
january 2011 | vol. 54 | no. 1 | communications of the acm 75

The recen t dramat ic shift from single-processor
computer systems to many-processor parallel ones
requires reinventing much of computer science to
build and program the new systems. CS urgently
requires convergence to a robust parallel general-
purpose platform providing good performance

and programming easy enough for all
CS students and graduates. Unfortu-
nately, ease-of-programming objec-
tives have eluded parallel-computing
research over at least the past four
decades. The idea of starting with
an established easy-to-apply parallel
programming model and building an
architecture for it has been treated as
radical by hardware and software ven-
dors alike. Here, I advocate an even
more radical parallel programming
and architecture idea: Start with a sim-
ple abstraction encapsulating the de-
sired interface between programmers
and system builders.

Using Simple
Abstraction
to Reinvent
Computing for
Parallelism

doi:10.1145/1866739.1866757

The ICE abstraction may take CS from serial
(single-core) computing to effective parallel
(many-core) computing.

by Uzi Vishkin

 key insights
 � �Computing can be reinvented for

parallelism, from parallel algorithms
through programming to hardware,
preempting the technical barriers
inhibiting use of parallel machines.

 � �Moving beyond the serial von Neumann
computer (the only successful general-
purpose platform to date), computer
science will again be able to augment
mathematical induction with a simple
one-line computing abstraction.

 � �Being able to think algorithmically in
parallel is a significant advantage for
systems developers and programmers
building and programming multi-core
machines.

76 communications of the acm | january 2011 | vol. 54 | no. 1

contributed articles

I begin by proposing the Immediate
Concurrent Execution (ICE) abstrac-
tion, followed by two contributions
supporting this abstraction I have led:

XMT. A general-purpose many-core
explicit multi-threaded (XMT) com-
puter architecture designed from the
ground up to capitalize on the on-chip
resources becoming available to sup-
port the formidable body of knowl-
edge, known as parallel random-
access machine (model), or PRAM,
algorithmics, and the latent, though
not widespread, familiarity with it;
and

Workflow. A programmer’s work-
flow links ICE, PRAM algorithmics,
and XMT programming. The ICE ab-
straction of an algorithm is followed
by a description of the algorithm for
the synchronous PRAM, allowing ease
of reasoning about correctness and
complexity, which is followed by mul-
tithreaded programming that relaxes
this synchrony for the sake of imple-
mentation. Directly reasoning about
soundness and performance of mul-
tithreaded code is generally known
to be error-prone. To circumvent the
likelihood of errors, the workflow in-
corporates multiple levels of abstrac-
tion; the programmer must establish
only that multithreaded program
behavior matches the synchronous
PRAM-like algorithm it implements,
a much simpler task. Current XMT
hardware and software prototypes and
demonstrated ease-of-programming
and strong speedups suggest that CS
may be much better prepared for the
challenges ahead than many of our
colleagues realize.

A notable rudimentary abstrac-
tion—that any single instruction avail-
able for execution in a serial program
executes immediately—made serial
computing simple. Abstracting away
a hierarchy of memories, each with
greater capacity but slower access
time than its predecessor, along with
different execution time for different
operations, this Immediate Serial Exe-
cution (ISE) abstraction has been used
by programmers for years to concep-
tualize serial computing and ensure
support by hardware and compilers. A
program provides the instruction to be
executed next at each step (inductive-
ly). The left side of Figure 1 outlines
serial execution as implied by this ISE

The following two examples explore how these algorithms look and the opportunities
and benefits they provide to systems developers and programmers.

Example 1. Given are two variables A and B, each containing some value. The
exchange problem involves exchanging their values; for example, if the input to the
exchange problem is A=2 and B=5, then the output is A=5 and B=2. The standard
algorithm for this problem uses an auxiliary variable X and works in three steps:

X:=A
A:=B
B:=X

In order not to overwrite A and lose its content, the content of A is first stored in X,
B is then copied to A, and finally the original content of A is copied from X to B. The
work in this algorithm is three operations, the depth is three time units, and the space
requirement (beyond input and output) is one word.

Given two arrays A[0..n-1] and B[0..n-1], each of size n, the array-exchange problem
involves exchanging their content, so A(i) exchanges its content with B(i) for every
i=0..n-1. The array exchange serial algorithm serially iterates the standard exchange
algorithm n times. Here’s the pseudo-code:

For i =0 to n−1 do
 X:=A(i) ; A(i):=B(i) ; B(i):=X

The work is 3n, depth is 3n, and space is 2 (for X and i). A parallel array-exchange
algorithm uses an auxiliary array X[0..n-1] of size n, the parallel algorithm applies
concurrently the iterations of the serial algorithm, each exchanging A(i) with B(i) for a
different value of i. Note the new pardo command in the following pseudo-code:

For i =0 to n−1 pardo
 X(i):=A(i) ; A(i):=B(i) ; B(i):=X(i)

This parallel algorithm requires 3n work, as in the serial algorithm. Its depth has
improved from 3n to 3. If the size of the array n is 1,000 words, it would constitute
speedup by a factor of 1,000 relative to the serial algorithm. The increase in space to 2n
(for array X and n concurrent values of i) demonstrates a cost of parallelism.

Example 2. Given is the directed graph with nodes representing all commercial
airports in the world. An edge connects node u to node v if there is a nonstop flight from
airport u to airport v, and s is one of these airports. The problem is to find the smallest
number of nonstop flights from s to any other airport. The WD algorithm works as
follows: Suppose the first i steps compute the fewest number of nonstop flights from s
to all airports that can be reached from s in at most i flights, while all other airports are
marked “unvisited.”

Step i+1 concurrently finds the destination of every outgoing flight from any airport
to which the fewest number of flights from s is exactly i, and for every such destination
marked “unvisited” requires i+1 flights from s. Note that some “unvisited” nodes may
have more than one incoming edge. In such a case the arbitrary CRCW convention
implies that one of the attempting writes succeeds. While we don’t know which one, we
do know all writes would enter the number i+1; in general, however, arbitrary CRCW
also allows different values.

The standard serial algorithm for this problem9 is called breadth-first search,
and the parallel algorithm described earlier is basically breadth-first search with one
difference: Step i+1 described earlier allows concurrent-writes. In the serial version,
breadth-first search also operates by marking all nodes whose shortest path from s
requires i+1 edges after all nodes whose shortest path from s requires i edges. The
serial version then proceeds to impose a serial order. Each newly visited node is placed
in a first-in-first-out queue data structure.

Three lessons are drawn from this example: First, the serial order obstructs
the parallelism in breadth-first search; freedom to process in any-order nodes for
which the shortest path from s has the same length is lost. Second, programmers
trained to incorporate such serial data structures into their programs acquire bad
serial habits difficult to uproot; it may be better to preempt the problem by teaching
parallel programming and parallel algorithms early. And third, to demonstrate the
performance advantage of the parallel algorithm over the serial algorithm, assume
that the number of edges in the graph is 600,000 (the number of nonstop flight links),
and the smallest number of flights from airport s to any other airport is no more than
five. While the serial algorithm requires 600,000 basic steps, the parallel algorithm
requires only six. Meanwhile, each of the six steps may require longer wall clock time
than each of the 600,000 steps, but the factor 600,000/6 provides leeway for speedups
by a proper architecture.

