truth values to the atomic propositions. If a satisfy-
ing interpretation is found, the assertion is violated (result is true, 
so !result is false) and the verification terminates. Otherwise, the 
model checker backtracks to continue the search for a counterex-
ample. Since this set of clauses is unsatisfiable, a verification will 
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active proctype sat() {

 bool a, b, c, d, result;

 /* Select an assignment nondeterministically */

 if :: a = true :: a = false fi;

 if :: b = true :: b = false fi;

 if :: c = true :: c = false fi;

 if :: d = true :: d = false fi;

 /* Compute the truth value of the set of clauses */

 result = (a || b) && (!a || !b) && (a || !c) && 

  (!a || c) && (c || !d) && (!c || d) && 

  (b || !d) && (!b || d);

 printf(“Result = %d\n”, result);

 assert(!result)

}

(a V b) & (~a V ~b) & (a V ~c) & (~a V c) &

(c V ~d) & (~c V d) & (b V ~d) & (~b V d)
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terminate successfully after searching the entire state space. See 
Sidebar 1 that summarizes the relevant concepts.

3  Tseitin Clauses
For this small set of clauses, the verification terminates immedi-
ately, but the set is a member of a family of sets of clauses called 
Tseitin clauses, which are built from arbitrary large connected 
undirected graphs. The details of the construction are beyond 
the scope of this note; the interested reader is referred to [3, 
Section 4.5].

The above set of clauses was generated from the complete 
bipartite graph K2,2. A program was written to generate Promela 
programs for Tseitin clauses corresponding to Kn,n for any n and 
to generate variants of the programs, where a random literal is 
complemented in each variant, thereby making the set of clauses 
satisfiable.

For the unsatisfiable sets of clauses, the search must try all pos-
sible assignments of true or false to the atomic propositions and 
this demonstrates the exponential nature of the naive algorithm for 
SAT. The verification of the programs for the clauses associated 
with K2,2, K3,3 and K4,4 terminated immediately, whereas for the 
clauses associated with K5,5 the verification took 48 seconds. An 
attempt to verify the clauses associated with K6,6 terminated for 
lack of memory.1

4  SAT solving with Search Diversity
Holzmann, Joshi and Groce [4] showed that time, not memory, is 
currently the limiting factor is the application of the Spin model 

checker to large problems. They suggest using search diversity and 
parallelism: running many verifications in parallel on a multicore 
machine, where each run differs in the way the search is conducted. 
As noted in [4], one need not actually run several verifications in 
parallel to become convinced that search diversity will work. It 
is sufficient to run a number of verifications equal to the number 
of processors that are assumed to be available and to examine the 
execution times.

We carried out an experiment with search diversity applied 
to the naive SAT solver. We configured the verifier to search the 
transitions from each state randomly and ran each verification with 
several seeds. The unsatisfiable Tseitin clauses give upper bounds 
on the resources needed, while the satisfiable variants are intended 
to represent practical problems that have a solution that we are 
looking for. Eight variants and eight verifications (with different 
seeds) for each variant were run for Tseitin clauses corresponding to 
K5,5 and K6,6.

As noted above, the unsatisfiable Tseitin clauses for K5,5 took 
48 seconds to verify. Out of the eight satisfiable variants, seven 
were verified in just a few seconds, but one variant showed more 
interesting behavior. The verification of this variant using the non-
random algorithm took 37 seconds, while the random verifications 
finished in the following times.

11, 6, 6, 39, 35, 2, 12, 39.

Suppose that you have a computer with four cores running the 
random algorithm with four different seeds. At worst, the running 
times would be 39, 35, 12, 39, so the program would output an 
answer in only 12 seconds, a third of the time of the non-random 
sequential algorithm. With a bit of luck, the answer would be 
received in 6 or even 2 seconds. With eight cores, of course, the 
answer would be received in 2 seconds. While these improvements 
might not seem impressive, a real problem could see its running 
time reduced from 37 hours (you would probably cancel the run 
before receiving the result ...) to a reasonable 2 hours!

The clauses for K6,6 demonstrate more realistic scenarios. Recall 
that the unsatisfiable clauses could not be verified, so we are not 
surprised that the results for the satisfiable variants are not uni-
formly positive. Nevertheless, they are encouraging in some cases, 
as shown in Table 1.