Parallel Algorithms

contributed articles

january 2011 | vol. 54 | no. 1 | communications of the acm 77

abstraction, where unit-time instruc-
tions execute one at a time.

The rudimentary parallel abstrac-
tion I propose here is that indefinitely
many instructions available for con-
current execution execute immediate-
ly, dubbing the abstraction Immediate
Concurrent Execution. A consequence
of ICE is a step-by-step (inductive) ex-
plication of the instructions available
next for concurrent execution. The
number of instructions in each step is
independent of the number of proces-
sors, which are not even mentioned.
The explication falls back on the serial
abstraction in the event of one instruc-
tion per step. The right side of Figure 1
outlines parallel execution as implied
by the ICE abstraction. At each time
unit, any number of unit-time instruc-
tions that can execute concurrently do
so, followed by yet another time unit
in which the same execution pattern
repeats, and so on, as long as the pro-
gram is running.

How might parallelism be advan-
tageous for performance? The PRAM
answer is that in a serial program the
number of time units, or “depth,” is
the same as the algorithm’s total num-
ber of operations, or “work,” while in
the parallel program the number of
time units can be much lower. For a
parallel program, the objective is that
its work does not much exceed that
of its serial counterpart for the same
problem, and its depth is much lower
than its work. (Later in the article, I
note the straightforward connection
between ICE and the rich PRAM algo-
rithmic theory and that ICE is nothing
more than a subset of the work-depth
model.) But how would a system de-
signer go about building a computer
system that realizes the promise of
ease of programming and strong per-
formance?

Outlining a comprehensive solu-
tion, I discuss basic tension between
the PRAM abstraction and hardware
implementation and a workflow that
goes through ICE and PRAM-related
abstractions for programming the
XMT computer architecture.

Some many-core architectures are
likely to become mainstream, mean-
ing they must be easy enough to pro-
gram by every CS major and graduate.
I am not aware of other many-core
architectures with PRAM-like abstrac-

tion. Allowing programmers to view a
computer operation as a PRAM would
make it easy to program,10 hence this
article should interest all such majors
and graduates.

Until 2004, standard (desktop)
computers comprised a single proces-
sor core. Since 2005 when multi-core
computers became the standard, CS
has appeared to be on track with a
prediction5 of 100+-core computers
by the mid-2010s. Transition from se-
rial (single-core) computing to parallel
(many-core) computing mandates the
reinvention of the very heart of CS, as
these highly parallel computers must
be built and programmed differently
from the single-core machines that
dominated standard computer sys-
tems since the inception of the field
almost 70 years ago. By 2003, the clock
rate of a high-end desktop proces-
sor had reached 4GHz, but processor
clock rates have improved only barely,
if at all, since then; the industry simply
did not find a way to continue improv-
ing clock rates within an acceptable
power budget.5 Fortunately, silicon
technology improvements (such as
miniaturization) allow the amount of
logic a computer chip can contain to
keep growing, doubling every 18 to 24
months per Gordon Moore’s 1965 pre-
diction. Computers with an increas-
ing number of cores are now expected
but without significant improvement
in clock rates. Exploiting the cores
in parallel for faster completion of a
computing task is today the only way
to improve performance of individual
tasks from one generation of comput-
ers to the next.

Unfortunately, chipmakers are de-
signing multi-core processors most

programmers can’t handle,19 a prob-
lem of broad interest. Software pro-
duction has become a key compo-
nent of the manufacturing sector of
the economy. Mainstream machines
most programmers can’t handle cause
significant decline in productivity
of manufacturing, a concern for the
overall economy. Andy Grove, former
Chairman of the Board of Intel Corp.,
said in the 1990s that the software spi-
ral—the cyclic process of hardware
improvements leading to software
improvements leading back to hard-
ware improvements—was an engine
of sustained growth for IT for decades
to come. A stable application-software
base that could be reused and en-
hanced from one hardware generation
to the next was available for exploita-
tion. Better performance was assured
with each new generation, if only the
hardware could run serial code faster.
Alas, the software spiral today is bro-
ken.21 No broad parallel-computing
application software base exists for
which hardware vendors are commit-
ted to improving performance. And
no agreed-upon parallel architecture
allows application programmers to
build such a base for the foreseeable
future. Instating a new software spiral
could indeed be a killer app for gener-
al-purpose many-core computing; ap-
plication software developers would
put it to good use for specific applica-
tions, and more consumers worldwide
would want to buy new machines.

This robust market for many-core-
based machines and applications
leads to the following case for govern-
ment support: Foremost among to-
day’s challenges is many-core conver-
gence, seeking timely convergence to

Figure 1. Serial execution based on the serial ISE abstraction vs. parallel execution based
on the parallel ICE abstraction.

.

Serial doctrine
(Immediate serial execution)

Natural (parallel) algorithm
(Immediate concurent execution)

..

..

N
u

m
b

er
 o

f
O

p
er

at
io

n
s

N
u

m
b

er
 o

f
O

p
er

at
io

n
s

Time = Number of Operations Time << Number of Operations

Time Time

. ..

78 communications of the acm | january 2011 | vol. 54 | no. 1

contributed articles

a robust many-core platform coupled
with a new many-core software spiral
to serve the world of computing for
years to come. A software spiral is ba-
sically an infrastructure for the econ-
omy. Since advancing infrastructures
generally depends on government
funding, designating software-spiral
rebirth a killer app also motivates
funding agencies and major vendors
to support the work. The impact on
manufacturing productivity could fur-
ther motivate them.

Programmer Workflow
ICE requires the lowest level of cog-
nition from the programmer relative
to all current parallel programming
models. Other approaches require
additional steps (such as decomposi-
tion10). In CS theory, the speedup pro-
vided by parallelism is measured as
work divided by depth; reducing the
advantage of ICE/PRAM to practice is
a different matter.

The reduction to practice I have led
relies on the programmer’s workflow,
as outlined in the right side of Figure
2. Later, I briefly cover the parallel-
algorithms stage. The step-by-step
PRAM explication, or “data-parallel”
instructions, represents a traditional
tightly synchronous outlook on paral-
lelism. Unfortunately, tight step-by-
step synchrony is not a good match
with technology, including its power
constraints.

To appreciate the difficulty of im-

plementing step-by-step synchrony
in hardware, consider two examples:
Memories based on long tightly syn-
chronous pipelines of the type seen in
Cray vector machines have long been
out of favor among architects of high-
performance computing; and process-
ing memory requests takes from one
to 400 clock cycles. Hardware must be
made as flexible as possible to advance
without unnecessary waiting for con-
current memory requests.

To underscore the importance of
the bridge the XMT approach builds
from the tightly synchronous PRAM
to relaxed synchrony implementation,
note three known limitations with
power consumption of multi-core ar-
chitectures: high power consumption
of the wide communication buses
needed to implement cache coher-
ence; basic nm complexity of cache-
coherence traffic (given n cores and
m invalidations) and implied toll on
inter-core bandwidth; and high power
consumption needed for a tightly syn-
chronous implementation in silicon
in these designs. The XMT approach
addresses all three by avoiding hard-
ware-supported cache-coherence al-
together and by significantly relaxing
synchrony.

Workflow is important, as it guides
the human-to-machine process of pro-
gramming; see Figure 2 for two work-
flows. The non-XMT hardware imple-
mentation on the left side of the figure
may require revisiting and changing

the algorithm to fit bandwidth con-
straints among threads of the compu-
tation, a programming process that
doesn’t always yield an acceptable
outcome. However, the XMT hardware
allows a workflow (right side of the
figure) that requires tuning only for
performance; revisiting and possibly
changing the algorithm is generally
not needed. An optimizing compiler
should be able to do its own tuning
without programmer intervention, as
in serial computing.

Most of the programming effort
in traditional parallel programming
(domain partitioning, load balancing)
is generally of lesser importance for
exploiting on-chip parallelism, where
parallelism overhead can be kept low
and processor-to-memory bandwidth
high. This observation drove develop-
ment of the XMT programming model
and its implementation by my re-
search team. XMT is intended to pro-
vide a simpler parallel programming
model that efficiently exploits on-chip
parallelism through multiple design
elements.

The XMT architecture uses a high-
bandwidth low-latency on-chip inter-
connection network to provide more
uniform memory-access latencies.
Other specialized XMT hardware
primitives allow concurrent instantia-
tion of as many threads as the number
of available processors, a count that
can reach into the thousands. Specifi-
cally, XMT can perform two main op-
erations: forward (instantly) program
instructions to all processors in the
time required to forward the instruc-
tions (for one thread) to just one pro-
cessor; and reallocate any number of
processors that complete their jobs at
the same time to new jobs (along with
their instructions) in the time required
to reallocate one processor. The high-
bandwidth, low-latency interconnec-
tion network and low-overhead cre-
ation of many threads allow efficient
support for the fine-grain parallelism
used to hide memory latencies and a
programming model for which local-
ity is less an issue than in designs with
less bandwidth. These mechanisms
support dynamic load balancing, re-
lieving programmers from having to
directly assign work to processors.
The programming model is simplified
further by letting threads run to com-

Figure 2. Right column is a workflow from an ICE abstraction of an algorithm to
implementation; left column may never terminate.

Rethink algorithm:
Take better advantage
of cache

ICE

Parallel algorithm

Parallel program

ICE

Parallel algorithm

XMT Program

Insufficient inter−thread
bandwidth?

XMT hardware

Tune

Hardware

yes

no

contributed articles

january 2011 | vol. 54 | no. 1 | communications of the acm 79

pletion without synchronization (no
busy-waits) and synchronizing access
to shared data with prefix-sum (fetch-
and-add type) instructions. These fea-
tures result in a flexible programming
style that accommodates the ICE ab-
straction and encourages program de-
velopment for a range of applications.

The reinvention of computing for
parallelism also requires pulling to-
gether a number of technical commu-
nities. My 2009 paper26 sought to build
a bridge to other architectures by cast-
ing the abstraction-centric vision of
this article as a possible module in
them, identifying a limited number of
capabilities the module provides and
suggesting a preferred embodiment
of these capabilities using concrete
“hardware hooks.” If it is possible
to augment a computer architecture
through them (with hardware hooks
or other means), the ICE abstraction
and the programmer’s workflow, in
line with this article, can be support-
ed. The only significant obstacle in to-
day’s multi-core architectures is their
large cache-coherent local caches.
Their limited scalability with respect
to power gives vendors more reasons
beyond an easier programming model
to let go of this obstacle.

PRAM parallel algorithmic ap-
proach. The parallel random-access
machine/model (PRAM) virtual model
of computation is a generalization of
the random-access machine (RAM)
model.9 RAM, the basic serial model
behind standard programming lan-
guages, assumes any memory access
or any operation (logic or arithmetic)
takes unit-time (serial abstraction).
The formal PRAM model assumes a
certain number, say, p of processors,
each able to concurrently access any
location of a shared memory in the
same time as a single access. PRAM
has several submodels that differ by
assumed outcome of concurrent ac-
cess to the same memory location for
either read or write purposes. Here, I
note only one of them—the Arbitrary
Concurrent-Read Concurrent-Write
(CRCW) PRAM—which allows con-
current accesses to the same memory
location for reads or writes; reads
complete before writes, and an arbi-
trary write (to the same location, un-
known in advance) succeeds. PRAM
algorithms are essentially prescribed

as a sequence of rounds and, for each
round, up to p processors execute con-
currently. The performance objective
is to minimize the number of rounds.
The PRAM parallel-algorithmic ap-
proach is well-known and has never
been seriously challenged by any
other parallel-algorithmic approach
in terms of ease of thinking or wealth
of knowledgebase. However, PRAM
is also a strict formal model. A PRAM
algorithm must therefore prescribe
for each and every one of its p proces-
sors the instruction the processor ex-
ecutes at each time unit in a detailed
computer-program-like fashion that
can be quite demanding. The PRAM-
algorithms theory mitigates this in-
struction-allocation scheme through
the work-depth (WD) methodology.

This methodology (due to Shiloach
and Vishkin20) suggests a simpler way
to allocate instructions: A parallel
algorithm can be prescribed as a se-
quence of rounds, and for each round,
any number of operations can be ex-
ecuted concurrently, assuming un-
limited hardware. The total number
of operations is called “work,” and the
number of rounds is called “depth,” as
in the ICE abstraction. The first perfor-
mance objective is to reduce work, and
the immediate second one is to reduce
depth. The methodology of restrict-
ing attention only to work and depth
has been used as the main framework
for the presentation of PRAM algo-
rithms16,17 and is in my class notes on
the XMT home page http://www.umi-
acs.umd.edu/users/vishkin/XMT/. De-
riving a full PRAM description from a
WD description is easy. For concrete-
ness, I demonstrate WD descriptions
on two examples, the first concerning
parallelism, the second concerning
the WD methodology (see the sidebar
“Parallel Algorithms”).

The programmer’s workflow starts

with the easy-to-understand ICE ab-
straction and ends with the XMT sys-
tem, providing a practical implemen-
tation of the vast PRAM algorithmic
knowledge base.