The verifications of variants 3, 5 and 7 remain infeasible, but 
those for variants 2, 4, 6, 8 would terminate on a four-core proces-
sor because any choice of four out of the eight seeds includes at 

SIDEBAR 1

Efficient nondeterministic algorithm (generate and check)
! Generate an assignment: a=false, b=true, c=true, 
d=false.

! Evaluate the formula (this takes very little time) and check if 
result is true:

result =

 (false V true) & ... (~true V false) =

 true & ... & false =

 false

! By definition of a nondeterministic algorithm: if there exists a 
computation where result is true, then the formula is satisfiable.

Inefficient deterministic implementation (brute-force search)
! For all of the 2n assignments of true or false to the n atomic 

propositions, compute result.
! Use a fixed ordering (such as lexicographic ordering) to ensure that 

you check all possible assignments.
! If the formula is satisfiable, a satisfying assignment will eventually 

be found, but in the worst case the formula must be evaluated for 
all 2n assignments.

Variant Time (– = out of memory)

1 – – – – – – 0 –

2 21 0 0 – 21 0 21 21

3 – – – – – – – –

4 – 0 0 0 21 – 0 0

5 – – – – – – – –

6 21 20 0 – 0 21 – –

7 – – – – – – – –

8 0 0 0 21 – 0 – –

1   All times are rounded to the nearest second. We used a garden-variety Windows 
PC like the one a student might use: a low-end Intel i3 processor with two cores 
and 4 GB of memory. If you use more powerful computers, simply scale up the 
problem to use Kn,n for larger n.

TABLE 1
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6  Conclusion
Random algorithms are rather unintuitive for students brought up 
to think of algorithms as sequential deterministic procedures, or as 
a set of deterministic processes in the case of concurrency. Further-
more, while concurrency as the time-shared execution of high-level 
processes is also familiar, demonstrating speedup from parallelism is 
more difficult. We have shown how the support for search diversity 
in Spin makes it very easy to demonstrate both randomness and 
parallelism for solving a nondeterministic algorithm.

The programs described in this paper are open-source and can 
be downloaded from: http://code.google.com/p/mlcs/.  Ir
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least one that terminates in at most 21 seconds. The verification 
of variant 1 would succeed on an eight-core processor because for 
one seed out of the eight, the verification terminates immediately.  
Sidebar 2 expresses random search and parallel search diversity in 
terms of throwing dice.

5  From Search Diversity to Parallelism
Even on a two-core processor, parallelism is easy to demonstrate by 
opening multiple command windows. Consider the variant of the 
program for the clauses associated with K5,5 that took 37 seconds to 
verify using the standard search method. It was run simultaneously in 
two windows: one with the seed that led to a 35-second execution and 
one with the seed that needed only about 12 seconds. Since they ran 
in parallel on the two cores, the faster verification finished in just over 
12 seconds, while the slower verification continued to run. However, 
when two slow verifications were initiated in parallel with the fast 
verification, the latter’s run time increased to almost 18 seconds, indi-
cating that it was time-sharing the cores with the other programs.

SIDEBAR 2

Random search diversity
! Compute result for all the 2n assignments taken in some random 

order.
! If you get “lucky”, the random search will find a satisfying 

assignment faster than a search in a fixed ordering!
! For example, if the fifth assignment out of six is satisfying, then the 

fixed-order search will perform 5 steps to find it, but if you throw 
a die to determine where to start the search, you might get lucky 
and start from 4 or even 5.

Parallel random search diversity
! On a multicore computer, compute result in parallel for different 

random orders of the 2n assignments.
! This increases your chance of getting “lucky” quickly.
! For example, if you throw four dice at the same time, the 

probability of getting a 5 is much higher (1-(5/6)4=62%) than if 
you just throw one die (17%).

Dozenal Society of America
"  "  "  "  "

www.dozenal.org

http://code.google.com/p/mlcs/
mailto:moti.ben-ari@weizmann.ac.il
mailto:fatima.hallak@weizmann.ac.il
http://www.dozenal.org