XMT programming model. The
programming model behind the XMT
framework is an arbitrary concurrent
read, concurrent write single program
multiple data, or CRCW SPMD, pro-
gramming model with two executing
modes: serial and parallel. The two in-
structions—spawn and join—specify
the beginning and end, respectively,
of a parallel section (see Figure 3). An
arbitrary number of virtual threads,
initiated by a spawn and terminated
by a join, share the same code. The
workflow relies on the spawn com-
mand to extend the ICE abstraction
from the WD methodology to XMT
programming. As with the respective
PRAM model, the arbitrary CRCW as-
pect dictates that concurrent writes
to the same memory location result
in an arbitrary write committing.
No assumption needs to be made by
the programmer beforehand about
which one will succeed. An algorithm
designed with this property in mind
permits each thread to progress at its
own speed, from initiating spawn to
terminating join, without waiting for
other threads—no thread “busy-waits”
for another thread. The implied “inde-
pendence of order semantics” allows
XMT to have a shared memory with a
relatively weak coherence model. An
advantage of this easier-to-implement
SPMD model is that it is PRAM-like. It
also incorporates the prefix-sum state-
ment operating on a base variable, B,
and an increment variable, R. The re-
sult of a prefix-sum is that B gets the
value B + R, while R gets the initial val-
ue of B, a result called “atomic” that’s
similar to fetch-and-increment in Got-
tlieb et al.12

Figure 3. Serial and parallel execution modes.

Serial
mode

Spawn…

… …

…Join Spawn Join

Parallel
mode

Serial
mode

Serial
mode

Parallel
mode

80 communications of the acm | january 2011 | vol. 54 | no. 1

contributed articles

The primitive is especially useful
when several threads perform a prefix-
sum simultaneously against a com-
mon base, because multiple prefix-
sum operations can be combined by
the hardware to form a very fast multi-
operand prefix-sum operation. Be-
cause each prefix-sum is atomic, each

thread returns a different R value. This
way, the parallel prefix-sum command
can be used to implement efficient
and scalable inter-thread synchroniza-
tion by arbitrating an ordering among
the threads.

The XMTC high-level language im-
plements the programming model.

XMTC is an extension of standard C,
augmenting C with a small number
of commands (such as spawn, join,
and prefix-sum). Each parallel re-
gion is delineated by spawn and join
statements, and synchronization is
achieved through the prefix-sum and
join commands. Every thread execut-

The merging problem takes as
input two sorted arrays A = A[1 . . . n]
and B = B[1 . . . n]. Each of these 2n
elements must then be mapped into
an array C = C[1 . . . 2n] that is also
sorted. I first review the Shiloach-
Vishkin two-step PRAM algorithm
for merging, then discuss its related
XMTC programming:

Step 1. Partitioning. This step
selects some number x of elements
from A at equal distances. In the
example in the figure here, suppose
the x = 4 elements 4, 16, 20, and 27
are selected and ranked relative to
array B using x concurrent binary
searches. Similarly, x elements from
B at equal distances, say, elements 1,
7, 13, and 24, are also selected, then
ranked relative to array A using x = 4
concurrent binary searches. The step
takes O(log n) time. These ranked
elements partition the merging job
that must be completed into 2x = 8
“strips”; in the figure, step 2 includes
eight such strips.

Step 2. Actual work. For each
strip the remaining job is to merge
a subarrary of A with a subarray of
B, mapping their elements into a
subarray of C. Since these 2x merging
jobs are mutually independent, each
is able to concurrently apply the
standard linear-time serial merging
algorithm.

Consider the following
complexity analysis of this algorithm:
Since each strip has at most n/x
elements from A and n/x elements
from B, the depth (or parallel time) of
the second step is O(n/x). If x ≤ n/ log
n, the first step and the algorithm as
a whole does O(n) work. In the PRAM
model, this algorithm requires O(n/x
+ log n) time. A simplistic XMTC
program requires as many spawn
(and respective join) commands
as the number of PRAM steps. The
reasons I include this example here
are that it involves a way to use only
a single spawn (and a single join)
command to represent the whole
merging algorithm and, as I explain
in the Conclusion, to demonstrate
an XMT advantage over current
hardware by comparing it with
the parallel merging algorithm in
Cormen et al.9

Merging in XMTC. An XMTC
program spawns 2x concurrent
threads, one for each of the selected
elements in array A or B. Using binary
search, each thread first ranks its array
element relative to the other array,
then proceeds directly (without a join
operation) to merge the elements in its
strip, terminating just before setting
the merging result of another selected
element because the merging result is
computed by another thread.

To demonstrate the operation of a
thread, consider the thread of element 20.
Starting with binary search on array B the

thread finds that 20 ranks as 11 in B; 11
is the index of 15 in B. Since the index of
20 in A is 9, element 20 ranks 20 in C. The
thread then compares 21 to 22 and ranks
element 21 (as 21), then compares 23 to
22 to rank 22, 23 to 24 to rank 23, and 24
to 25 but terminates since the thread of 24
ranks 24, concluding the example.

Our experience is that, with little
effort, XMT-type threading requires
fewer synchronizations than implied
by the original PRAM algorithm.
The current merging example
demonstrates that synchronization
reduction is sometimes significant.

Merging with a Single Spawn-Join
Main steps of the ranking/merging algorithm.

4

A B A B

6

8

9

16

17

18

19

20

21

23

25

27

29

31

32

1

2

3

5

7

10

11

12

13

14

15

22

24

26

28

30

6

8

9

17

18

19

21

23

25

29

31

32

2

3

5

10

11

12

14

15

26

28

30

22

Step 1
Partitioning

Step 2
Actual Work

contributed articles

january 2011 | vol. 54 | no. 1 | communications of the acm 81

ing the parallel code is assigned a
unique thread ID, designated $. The
spawn statement takes as arguments
the lowest ID and highest ID of the
threads to be spawned. For the hard-
ware implementation (discussed lat-
er), XMTC threads can be as short as
eight to 10 machine instructions that
are not difficult to get from PRAM al-
gorithms. Programmers from high
school to graduate school are pleas-
antly surprised by the flexibility of
translating PRAM algorithms to XMTC
multi-threaded programs. The ability
to code the whole merging algorithm
using a single spawn-join pair is one
such surprise (see the sidebar “Merg-
ing with a Single Spawn-Join”).

To demonstrate simple code, con-
sider two code examples:

The first is a small XMTC program
for the parallel exchange algorithm
discussed in the “Parallel Algorithms”
sidebar:

spawn (0 , n−1){
	 var x
			 x:=A($) ;
		 A($):=B($) ;
		 B($):=x
}

The program spawns a concurrent
thread for each of the depth-3 serial-
exchange iterations using a local vari-
able x. Note that the join command is
implied by the right parenthesis at the
end of the program.

The second assumes an array of n
integers A. The programmer wishes
to “compact” the array by copying all
non-zero values to another array, B, in
an arbitrary order. The XMTC code is:

psBaseReg x=0;
spawn (0 , n−1){
	 int e ;
	 e=1;
	 i f (A[$]) !=0) {
		 ps (e , x) ;
		 B[e]=A[$]
}
}

It declares a variable x as the base
value to be used in a prefix-sum com-
mand (ps in XMTC), initializing it to 0.
It then spawns a thread for each of the
n elements in A. A local thread variable
e is initialized to 1. If the element of

the thread is non-zero, the thread per-
forms a prefix-sum to get a unique in-
dex into B where it can place its value.

Other XMTC commands. Prefix-sum-
to-memory (psm) is another prefix-
sum command, the base of which is
any location in memory. While the
increment of ps must be 0 or 1, the in-
crement of psm is not limited, though
its implementation is less efficient.
Single Spawn (sspawn) is a command
that can spawn an extra thread and be
nested. A nested spawn command in
XMTC code must be replaced (by pro-
grammer or compiler) by sspawn com-
mands. The XMTC commands are de-
scribed in the programmer’s manual
included in the software release on the
XMT Web pages.

Tuning XMT programs for perfor-
mance. My discussion here of perfor-
mance tuning would be incomplete
without a description of salient fea-
tures of the XMT architecture and
hardware. The XMT on-chip general-
purpose computer architecture is
aimed at the classic goal of reducing
single-task completion time. The WD
methodology gives algorithm design-
ers the ability to express all the paral-
lelism they observe. XMTC program-
ming further permits expressing this
virtual parallelism by letting program-
mers express as many concurrent
threads as they wish. The XMT proces-
sor must now provide an effective way
to map this virtual parallelism onto the
hardware. The XMT architecture pro-
vides dynamic allocation of the XMTC
threads onto the hardware for better
load balancing. Since XMTC threads
can be short, the XMT hardware must
directly manage XMT threads to keep
overhead low. In particular, an XMT
program looks like a single thread to
the operating system (see the sidebar
“The XMT Processor” for an overview
of XMT hardware).

The main thing performance pro-
grammers must know in order to tune
the performance of their XMT pro-
grams is that a ready-to-run version of
an XMT program depends on several
parameters: the length of the (longest)
sequence of roundtrips to memory
(LSRTM); queuing delay to the same
shared memory location (known as
queue-read queue-write, or QRQW11);
and work and depth. Their optimiza-
tion is a responsibility shared subtly

by the architecture, the compiler, and
the programmer/algorithm designer.

See Vishkin et al27 for a demonstra-
tion of tuning XMTC code for perfor-
mance by accounting for LSRTM. As
an example, it improves XMT hard-
ware performance on the problem of
summing n numbers.

Execution can differ from the literal
XMTC code in order to keep the size of
working space under control or other-
wise improve performance. For exam-
ple, compiler and runtime methods
could perform this modification by
clustering virtual threads offline or on-
line and prioritize execution of nested
spawns using known heuristics based
on a mix of depth-first and breadth-
first searches.

Commitments to silicon of XMT
by my research team at the University
of Maryland include a 64-processor,
75MHz computer based on field-pro-
grammable gate array (FPGA) technol-
ogy developed by Wen28 and 64-proces-
sor ASIC 10mm X 10mm chip using
IBM’s 90nm technology developed
together by Balkan, Horak, Keceli, and
Wen (see Figure 4). Tzannes and Car-
gaea (guided by Barua and me) have
also developed a basic yet stable com-
piler, and Keceli has developed a cycle-
accurate simulator of XMT. Both are
available through the XMT software
release on the XMT Web pages.

Easy to build. An individual gradu-
ate student with no prior design expe-
rience completed the XMT hardware
description (in Verilog) in just over
two years (2005–2007). XMT is also sil-
icon-efficient. The ASIC design by the
XMT research team at the University
of Maryland shows that a 64-processor
XMT needs the same silicon area as a
(single) current commodity core. The
XMT approach goes after any type of
application parallelism regardless of
how much parallelism the application
requires, the regularity of this paral-
lelism, or the parallelism’s grain size,
and is amenable to standard multipro-
gramming where the hardware sup-
ports several concurrent operating-
system threads.

The XMT team has demonstrated
good XMT performance, independent
software engineers have demonstrat-
ed XMT programmability (see Hoch-
stein et al.14), and independent educa-
tion professionals have demonstrated

82 communications of the acm | january 2011 | vol. 54 | no. 1

contributed articles

XMT teachability (see Torbert et al.23).
Highlights include evidence of 100X
speedups on general-purpose applica-
tions on a simulator of 1,000 on-chip
processors13 and speedups ranging
from 15X to 22X for irregular prob-
lems (such as Quicksort, breadth-first
search on graphs, finding the longest
path in a directed acyclic graph), and
speedups of 35X–45X for regular pro-
grams (such as matrix multiplication
and convolution) on the 64-processor
XMT prototype versus the best serial
code on XMT.28

In 2009, Caragea et al.8 demonstrat-
ed nearly 10X average performance
improvement potential relative to In-
tel Core 2 Duo for a 64-processor XMT
chip using the same silicon area as a

single core. In 2010, Caragea et al.7
demonstrated that, using the same
silicon area as a modern graphics pro-
cessing unit (GPU), the XMT design
achieves an average speedup of 6X rel-
ative to the GPU for irregular applica-
tions and falls only slightly behind on
regular ones. All GPU code was written
and optimized by researchers and pro-
grammers unrelated to the XMT proj-
ect.

With few exceptions, parallel pro-
gramming approaches that dominat-
ed parallel computing prior to many-
cores are still favored by vendors, as
well as high-performance users. The
steps they require include decomposi-
tion, assignments, orchestration, and
mapping.10 Indeed, parallel program-

ming difficulties have failed all gen-
eral-purpose parallel systems to date
by limiting their use. In contrast, XMT
frees its programmers from doing all
the steps, in line with the ICE/PRAM
abstraction.

The XMT software environment
release (a 2010 release of the XMTC
compiler and cycle-accurate simulator
of XMT) is available by free download
from the XMT home page and from
sourceforge.net, along with extensive
documentation, and can be download-
ed to any standard desktop computing
platform. Teaching materials cover-
ing a class-tested programming meth-
odology in which students are taught
only parallel algorithms are also avail-
able from the XMT Web pages.

Most CS programs today graduate
students to a job market certain to be
dominated by parallelism but without
the preparation they need. The level of
awareness of parallelism required by
the ICE/PRAM abstraction is so basic
it is necessary for all other current ap-
proaches. As XMT is also buildable,
the XMT approach is sufficient for pro-
gramming a real machine. I therefore
propose basing the introduction of
the new generation of CS students to
parallelism on the workflow presented
here, at least until CS generally con-
verges on a many-core platform.

Related efforts. Related efforts to-
ward parallelism come in several fla-
vors; for example, Valiant’s Multi-BSP
bridging model for multi-core com-
puting24 appears closest to the XMT
focus on abstraction. The main dif-
ference, however, is that XMT aims
to preempt known shortcomings in
existing machines by showing how to
build machines differently, while the
modeling in Valiant24 aims to improve
understanding of existing machines.

These prescriptive versus descrip-
tive objectives are not the only differ-
ence. Valiant24 modeled relatively low-
level parameters of certain multi-core
architectures, making them closer to
Vishkin et al.27 than to this article. Un-
like both sources, simplicity drives the
“one-liner” ICE abstraction. Parallel
languages (such as CUDA, MPI, and
OpenMP) tend to be different from
computational models, as they often
do not involve performance model-
ing. They require a level of detail that
distances them farther from simple

Introduced at a time of hardware scarcity almost 70 years ago, the von Neumann
apparatus of stored program and program counter forced the threading of instructions
through a metaphoric eye of a needle. Coupling of mathematical induction and (serial)
ISE abstraction was engineered to provide this threading, as discussed throughout the
article. See especially the description of how variable X is used in the pseudo-code of
the serial iterative algorithm in the exchange problem; also the first-in-first-out queue
data structure in the serial breadth-first search; and the serial merging algorithm in
which two elements are compared at a time, one from each of two sorted input arrays.
As eye-of-a-needle threading is already second nature for many programmers, it has
come to be associated with ease of programming.

Threading through the eye of a needle is an aphorism for extreme difficulty, even
impossibility, in the broader culture, including in the texts of three major religions.
The XMT extension to the von Neumann apparatus (noted in “The XMT Processor”
sidebar) exploits today’s relative abundance of hardware resources to free computing
from the constraint of threading through the original apparatus. Coupling
mathematical induction and the ICE abstraction explored here is engineered to
capitalize on this freedom for ease of parallel programming and improved machine
and application performance.

Eye-of-a-Needle
Aphorism

Figure 4. Left side. FPGA board (size of a car license plate) with three FPGA chips (gener-
ously donated by Xilinx): A, B: Virtex-4LX200; C: Virtex-4FX100. Right side. 10mm X 10mm
chip using IBM Flip-Chip technology.

A, B: Virtex-4LX200.
C: Virtex-4FX100.

A B

DDR2

PCI bus

C

10mm X 10mm chip using
IBM Flip-Chip technology.

contributed articles

january 2011 | vol. 54 | no. 1 | communications of the acm 83

The XMT processor (see the figure
here) includes a master thread
control unit (MTCU), processing
clusters, each comprising several
thread-control units (TCUs),
a high-bandwidth low-latency
interconnection network3 and its
extension to a globally asynchronous
locally synchronous, GALS-style,
design incorporating asynchronous
logic,15,18 memory modules (MM),
each comprising on-chip cache and
off-chip memory, prefix-sum (PS)
unit(s), and global registers. The
shared-memory-modules block
(bottom left of the figure) suppresses
the sharing of a memory controller
by several MMs. The processor
alternates between serial mode (in
which only the MTCU is active) and
parallel mode. The MTCU has a
standard private data cache (used
in serial mode) and a standard
instruction cache. The TCUs, which
lack a write data cache, share the
MMs with the MTCU.

The overall XMT design is
guided by a general design ideal
I call no-busy-wait finite-state-
machines, or NBW FSM, meaning
the FSMs, including processors,
memories, functional units,
and interconnection networks
comprising the parallel machine,
never cause one another to busy-
wait. It is ideal because no parallel
machine can operate that way.
Nontrivial parallel processing
demands the exchange of results
among FSMs. The NBW FSM
ideal represents my aspiration to
minimize busy-waits among the
various FSMs comprising a machine.

Here, I cite the example of how
the MTCU orchestrates the TCUs
to demonstrate the NBW FSM
ideal. The MTCU is an advanced
serial microprocessor that also
executes XMT instructions (such as
spawn and join). Typical program
execution flow, as in Figure 3, can
also be extended through nesting of
sspawn commands. The MTCU uses
the following XMT extension to the
standard von Neumann apparatus
of the program counters and stored
program: Upon encountering
a spawn command, the MTCU
broadcasts the instructions in the
parallel section starting with that
spawn command and ending with a
join command on a bus connecting
to all TCU clusters.

The largest ID number of a
thread the current spawn command
must execute Y is also broadcast
to all TCUs. The ID (index) of the
largest executing threads is stored in
a global register X. In parallel mode,
a TCU executes one thread at a time.

Executing a thread to completion
(upon reaching a join command), the
TCU does a prefix-sum using the PS
unit to increment global register X. In
response, the TCU gets the ID of the
thread it could execute next; if the ID is
≤Y, the TCU executes a thread with this
ID. Otherwise, the TCU reports to the
MTCU that it finished executing. When
all TCUs report they’ve finished, the
MTCU continues in serial mode.

The broadcast operation is
essential to the XMT ability to start all
TCUs at once in the same time it takes
to start one TCU. The PS unit allows
allocation of new threads to the TCUs
that just became available within the
same time it takes to allocate one
thread to one TCU. This dynamic
allocation provides runtime load-
balancing of threads coming from an
XMTC program.

We are now ready to connect with
the NBW FSM ideal. Consider an XMT
program derived from the workflow.
From the moment the MTCU starts
executing a spawn command until
each TCU terminates the threads
allocated to it, no TCU can cause
any other TCU to busy-wait for it. An
unavoidable busy-wait ultimately
occurs when a TCU terminates and
begins waiting for the next spawn
command.

TCUs, with their own local

registers, are simple in-order
pipelines, including fetch, decode,
execute/memory-access, and write-
back stages. The FPGA computer has
64 TCUs in four clusters of 16 TCUs
each. XMT designers and evangelists
aspire to develop a machine with 1,024
TCUs in 64 clusters. A cluster includes
functional units shared by several
TCUs and one load/store port to the
interconnection network shared by all
its TCUs.

The global memory address
space is evenly partitioned into the
MMs through a form of hashing. The
XMT design eliminates the cache-
coherence problem, a challenge in
terms of bandwidth and scalability. In
principle, there are no local caches at
the TCUs. Within each MM, the order
of operations to the same memory
location is preserved.

For performance enhancements
(such as data prefetch) incorporated
into the XMT hardware, along with
more on the architecture, see Wen
and Vishkin28; for more on compiler
and runtime scheduling methods for
nested parallelism, see Tzannes et
al.,23 and for prefetching methods, see
Caragea et al.6

Patents supporting the XMT
hardware were granted from 2002
to 2010, appearing in Nuzman and
Vishkin18 and Vishkin.25

The XMT Processor

Block diagram of the XMT architecture.

c
lu

s
t

e
r

 0

c
lu

s
t

e
r

 1

c
lu

s
t

e
r

 2

c
lu

s
t

e
r

 n

T
C

U
 0

T
C

U
 1

T
C

U
 2

T
C

U
 t

Read Buffers
TCU I-Cache
Register File

FU interconnection network

Cluster-Memory Interconnection Network

LSU with Hashing Function

Shared Functional Units
FU 0 FU 1 FU p

Shared Memory Modules

MM 0
L1 Cache
L2 Cache

MM 1
L1 Cache
L2 Cache

MM M
L1 Cache
L2 Cache

Master TCU
Functional Units
and Register File

Private
L1 D-Cache

Private
L1 I-Cache

PS
Unit

PS Unit
(and global register)

Instruction
Broadcast

P
S

N

et
w

or
k

84 communications of the acm | january 2011 | vol. 54 | no. 1

contributed articles

abstractions.
Several research centers1,2 are ac-

tively exploring the general problems
discussed here. The University of Cali-
fornia, Berkeley, Parallel Computing
Lab and Stanford University’s Perva-
sive Parallelism Laboratory advocate
an application-driven approach to re-
inventing computing for parallelism.

Conclusion
The vertical integration of a parallel-
processing system, compiler, pro-
gramming, and algorithms proposed
here through the XMT framework with
the ICE/PRAM abstraction as its front-
end is notable for its relative simplic-
ity. ICE is a newly defined feature that
has not appeared in prior research, in-
cluding my own, and is more rudimen-
tary than prior parallel computing
concepts. Rudimentary concepts are
the basis for the fundamental develop-
ment of any field. ICE can be viewed as
an axiom that builds on mathematical
induction, one of the more rudimen-
tary concepts in mathematics. The
suggestion here of using a simple ab-
straction as the guiding principle for
reinventing computing for parallelism
also appears to be new. Considerable
evidence suggests it can be done (see
the sidebar “Eye-of-a-Needle Apho-
rism”).

The following comparison with a
chapter on multithreading algorithms
in the 2009 textbook Introduction to Al-
gorithms by Cormen et al.9 helps clarify
some of the article’s contributions.
The 1990 first edition of Cormen et
al.9 included a chapter on PRAM algo-
rithms emphasizing the role of work-
depth design and analysis; the 2009
chapter9 likewise emphasized work-
depth analysis. However, to match cur-
rent commercial hardware, the 2009
chapter turned to a variant of dynamic
multithreading (in lieu of work-depth
design) in which the main primitive
was similar to the XMT sspawn com-
mand (discussed here). One thread
was able to generate only one more
thread at a time; these two threads
would then generate one more thread
each, and so on, instead of freeing the
programmer to directly design for the
work-depth analysis that follows (per
the same 2009 chapter).

Cormen et al.’s9 dynamic multi-
threading should encourage hardware

enhancement to allow simultaneously
starting many threads in the same
time required to start one thread.
A step ahead of available hardware,
XMT includes a spawn command that
spawns any number of threads upon
transition to parallel mode. More-
over, the ICE abstraction incorporates
work-depth early in the design work-
flow, similar to Cormen et al.’s 1990
first edition.9

The O(log n) depth parallel merging
algorithm versus the O(log2 n) depth
one in Cormen et al.9 demonstrated an
XMT advantage over current hardware,
as XMT allows a parallel algorithm for
the same problem that is both fast-
er and simpler. The XMT hardware
scheduling brought the hardware per-
formance model much closer to work-
depth and allowed the XMT workflow
to streamline the design with the anal-
ysis from the start.

Several features of the serial para-
digm made it a success, including a
simple abstraction at the heart of the
“contract” between programmers
and builders, the software spiral, ease
of programming, ease of teaching,
and backward compatibility on serial
code and application programming.
The only feature that XMT, as in other
multi-core approaches, does not pro-
vide is speedups for serial code. The
ICE/PRAM/XMT workflow and archi-
tecture provide a viable option for
the many-core era. My XMT solution
should challenge and inspire others to
come up with competing abstraction
proposals or alternative architectures
for ICE/PRAM. Consensus around an
abstraction will move CS closer to con-
vergence toward a many-core platform
and putting the software spiral back
on track.

The XMT workflow also gives pro-
grammers a productivity advantage.
For example, I have traced several er-
rors in student-developed XMTC pro-
grams to shortcuts the students took
around the ICE algorithms. Overall,
improved understanding of program-
mer productivity, a traditionally dif-
ficult issue in parallel computing,
must be a top priority for architec-
ture research. To the extent possible,
evaluation of productivity should be
on par with performance and power.
For starters, productivity benchmarks
must be developed.

The XMT
on-chip
general-purpose
computer
architecture
is aimed at the
classic goal
of reducing
single-task
completion time.

contributed articles

january 2011 | vol. 54 | no. 1 | communications of the acm 85

Ease of programming, or program-
mability, is a necessary condition for
the success of any many-core plat-
form, and teachability is a necessary
condition for programmability and in
turn for productivity. The teachability
of the XMT approach has been demon-
strated extensively; for example, since
2007 more than 100 students in grades
K–12 have learned to program XMT,
including in two magnet programs:
Montgomery Blair High School, Silver
Spring, MD, and Thomas Jefferson
High School for Science and Technol-
ogy, Alexandria, VA.22 Others are Balti-
more Polytechnic High School, where
70% of the students are African Ameri-
can, and a summer workshop for mid-
dle-school students from underrepre-
sented groups in Montgomery County,
MD, public schools.

In the fall of 2010, I jointly con-
ducted another experiment, this one
via video teleconferencing with Pro-
fessor David Padua of the University
of Illinois, Urbana-Champaign using
Open MP and XMTC, with XMTC pro-
gramming assignments run on the
XMT 64-processor FPGA machine.
Our hope was to produce a meaning-
ful comparison of programming de-
velopment time from the 30 partici-
pating Illinois students. The topics
and problems covered in the PRAM/
XMT part of the course were signifi-
cantly more advanced than Open MP
alone. Having sought to demonstrate
the importance of teachability from
middle school on up, I strongly rec-
ommend that it becomes a standard
benchmark for evaluating many-core
hardware platforms.

Blake et al.4 reported that after ana-
lyzing current desktop/laptop appli-
cations for which the goal was better
performance, the applications tend to
comprise many threads, though few
of them are used concurrently; conse-
quently, the applications fail to trans-
late the increasing thread-level paral-
lelism in hardware to performance
gains. This problem is not surprising
given that most programmers can’t
handle multi-core microprocessors.
In contrast, guided by the simple ICE
abstraction and by the rich PRAM
knowledgebase to find parallelism,
XMT programmers are able to repre-
sent that parallelism using a type of
threading the XMT hardware is engi-

A Hardware/Software Approach. Morgan-Kaufmann,
San Francisco, CA, 1999.

11.	 Gibbons, P., Matias, Y., and Ramachandran, V. The
queue-read queue-write asynchronous PRAM model.
Theoretical Computer Science 196, 1–2 (Apr. 1998),
3–29.

12.	 Gottlieb, A. et al. The NYU ultracomputer designing
an MIMD shared-memory parallel computer. IEEE
Transactions on Computers 32, 2 (Feb. 1983), 175–189.

13.	 Gu, P. and Vishkin, U. Case study of gate-level
logic simulation on an extremely fine-grained chip
multiprocessor. Journal of Embedded Computing 2, 2
(Apr. 2006), 181–190.

14.	 Hochstein, L., Basili, V., Vishkin, U., and Gilbert, J. A
pilot study to compare programming effort for two
parallel programming models. Journal of Systems and
Software 81, 11 (Nov. 2008), 1920–1930.

15.	 Horak, M., Nowick, S., Carlberg, M., and Vishkin, U. A
low-overhead asynchronous interconnection network
for gals chip multiprocessor. In Proceedings of the
Fourth ACM/IEEE International Symposium on
Networks-on-Chip (Grenoble, France, May 3–6). IEEE
Computer Society, Washington D.C., 2010, 43–50.

16.	 JaJa, J. An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, Reading, MA,
1992.

17.	 Keller, J., Kessler, C., and Traeff, J. Practical PRAM
Programming. Wiley-Interscience, New York, 2001.

18.	 Nuzman, J. and Vishkin, U. Circuit Architecture for
Reduced-Synchrony-On-Chip Interconnect. U.S.
Patent 6,768,336, 2004; http://patft.uspto.gov/
netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=
1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1
&f=G&l=50&co1=AND&d=PTXT&s1=6768336.PN.&O
S=PN/6768336&RS=PN/6768336

19.	 Patterson, D. The trouble with multi-core: Chipmakers
are busy designing microprocessors that most
programmers can’t handle. IEEE Spectrum (July
2010).

20.	 Shiloach, Y. and Vishkin, U. An O(n2 log n) parallel
max-flow algorithm. Journal of Algorithms 3, 2
(Feb.1982), 128–146.

21.	 Sutter, H. The free lunch is over: A fundamental shift
towards concurrency in software. Dr. Dobb’s Journal
30, 3 (Mar. 2005).

22.	 Torbert, S., Vishkin, U., Tzur, R., and Ellison, D. Is
teaching parallel algorithmic thinking to high school
students possible? One teacher’s experience. In
Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (Milwaukee, WI, Mar.
10–13). ACM Press, New York, 2010, 290–294.

23.	 Tzannes, A., Caragea, G., Barua, R., and Vishkin, U.
Lazy binary splitting: A run-time adaptive dynamic
works-stealing scheduler. In Proceedings of the15th
ACM Symposium on Principles and Practice of Parallel
Programming (Bangalore, India, Jan. 9–14). ACM
Press, New York, 2010, 179–189.

24.	 Valiant, L. A bridging model for multi-core computing.
In Proceedings of the European Symposium on
Algorithms (Karlruhe, Germany, Sept. 15–17). Lecture
Notes in Computer Science 5193. Springer, Berlin,
2008, 13–28.

25.	 Vishkin, U. U.S. Patents 6,463,527; 6,542,918;
7,505,822; 7,523,293; 7,707,388, 2002–2010;
http://patft.uspto.gov/

26.	 Vishkin, U. Algorithmic approach to designing an
easy-to-program system: Can it lead to a hardware-
enhanced programmer’s workflow add-on? In
Proceedings of the 27th International Conference on
Computer Design (Lake Tahoe, CA, Oct. 4–7). IEEE
Computer Society, Washington D.C., 2009, 60–63.

27.	 Vishkin, U., Caragea, G., and Lee, B. Models for
advancing PRAM and other algorithms into parallel
programs for a PRAM-on-chip platform. In Handbook
on Parallel Computing, S. Rajasekaran and J. Reif, Eds.
Chapman and Hall/CRC Press, Boca Raton, FL, 2008,
5.1-60.

28.	 Wen, X. and Vishkin, U. FPGA-based prototype of a
PRAM-on-chip processor. In Proceedings of the Fifth
ACM Conference on Computing Frontiers (Ischia,
Italy, May 5–7). ACM Press, New York, 2008, 55–66.

Uzi Vishkin (vishkin@umd.edu) is a professor in the
University of Maryland Institute for Advanced Computer
Studies (http://www.umiacs.umd.edu/~vishkin) and
Electrical and Computer Engineering Department, College
Park, MD.

© 2011 ACM 0001-0782/11/0100 $10.00

neered to exploit for performance.
For more, see the XMT home page

at the University of Maryland http://
www.umiacs.umd.edu/users/vishkin/
XMT/. The XMT software environment
release is available by free download
there and from sourceforge.net at
http://sourceforge.net/projects/xmtc/,
along with extensive documentation.
A 2010 release of the XMTC compiler
and cycle-accurate simulator of XMT
can also be downloaded to any stan-
dard desktop computing platform.
Teaching materials covering a Uni-
versity of Maryland class-tested pro-
gramming methodology in which even
college freshmen and high school
students are taught only parallel al-
gorithms are also available from the
XMT Web pages.

Acknowledgment
This work is supported by the Nation-
al Science Foundation under grant
0325393. 	

References
1.	 Adve, S. et al. Parallel Computing Research at Illinois:

The UPCRC Agenda. White Paper. University of
Illinois, Champaign-Urbana, IL,2008; http://www.
upcrc.illinois.edu/UPCRC_Whitepaper.pdf

2.	 Asanovic, K. et al. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183. University of California,
Berkeley, 2006; http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.pdf

3.	 Balkan, A., Horak, M., Qu, G., and Vishkin, U. Layout-
accurate design and implementation of a high-
throughput interconnection network for single-chip
parallel processing. In Proceedings of the 15th Annual
IEEE Symposium on High Performance Interconnects
(Stanford, CA, Aug. 22–24). IEEE Press, Los Alamitos,
CA, 2007.

4.	 Blake, G., Dreslinski, R., Flautner, K., and Mudge,
T. Evolution of thread-level parallelism in desktop
applications. In Proceedings of the 37th Annual
International Symposium on Computer Architecture
(Saint-Malo, France, June 19–23). ACM Press, New
York, 2010, 302–313.

5.	 Borkar, S. et al. Platform 2015: Intel Processor and
Platform Evolution for the Next Decade. White Paper.
Intel, Santa Clara, CA, 2005; http://epic.hpi.uni-
potsdam.de/pub/Home/TrendsAndConceptsII2010/
HW_Trends_borkar_2015.pdf

6.	 Caragea, G., Tzannes, A., Keceli, F., Barua, R., and
Vishkin, U. Resource-aware compiler prefetching for
many-cores. In Proceedings of the Ninth International
Symposium on Parallel and Distributed Computing
(Istanbul, Turkey, July 7–9). IEEE Press, Los
Alamitos, CA, 2010, 133–140.

7.	 Caragea, G., Keceli, F., Tzannes, A., and Vishkin, U.
General-purpose vs. GPU: Comparison of many-
cores on irregular workloads. In Proceedings of the
Second Usenix Workshop on Hot Topics in Parallelism
(University of California, Berkeley, June 14–15).
Usenix, Berkeley, CA, 2010.

8.	 Caragea, G., Saybasili, B., Wen, X., and Vishkin, U.
Performance potential of an easy-to-program PRAM-
on-chip prototype versus state-of-the-art processor.
In Proceedings of the 21st ACM SPAA Symposium on
Parallelism in Algorithms and Architectures (Calgary,
Canada, Aug. 11–13). ACM Press, New York, 2009,
163–165.

9.	 Cormen, T., Leiserson, C., Rivest, R., and Stein, C.
Introduction to Algorithms, Third Edition. MIT Press,
Cambridge, MA, 2009.

10.	 Culler, D. and Singh, J. Parallel Computer Architecture:

