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The recen t dramat ic  shift from single-processor 
computer systems to many-processor parallel ones 
requires reinventing much of computer science to 
build and program the new systems. CS urgently 
requires convergence to a robust parallel general-
purpose platform providing good performance 

and programming easy enough for all 
CS students and graduates. Unfortu-
nately, ease-of-programming objec-
tives have eluded parallel-computing 
research over at least the past four 
decades. The idea of starting with 
an established easy-to-apply parallel 
programming model and building an 
architecture for it has been treated as 
radical by hardware and software ven-
dors alike. Here, I advocate an even 
more radical parallel programming 
and architecture idea: Start with a sim-
ple abstraction encapsulating the de-
sired interface between programmers 
and system builders. 

Using Simple 
Abstraction 
to Reinvent 
Computing for 
Parallelism

doi:10.1145/1866739.1866757

The ICE abstraction may take CS from serial 
(single-core) computing to effective parallel 
(many-core) computing. 

by Uzi Vishkin 

 key insights
 � �Computing can be reinvented for 

parallelism, from parallel algorithms 
through programming to hardware, 
preempting the technical barriers 
inhibiting use of parallel machines.

 � �Moving beyond the serial von Neumann 
computer (the only successful general-
purpose platform to date), computer 
science will again be able to augment 
mathematical induction with a simple 
one-line computing abstraction. 

 � �Being able to think algorithmically in 
parallel is a significant advantage for 
systems developers and programmers 
building and programming multi-core 
machines. 
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I begin by proposing the Immediate 
Concurrent Execution (ICE) abstrac-
tion, followed by two contributions 
supporting this abstraction I have led: 

XMT. A general-purpose many-core 
explicit multi-threaded (XMT) com-
puter architecture designed from the 
ground up to capitalize on the on-chip 
resources becoming available to sup-
port the formidable body of knowl-
edge, known as parallel random-
access machine (model), or PRAM, 
algorithmics, and the latent, though 
not widespread, familiarity with it; 
and 

Workflow. A programmer’s work-
flow links ICE, PRAM algorithmics, 
and XMT programming. The ICE ab-
straction of an algorithm is followed 
by a description of the algorithm for 
the synchronous PRAM, allowing ease 
of reasoning about correctness and 
complexity, which is followed by mul-
tithreaded programming that relaxes 
this synchrony for the sake of imple-
mentation. Directly reasoning about 
soundness and performance of mul-
tithreaded code is generally known 
to be error-prone. To circumvent the 
likelihood of errors, the workflow in-
corporates multiple levels of abstrac-
tion; the programmer must establish 
only that multithreaded program 
behavior matches the synchronous 
PRAM-like algorithm it implements, 
a much simpler task. Current XMT 
hardware and software prototypes and 
demonstrated ease-of-programming 
and strong speedups suggest that CS 
may be much better prepared for the 
challenges ahead than many of our 
colleagues realize. 

A notable rudimentary abstrac-
tion—that any single instruction avail-
able for execution in a serial program 
executes immediately—made serial 
computing simple. Abstracting away 
a hierarchy of memories, each with 
greater capacity but slower access 
time than its predecessor, along with 
different execution time for different 
operations, this Immediate Serial Exe-
cution (ISE) abstraction has been used 
by programmers for years to concep-
tualize serial computing and ensure 
support by hardware and compilers. A 
program provides the instruction to be 
executed next at each step (inductive-
ly). The left side of Figure 1 outlines 
serial execution as implied by this ISE 

The following two examples explore how these algorithms look and the opportunities 
and benefits they provide to systems developers and programmers. 

Example 1. Given are two variables A and B, each containing some value. The 
exchange problem involves exchanging their values; for example, if the input to the 
exchange problem is A=2 and B=5, then the output is A=5 and B=2. The standard 
algorithm for this problem uses an auxiliary variable X and works in three steps: 

X:=A 
A:=B 
B:=X 

In order not to overwrite A and lose its content, the content of A is first stored in X, 
B is then copied to A, and finally the original content of A is copied from X to B. The 
work in this algorithm is three operations, the depth is three time units, and the space 
requirement (beyond input and output) is one word. 

Given two arrays A[0..n-1] and B[0..n-1], each of size n, the array-exchange problem 
involves exchanging their content, so A(i) exchanges its content with B(i) for every 
i=0..n-1. The array exchange serial algorithm serially iterates the standard exchange 
algorithm n times. Here’s the pseudo-code: 

For i =0 to n−1 do
              X:=A( i ) ; A( i ):=B( i ) ; B( i ):=X 

The work is 3n, depth is 3n, and space is 2 (for X and i). A parallel array-exchange 
algorithm uses an auxiliary array X[0..n-1] of size n, the parallel algorithm applies 
concurrently the iterations of the serial algorithm, each exchanging A(i) with B(i) for a 
different value of i. Note the new pardo command in the following pseudo-code: 

For i =0 to n−1 pardo
              X( i ):=A( i ) ; A( i ):=B( i ) ; B( i ):=X( i )

This parallel algorithm requires 3n work, as in the serial algorithm. Its depth has 
improved from 3n to 3. If the size of the array n is 1,000 words, it would constitute 
speedup by a factor of 1,000 relative to the serial algorithm. The increase in space to 2n 
(for array X and n concurrent values of i) demonstrates a cost of parallelism. 

Example 2. Given is the directed graph with nodes representing all commercial 
airports in the world. An edge connects node u to node v if there is a nonstop flight from 
airport u to airport v, and s is one of these airports. The problem is to find the smallest 
number of nonstop flights from s to any other airport. The WD algorithm works as 
follows: Suppose the first i steps compute the fewest number of nonstop flights from s 
to all airports that can be reached from s in at most i flights, while all other airports are 
marked “unvisited.” 

Step i+1 concurrently finds the destination of every outgoing flight from any airport 
to which the fewest number of flights from s is exactly i, and for every such destination 
marked “unvisited” requires i+1 flights from s. Note that some “unvisited” nodes may 
have more than one incoming edge. In such a case the arbitrary CRCW convention 
implies that one of the attempting writes succeeds. While we don’t know which one, we 
do know all writes would enter the number i+1; in general, however, arbitrary CRCW 
also allows different values. 

The standard serial algorithm for this problem9 is called breadth-first search, 
and the parallel algorithm described earlier is basically breadth-first search with one 
difference: Step i+1 described earlier allows concurrent-writes. In the serial version, 
breadth-first search also operates by marking all nodes whose shortest path from s 
requires i+1 edges after all nodes whose shortest path from s requires i edges. The 
serial version then proceeds to impose a serial order. Each newly visited node is placed 
in a first-in-first-out queue data structure. 

Three lessons are drawn from this example: First, the serial order obstructs  
the parallelism in breadth-first search; freedom to process in any-order nodes for  
which the shortest path from s has the same length is lost. Second, programmers 
trained to incorporate such serial data structures into their programs acquire bad  
serial habits difficult to uproot; it may be better to preempt the problem by teaching 
parallel programming and parallel algorithms early. And third, to demonstrate the 
performance advantage of the parallel algorithm over the serial algorithm, assume  
that the number of edges in the graph is 600,000 (the number of nonstop flight links), 
and the smallest number of flights from airport s to any other airport is no more than 
five. While the serial algorithm requires 600,000 basic steps, the parallel algorithm 
requires only six. Meanwhile, each of the six steps may require longer wall clock time 
than each of the 600,000 steps, but the factor 600,000/6 provides leeway for speedups  
by a proper architecture. 

Parallel Algorithms 
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abstraction, where unit-time instruc-
tions execute one at a time. 

The rudimentary parallel abstrac-
tion I propose here is that indefinitely 
many instructions available for con-
current execution execute immediate-
ly, dubbing the abstraction Immediate 
Concurrent Execution. A consequence 
of ICE is a step-by-step (inductive) ex-
plication of the instructions available 
next for concurrent execution. The 
number of instructions in each step is 
independent of the number of proces-
sors, which are not even mentioned. 
The explication falls back on the serial 
abstraction in the event of one instruc-
tion per step. The right side of Figure 1 
outlines parallel execution as implied 
by the ICE abstraction. At each time 
unit, any number of unit-time instruc-
tions that can execute concurrently do 
so, followed by yet another time unit 
in which the same execution pattern 
repeats, and so on, as long as the pro-
gram is running. 

How might parallelism be advan-
tageous for performance? The PRAM 
answer is that in a serial program the 
number of time units, or “depth,” is 
the same as the algorithm’s total num-
ber of operations, or “work,” while in 
the parallel program the number of 
time units can be much lower. For a 
parallel program, the objective is that 
its work does not much exceed that 
of its serial counterpart for the same 
problem, and its depth is much lower 
than its work. (Later in the article, I 
note the straightforward connection 
between ICE and the rich PRAM algo-
rithmic theory and that ICE is nothing 
more than a subset of the work-depth 
model.) But how would a system de-
signer go about building a computer 
system that realizes the promise of 
ease of programming and strong per-
formance? 

Outlining a comprehensive solu-
tion, I discuss basic tension between 
the PRAM abstraction and hardware 
implementation and a workflow that 
goes through ICE and PRAM-related 
abstractions for programming the 
XMT computer architecture. 

Some many-core architectures are 
likely to become mainstream, mean-
ing they must be easy enough to pro-
gram by every CS major and graduate. 
I am not aware of other many-core 
architectures with PRAM-like abstrac-

tion. Allowing programmers to view a 
computer operation as a PRAM would 
make it easy to program,10 hence this 
article should interest all such majors 
and graduates. 

Until 2004, standard (desktop) 
computers comprised a single proces-
sor core. Since 2005 when multi-core 
computers became the standard, CS 
has appeared to be on track with a 
prediction5 of 100+-core computers 
by the mid-2010s. Transition from se-
rial (single-core) computing to parallel 
(many-core) computing mandates the 
reinvention of the very heart of CS, as 
these highly parallel computers must 
be built and programmed differently 
from the single-core machines that 
dominated standard computer sys-
tems since the inception of the field 
almost 70 years ago. By 2003, the clock 
rate of a high-end desktop proces-
sor had reached 4GHz, but processor 
clock rates have improved only barely, 
if at all, since then; the industry simply 
did not find a way to continue improv-
ing clock rates within an acceptable 
power budget.5 Fortunately, silicon 
technology improvements (such as 
miniaturization) allow the amount of 
logic a computer chip can contain to 
keep growing, doubling every 18 to 24 
months per Gordon Moore’s 1965 pre-
diction. Computers with an increas-
ing number of cores are now expected 
but without significant improvement 
in clock rates. Exploiting the cores 
in parallel for faster completion of a 
computing task is today the only way 
to improve performance of individual 
tasks from one generation of comput-
ers to the next. 

Unfortunately, chipmakers are de-
signing multi-core processors most 

programmers can’t handle,19 a prob-
lem of broad interest. Software pro-
duction has become a key compo-
nent of the manufacturing sector of 
the economy. Mainstream machines 
most programmers can’t handle cause 
significant decline in productivity 
of manufacturing, a concern for the 
overall economy. Andy Grove, former 
Chairman of the Board of Intel Corp., 
said in the 1990s that the software spi-
ral—the cyclic process of hardware 
improvements leading to software 
improvements leading back to hard-
ware improvements—was an engine 
of sustained growth for IT for decades 
to come. A stable application-software 
base that could be reused and en-
hanced from one hardware generation 
to the next was available for exploita-
tion. Better performance was assured 
with each new generation, if only the 
hardware could run serial code faster. 
Alas, the software spiral today is bro-
ken.21 No broad parallel-computing 
application software base exists for 
which hardware vendors are commit-
ted to improving performance. And 
no agreed-upon parallel architecture 
allows application programmers to 
build such a base for the foreseeable 
future. Instating a new software spiral 
could indeed be a killer app for gener-
al-purpose many-core computing; ap-
plication software developers would 
put it to good use for specific applica-
tions, and more consumers worldwide 
would want to buy new machines. 

This robust market for many-core-
based machines and applications 
leads to the following case for govern-
ment support: Foremost among to-
day’s challenges is many-core conver-
gence, seeking timely convergence to 

Figure 1. Serial execution based on the serial ISE abstraction vs. parallel execution based 
on the parallel ICE abstraction. 
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a robust many-core platform coupled 
with a new many-core software spiral 
to serve the world of computing for 
years to come. A software spiral is ba-
sically an infrastructure for the econ-
omy. Since advancing infrastructures 
generally depends on government 
funding, designating software-spiral 
rebirth a killer app also motivates 
funding agencies and major vendors 
to support the work. The impact on 
manufacturing productivity could fur-
ther motivate them. 

Programmer Workflow 
ICE requires the lowest level of cog-
nition from the programmer relative 
to all current parallel programming 
models. Other approaches require 
additional steps (such as decomposi-
tion10). In CS theory, the speedup pro-
vided by parallelism is measured as 
work divided by depth; reducing the 
advantage of ICE/PRAM to practice is 
a different matter. 

The reduction to practice I have led 
relies on the programmer’s workflow, 
as outlined in the right side of Figure 
2. Later, I briefly cover the parallel-
algorithms stage. The step-by-step 
PRAM explication, or “data-parallel” 
instructions, represents a traditional 
tightly synchronous outlook on paral-
lelism. Unfortunately, tight step-by-
step synchrony is not a good match 
with technology, including its power 
constraints. 

To appreciate the difficulty of im-

plementing step-by-step synchrony 
in hardware, consider two examples: 
Memories based on long tightly syn-
chronous pipelines of the type seen in 
Cray vector machines have long been 
out of favor among architects of high-
performance computing; and process-
ing memory requests takes from one 
to 400 clock cycles. Hardware must be 
made as flexible as possible to advance 
without unnecessary waiting for con-
current memory requests. 

To underscore the importance of 
the bridge the XMT approach builds 
from the tightly synchronous PRAM 
to relaxed synchrony implementation, 
note three known limitations with 
power consumption of multi-core ar-
chitectures: high power consumption 
of the wide communication buses 
needed to implement cache coher-
ence; basic nm complexity of cache-
coherence traffic (given n cores and 
m invalidations) and implied toll on 
inter-core bandwidth; and high power 
consumption needed for a tightly syn-
chronous implementation in silicon 
in these designs. The XMT approach 
addresses all three by avoiding hard-
ware-supported cache-coherence al-
together and by significantly relaxing 
synchrony. 

Workflow is important, as it guides 
the human-to-machine process of pro-
gramming; see Figure 2 for two work-
flows. The non-XMT hardware imple-
mentation on the left side of the figure 
may require revisiting and changing 

the algorithm to fit bandwidth con-
straints among threads of the compu-
tation, a programming process that 
doesn’t always yield an acceptable 
outcome. However, the XMT hardware 
allows a workflow (right side of the 
figure) that requires tuning only for 
performance; revisiting and possibly 
changing the algorithm is generally 
not needed. An optimizing compiler 
should be able to do its own tuning 
without programmer intervention, as 
in serial computing. 

Most of the programming effort 
in traditional parallel programming 
(domain partitioning, load balancing) 
is generally of lesser importance for 
exploiting on-chip parallelism, where 
parallelism overhead can be kept low 
and processor-to-memory bandwidth 
high. This observation drove develop-
ment of the XMT programming model 
and its implementation by my re-
search team. XMT is intended to pro-
vide a simpler parallel programming 
model that efficiently exploits on-chip 
parallelism through multiple design 
elements. 

The XMT architecture uses a high-
bandwidth low-latency on-chip inter-
connection network to provide more 
uniform memory-access latencies. 
Other specialized XMT hardware 
primitives allow concurrent instantia-
tion of as many threads as the number 
of available processors, a count that 
can reach into the thousands. Specifi-
cally, XMT can perform two main op-
erations: forward (instantly) program 
instructions to all processors in the 
time required to forward the instruc-
tions (for one thread) to just one pro-
cessor; and reallocate any number of 
processors that complete their jobs at 
the same time to new jobs (along with 
their instructions) in the time required 
to reallocate one processor. The high-
bandwidth, low-latency interconnec-
tion network and low-overhead cre-
ation of many threads allow efficient 
support for the fine-grain parallelism 
used to hide memory latencies and a 
programming model for which local-
ity is less an issue than in designs with 
less bandwidth. These mechanisms 
support dynamic load balancing, re-
lieving programmers from having to 
directly assign work to processors. 
The programming model is simplified 
further by letting threads run to com-

Figure 2. Right column is a workflow from an ICE abstraction of an algorithm to  
implementation; left column may never terminate. 
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pletion without synchronization (no 
busy-waits) and synchronizing access 
to shared data with prefix-sum (fetch-
and-add type) instructions. These fea-
tures result in a flexible programming 
style that accommodates the ICE ab-
straction and encourages program de-
velopment for a range of applications. 

The reinvention of computing for 
parallelism also requires pulling to-
gether a number of technical commu-
nities. My 2009 paper26 sought to build 
a bridge to other architectures by cast-
ing the abstraction-centric vision of 
this article as a possible module in 
them, identifying a limited number of 
capabilities the module provides and 
suggesting a preferred embodiment 
of these capabilities using concrete 
“hardware hooks.” If it is possible 
to augment a computer architecture 
through them (with hardware hooks 
or other means), the ICE abstraction 
and the programmer’s workflow, in 
line with this article, can be support-
ed. The only significant obstacle in to-
day’s multi-core architectures is their 
large cache-coherent local caches. 
Their limited scalability with respect 
to power gives vendors more reasons 
beyond an easier programming model 
to let go of this obstacle. 

PRAM parallel algorithmic ap-
proach. The parallel random-access 
machine/model (PRAM) virtual model 
of computation is a generalization of 
the random-access machine (RAM) 
model.9 RAM, the basic serial model 
behind standard programming lan-
guages, assumes any memory access 
or any operation (logic or arithmetic) 
takes unit-time (serial abstraction). 
The formal PRAM model assumes a 
certain number, say, p of processors, 
each able to concurrently access any 
location of a shared memory in the 
same time as a single access. PRAM 
has several submodels that differ by 
assumed outcome of concurrent ac-
cess to the same memory location for 
either read or write purposes. Here, I 
note only one of them—the Arbitrary 
Concurrent-Read Concurrent-Write 
(CRCW) PRAM—which allows con-
current accesses to the same memory 
location for reads or writes; reads 
complete before writes, and an arbi-
trary write (to the same location, un-
known in advance) succeeds. PRAM 
algorithms are essentially prescribed 

as a sequence of rounds and, for each 
round, up to p processors execute con-
currently. The performance objective 
is to minimize the number of rounds. 
The PRAM parallel-algorithmic ap-
proach is well-known and has never 
been seriously challenged by any 
other parallel-algorithmic approach 
in terms of ease of thinking or wealth 
of knowledgebase. However, PRAM 
is also a strict formal model. A PRAM 
algorithm must therefore prescribe 
for each and every one of its p proces-
sors the instruction the processor ex-
ecutes at each time unit in a detailed 
computer-program-like fashion that 
can be quite demanding. The PRAM-
algorithms theory mitigates this in-
struction-allocation scheme through 
the work-depth (WD) methodology. 

This methodology (due to Shiloach 
and Vishkin20) suggests a simpler way 
to allocate instructions: A parallel 
algorithm can be prescribed as a se-
quence of rounds, and for each round, 
any number of operations can be ex-
ecuted concurrently, assuming un-
limited hardware. The total number 
of operations is called “work,” and the 
number of rounds is called “depth,” as 
in the ICE abstraction. The first perfor-
mance objective is to reduce work, and 
the immediate second one is to reduce 
depth. The methodology of restrict-
ing attention only to work and depth 
has been used as the main framework 
for the presentation of PRAM algo-
rithms16,17 and is in my class notes on 
the XMT home page http://www.umi-
acs.umd.edu/users/vishkin/XMT/. De-
riving a full PRAM description from a 
WD description is easy. For concrete-
ness, I demonstrate WD descriptions 
on two examples, the first concerning 
parallelism, the second concerning 
the WD methodology (see the sidebar 
“Parallel Algorithms”). 

The programmer’s workflow starts 

with the easy-to-understand ICE ab-
straction and ends with the XMT sys-
tem, providing a practical implemen-
tation of the vast PRAM algorithmic 
knowledge base. 

XMT programming model. The 
programming model behind the XMT 
framework is an arbitrary concurrent 
read, concurrent write single program 
multiple data, or CRCW SPMD, pro-
gramming model with two executing 
modes: serial and parallel. The two in-
structions—spawn and join—specify 
the beginning and end, respectively, 
of a parallel section (see Figure 3). An 
arbitrary number of virtual threads, 
initiated by a spawn and terminated 
by a join, share the same code. The 
workflow relies on the spawn com-
mand to extend the ICE abstraction 
from the WD methodology to XMT 
programming. As with the respective 
PRAM model, the arbitrary CRCW as-
pect dictates that concurrent writes 
to the same memory location result 
in an arbitrary write committing. 
No assumption needs to be made by 
the programmer beforehand about 
which one will succeed. An algorithm 
designed with this property in mind 
permits each thread to progress at its 
own speed, from initiating spawn to 
terminating join, without waiting for 
other threads—no thread “busy-waits” 
for another thread. The implied “inde-
pendence of order semantics” allows 
XMT to have a shared memory with a 
relatively weak coherence model. An 
advantage of this easier-to-implement 
SPMD model is that it is PRAM-like. It 
also incorporates the prefix-sum state-
ment operating on a base variable, B, 
and an increment variable, R. The re-
sult of a prefix-sum is that B gets the 
value B + R, while R gets the initial val-
ue of B, a result called “atomic” that’s 
similar to fetch-and-increment in Got-
tlieb et al.12 

Figure 3. Serial and parallel execution modes. 
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The primitive is especially useful 
when several threads perform a prefix-
sum simultaneously against a com-
mon base, because multiple prefix-
sum operations can be combined by 
the hardware to form a very fast multi-
operand prefix-sum operation. Be-
cause each prefix-sum is atomic, each 

thread returns a different R value. This 
way, the parallel prefix-sum command 
can be used to implement efficient 
and scalable inter-thread synchroniza-
tion by arbitrating an ordering among 
the threads. 

The XMTC high-level language im-
plements the programming model. 

XMTC is an extension of standard C, 
augmenting C with a small number 
of commands (such as spawn, join, 
and prefix-sum). Each parallel re-
gion is delineated by spawn and join 
statements, and synchronization is 
achieved through the prefix-sum and 
join commands. Every thread execut-

The merging problem takes as 
input two sorted arrays A = A[1 . . . n] 
and B = B[1 . . . n]. Each of these 2n 
elements must then be mapped into 
an array C = C[1 . . . 2n] that is also 
sorted. I first review the Shiloach-
Vishkin two-step PRAM algorithm 
for merging, then discuss its related 
XMTC programming: 

Step 1. Partitioning. This step 
selects some number x of elements 
from A at equal distances. In the 
example in the figure here, suppose 
the x = 4 elements 4, 16, 20, and 27 
are selected and ranked relative to 
array B using x concurrent binary 
searches. Similarly, x elements from 
B at equal distances, say, elements 1, 
7, 13, and 24, are also selected, then 
ranked relative to array A using x = 4 
concurrent binary searches. The step 
takes O(log n) time. These ranked 
elements partition the merging job 
that must be completed into 2x = 8 
“strips”; in the figure, step 2 includes 
eight such strips. 

Step 2. Actual work. For each 
strip the remaining job is to merge 
a subarrary of A with a subarray of 
B, mapping their elements into a 
subarray of C. Since these 2x merging 
jobs are mutually independent, each 
is able to concurrently apply the 
standard linear-time serial merging 
algorithm. 

Consider the following 
complexity analysis of this algorithm: 
Since each strip has at most n/x 
elements from A and n/x elements 
from B, the depth (or parallel time) of 
the second step is O(n/x). If x ≤ n/ log 
n, the first step and the algorithm as 
a whole does O(n) work. In the PRAM 
model, this algorithm requires O(n/x 
+ log n) time. A simplistic XMTC 
program requires as many spawn 
(and respective join) commands 
as the number of PRAM steps. The 
reasons I include this example here 
are that it involves a way to use only 
a single spawn (and a single join) 
command to represent the whole 
merging algorithm and, as I explain 
in the Conclusion, to demonstrate 
an XMT advantage over current 
hardware by comparing it with 
the parallel merging algorithm in 
Cormen et al.9 

Merging in XMTC. An XMTC 
program spawns 2x concurrent 
threads, one for each of the selected 
elements in array A or B. Using binary 
search, each thread first ranks its array 
element relative to the other array, 
then proceeds directly (without a join 
operation) to merge the elements in its 
strip, terminating just before setting 
the merging result of another selected 
element because the merging result is 
computed by another thread. 

To demonstrate the operation of a 
thread, consider the thread of element 20. 
Starting with binary search on array B the 

thread finds that 20 ranks as 11 in B; 11 
is the index of 15 in B. Since the index of 
20 in A is 9, element 20 ranks 20 in C. The 
thread then compares 21 to 22 and ranks 
element 21 (as 21), then compares 23 to 
22 to rank 22, 23 to 24 to rank 23, and 24 
to 25 but terminates since the thread of 24 
ranks 24, concluding the example. 

Our experience is that, with little 
effort, XMT-type threading requires 
fewer synchronizations than implied  
by the original PRAM algorithm.  
The current merging example 
demonstrates that synchronization 
reduction is sometimes significant. 

Merging with a Single Spawn-Join
Main steps of the ranking/merging algorithm. 
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ing the parallel code is assigned a 
unique thread ID, designated $. The 
spawn statement takes as arguments 
the lowest ID and highest ID of the 
threads to be spawned. For the hard-
ware implementation (discussed lat-
er), XMTC threads can be as short as 
eight to 10 machine instructions that 
are not difficult to get from PRAM al-
gorithms. Programmers from high 
school to graduate school are pleas-
antly surprised by the flexibility of 
translating PRAM algorithms to XMTC 
multi-threaded programs. The ability 
to code the whole merging algorithm 
using a single spawn-join pair is one 
such surprise (see the sidebar “Merg-
ing with a Single Spawn-Join”). 

To demonstrate simple code, con-
sider two code examples: 

The first is a small XMTC program 
for the parallel exchange algorithm 
discussed in the “Parallel Algorithms” 
sidebar: 

spawn ( 0 , n−1){
	 var x
			  x:=A( $ ) ; 
		  A( $ ):=B( $ ) ; 
		  B( $ ):=x
}

The program spawns a concurrent 
thread for each of the depth-3 serial-
exchange iterations using a local vari-
able x. Note that the join command is 
implied by the right parenthesis at the 
end of the program. 

The second assumes an array of n 
integers A. The programmer wishes 
to “compact” the array by copying all 
non-zero values to another array, B, in 
an arbitrary order. The XMTC code is: 

psBaseReg x=0;
spawn ( 0 , n−1){
	 int e ;
	 e=1;
	 i f (A[ $ ] ) !=0) {
		  ps ( e , x ) ;
		  B[ e ]=A[ $ ] 
}
}

It declares a variable x as the base 
value to be used in a prefix-sum com-
mand (ps in XMTC), initializing it to 0. 
It then spawns a thread for each of the 
n elements in A. A local thread variable 
e is initialized to 1. If the element of 

the thread is non-zero, the thread per-
forms a prefix-sum to get a unique in-
dex into B where it can place its value.

Other XMTC commands. Prefix-sum-
to-memory (psm) is another prefix-
sum command, the base of which is 
any location in memory. While the 
increment of ps must be 0 or 1, the in-
crement of psm is not limited, though 
its implementation is less efficient. 
Single Spawn (sspawn) is a command 
that can spawn an extra thread and be 
nested. A nested spawn command in 
XMTC code must be replaced (by pro-
grammer or compiler) by sspawn com-
mands. The XMTC commands are de-
scribed in the programmer’s manual 
included in the software release on the 
XMT Web pages. 

Tuning XMT programs for perfor-
mance. My discussion here of perfor-
mance tuning would be incomplete 
without a description of salient fea-
tures of the XMT architecture and 
hardware. The XMT on-chip general-
purpose computer architecture is 
aimed at the classic goal of reducing 
single-task completion time. The WD 
methodology gives algorithm design-
ers the ability to express all the paral-
lelism they observe. XMTC program-
ming further permits expressing this 
virtual parallelism by letting program-
mers express as many concurrent 
threads as they wish. The XMT proces-
sor must now provide an effective way 
to map this virtual parallelism onto the 
hardware. The XMT architecture pro-
vides dynamic allocation of the XMTC 
threads onto the hardware for better 
load balancing. Since XMTC threads 
can be short, the XMT hardware must 
directly manage XMT threads to keep 
overhead low. In particular, an XMT 
program looks like a single thread to 
the operating system (see the sidebar 
“The XMT Processor” for an overview 
of XMT hardware). 

The main thing performance pro-
grammers must know in order to tune 
the performance of their XMT pro-
grams is that a ready-to-run version of 
an XMT program depends on several 
parameters: the length of the (longest) 
sequence of roundtrips to memory 
(LSRTM); queuing delay to the same 
shared memory location (known as 
queue-read queue-write, or QRQW11); 
and work and depth. Their optimiza-
tion is a responsibility shared subtly 

by the architecture, the compiler, and 
the programmer/algorithm designer. 

See Vishkin et al27 for a demonstra-
tion of tuning XMTC code for perfor-
mance by accounting for LSRTM. As 
an example, it improves XMT hard-
ware performance on the problem of 
summing n numbers. 

Execution can differ from the literal 
XMTC code in order to keep the size of 
working space under control or other-
wise improve performance. For exam-
ple, compiler and runtime methods 
could perform this modification by 
clustering virtual threads offline or on-
line and prioritize execution of nested 
spawns using known heuristics based 
on a mix of depth-first and breadth-
first searches. 

Commitments to silicon of XMT 
by my research team at the University 
of Maryland include a 64-processor, 
75MHz computer based on field-pro-
grammable gate array (FPGA) technol-
ogy developed by Wen28 and 64-proces-
sor ASIC 10mm X 10mm chip using 
IBM’s 90nm technology developed 
together by Balkan, Horak, Keceli, and 
Wen (see Figure 4). Tzannes and Car-
gaea (guided by Barua and me) have 
also developed a basic yet stable com-
piler, and Keceli has developed a cycle-
accurate simulator of XMT. Both are 
available through the XMT software 
release on the XMT Web pages. 

Easy to build. An individual gradu-
ate student with no prior design expe-
rience completed the XMT hardware 
description (in Verilog) in just over 
two years (2005–2007). XMT is also sil-
icon-efficient. The ASIC design by the 
XMT research team at the University 
of Maryland shows that a 64-processor 
XMT needs the same silicon area as a 
(single) current commodity core. The 
XMT approach goes after any type of 
application parallelism regardless of 
how much parallelism the application 
requires, the regularity of this paral-
lelism, or the parallelism’s grain size, 
and is amenable to standard multipro-
gramming where the hardware sup-
ports several concurrent operating-
system threads. 

The XMT team has demonstrated 
good XMT performance, independent 
software engineers have demonstrat-
ed XMT programmability (see Hoch-
stein et al.14), and independent educa-
tion professionals have demonstrated 
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XMT teachability (see Torbert et al.23). 
Highlights include evidence of 100X 
speedups on general-purpose applica-
tions on a simulator of 1,000 on-chip 
processors13 and speedups ranging 
from 15X to 22X for irregular prob-
lems (such as Quicksort, breadth-first 
search on graphs, finding the longest 
path in a directed acyclic graph), and 
speedups of 35X–45X for regular pro-
grams (such as matrix multiplication 
and convolution) on the 64-processor 
XMT prototype versus the best serial 
code on XMT.28 

In 2009, Caragea et al.8 demonstrat-
ed nearly 10X average performance 
improvement potential relative to In-
tel Core 2 Duo for a 64-processor XMT 
chip using the same silicon area as a 

single core. In 2010, Caragea et al.7 
demonstrated that, using the same 
silicon area as a modern graphics pro-
cessing unit (GPU), the XMT design 
achieves an average speedup of 6X rel-
ative to the GPU for irregular applica-
tions and falls only slightly behind on 
regular ones. All GPU code was written 
and optimized by researchers and pro-
grammers unrelated to the XMT proj-
ect. 

With few exceptions, parallel pro-
gramming approaches that dominat-
ed parallel computing prior to many-
cores are still favored by vendors, as 
well as high-performance users. The 
steps they require include decomposi-
tion, assignments, orchestration, and 
mapping.10 Indeed, parallel program-

ming difficulties have failed all gen-
eral-purpose parallel systems to date 
by limiting their use. In contrast, XMT 
frees its programmers from doing all 
the steps, in line with the ICE/PRAM 
abstraction.

The XMT software environment 
release (a 2010 release of the XMTC 
compiler and cycle-accurate simulator 
of XMT) is available by free download 
from the XMT home page and from 
sourceforge.net, along with extensive 
documentation, and can be download-
ed to any standard desktop computing 
platform. Teaching materials cover-
ing a class-tested programming meth-
odology in which students are taught 
only parallel algorithms are also avail-
able from the XMT Web pages. 

Most CS programs today graduate 
students to a job market certain to be 
dominated by parallelism but without 
the preparation they need. The level of 
awareness of parallelism required by 
the ICE/PRAM abstraction is so basic 
it is necessary for all other current ap-
proaches. As XMT is also buildable, 
the XMT approach is sufficient for pro-
gramming a real machine. I therefore 
propose basing the introduction of 
the new generation of CS students to 
parallelism on the workflow presented 
here, at least until CS generally con-
verges on a many-core platform. 

Related efforts. Related efforts to-
ward parallelism come in several fla-
vors; for example, Valiant’s Multi-BSP 
bridging model for multi-core com-
puting24 appears closest to the XMT 
focus on abstraction. The main dif-
ference, however, is that XMT aims 
to preempt known shortcomings in 
existing machines by showing how to 
build machines differently, while the 
modeling in Valiant24 aims to improve 
understanding of existing machines. 

These prescriptive versus descrip-
tive objectives are not the only differ-
ence. Valiant24 modeled relatively low-
level parameters of certain multi-core 
architectures, making them closer to 
Vishkin et al.27 than to this article. Un-
like both sources, simplicity drives the 
“one-liner” ICE abstraction. Parallel 
languages (such as CUDA, MPI, and 
OpenMP) tend to be different from 
computational models, as they often 
do not involve performance model-
ing. They require a level of detail that 
distances them farther from simple 

Introduced at a time of hardware scarcity almost 70 years ago, the von Neumann 
apparatus of stored program and program counter forced the threading of instructions 
through a metaphoric eye of a needle. Coupling of mathematical induction and (serial) 
ISE abstraction was engineered to provide this threading, as discussed throughout the 
article. See especially the description of how variable X is used in the pseudo-code of 
the serial iterative algorithm in the exchange problem; also the first-in-first-out queue 
data structure in the serial breadth-first search; and the serial merging algorithm in 
which two elements are compared at a time, one from each of two sorted input arrays. 
As eye-of-a-needle threading is already second nature for many programmers, it has 
come to be associated with ease of programming. 

Threading through the eye of a needle is an aphorism for extreme difficulty, even 
impossibility, in the broader culture, including in the texts of three major religions.  
The XMT extension to the von Neumann apparatus (noted in “The XMT Processor” 
sidebar) exploits today’s relative abundance of hardware resources to free computing 
from the constraint of threading through the original apparatus. Coupling 
mathematical induction and the ICE abstraction explored here is engineered to 
capitalize on this freedom for ease of parallel programming and improved machine 
and application performance. 

Eye-of-a-Needle  
Aphorism

Figure 4. Left side. FPGA board (size of a car license plate) with three FPGA chips (gener-
ously donated by Xilinx): A, B: Virtex-4LX200; C: Virtex-4FX100. Right side. 10mm X 10mm 
chip using IBM Flip-Chip technology. 

A, B: Virtex-4LX200.  
C: Virtex-4FX100. 

A B

DDR2

PCI bus

C

10mm X 10mm chip using  
IBM Flip-Chip technology.
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The XMT processor (see the figure 
here) includes a master thread 
control unit (MTCU), processing 
clusters, each comprising several 
thread-control units (TCUs), 
a high-bandwidth low-latency 
interconnection network3 and its 
extension to a globally asynchronous 
locally synchronous, GALS-style, 
design incorporating asynchronous 
logic,15,18 memory modules (MM), 
each comprising on-chip cache and 
off-chip memory, prefix-sum (PS) 
unit(s), and global registers. The 
shared-memory-modules block 
(bottom left of the figure) suppresses 
the sharing of a memory controller 
by several MMs. The processor 
alternates between serial mode (in 
which only the MTCU is active) and 
parallel mode. The MTCU has a 
standard private data cache (used 
in serial mode) and a standard 
instruction cache. The TCUs, which 
lack a write data cache, share the 
MMs with the MTCU. 

The overall XMT design is 
guided by a general design ideal 
I call no-busy-wait finite-state-
machines, or NBW FSM, meaning 
the FSMs, including processors, 
memories, functional units, 
and interconnection networks 
comprising the parallel machine, 
never cause one another to busy-
wait. It is ideal because no parallel 
machine can operate that way. 
Nontrivial parallel processing 
demands the exchange of results 
among FSMs. The NBW FSM 
ideal represents my aspiration to 
minimize busy-waits among the 
various FSMs comprising a machine. 

Here, I cite the example of how 
the MTCU orchestrates the TCUs 
to demonstrate the NBW FSM 
ideal. The MTCU is an advanced 
serial microprocessor that also 
executes XMT instructions (such as 
spawn and join). Typical program 
execution flow, as in Figure 3, can 
also be extended through nesting of 
sspawn commands. The MTCU uses 
the following XMT extension to the 
standard von Neumann apparatus 
of the program counters and stored 
program: Upon encountering 
a spawn command, the MTCU 
broadcasts the instructions in the 
parallel section starting with that 
spawn command and ending with a 
join command on a bus connecting 
to all TCU clusters. 

The largest ID number of a 
thread the current spawn command 
must execute Y is also broadcast 
to all TCUs. The ID (index) of the 
largest executing threads is stored in 
a global register X. In parallel mode, 
a TCU executes one thread at a time. 

Executing a thread to completion 
(upon reaching a join command), the 
TCU does a prefix-sum using the PS 
unit to increment global register X. In 
response, the TCU gets the ID of the 
thread it could execute next; if the ID is 
≤Y, the TCU executes a thread with this 
ID. Otherwise, the TCU reports to the 
MTCU that it finished executing. When 
all TCUs report they’ve finished, the 
MTCU continues in serial mode. 

The broadcast operation is 
essential to the XMT ability to start all 
TCUs at once in the same time it takes 
to start one TCU. The PS unit allows 
allocation of new threads to the TCUs 
that just became available within the 
same time it takes to allocate one 
thread to one TCU. This dynamic 
allocation provides runtime load-
balancing of threads coming from an 
XMTC program. 

We are now ready to connect with 
the NBW FSM ideal. Consider an XMT 
program derived from the workflow. 
From the moment the MTCU starts 
executing a spawn command until 
each TCU terminates the threads 
allocated to it, no TCU can cause 
any other TCU to busy-wait for it. An 
unavoidable busy-wait ultimately 
occurs when a TCU terminates and 
begins waiting for the next spawn 
command. 

TCUs, with their own local 

registers, are simple in-order 
pipelines, including fetch, decode, 
execute/memory-access, and write-
back stages. The FPGA computer has 
64 TCUs in four clusters of 16 TCUs 
each. XMT designers and evangelists 
aspire to develop a machine with 1,024 
TCUs in 64 clusters. A cluster includes 
functional units shared by several 
TCUs and one load/store port to the 
interconnection network shared by all 
its TCUs. 

The global memory address 
space is evenly partitioned into the 
MMs through a form of hashing. The 
XMT design eliminates the cache-
coherence problem, a challenge in 
terms of bandwidth and scalability. In 
principle, there are no local caches at 
the TCUs. Within each MM, the order 
of operations to the same memory 
location is preserved. 

For performance enhancements 
(such as data prefetch) incorporated 
into the XMT hardware, along with 
more on the architecture, see Wen 
and Vishkin28; for more on compiler 
and runtime scheduling methods for 
nested parallelism, see Tzannes et 
al.,23 and for prefetching methods, see 
Caragea et al.6 

Patents supporting the XMT 
hardware were granted from 2002 
to 2010, appearing in Nuzman and 
Vishkin18 and Vishkin.25 

The XMT Processor 

Block diagram of the XMT architecture. 
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abstractions. 
Several research centers1,2 are ac-

tively exploring the general problems 
discussed here. The University of Cali-
fornia, Berkeley, Parallel Computing 
Lab and Stanford University’s Perva-
sive Parallelism Laboratory advocate 
an application-driven approach to re-
inventing computing for parallelism. 

Conclusion 
The vertical integration of a parallel-
processing system, compiler, pro-
gramming, and algorithms proposed 
here through the XMT framework with 
the ICE/PRAM abstraction as its front-
end is notable for its relative simplic-
ity. ICE is a newly defined feature that 
has not appeared in prior research, in-
cluding my own, and is more rudimen-
tary than prior parallel computing 
concepts. Rudimentary concepts are 
the basis for the fundamental develop-
ment of any field. ICE can be viewed as 
an axiom that builds on mathematical 
induction, one of the more rudimen-
tary concepts in mathematics. The 
suggestion here of using a simple ab-
straction as the guiding principle for 
reinventing computing for parallelism 
also appears to be new. Considerable 
evidence suggests it can be done (see 
the sidebar “Eye-of-a-Needle Apho-
rism”). 

The following comparison with a 
chapter on multithreading algorithms 
in the 2009 textbook Introduction to Al-
gorithms by Cormen et al.9 helps clarify 
some of the article’s contributions. 
The 1990 first edition of Cormen et 
al.9 included a chapter on PRAM algo-
rithms emphasizing the role of work-
depth design and analysis; the 2009 
chapter9 likewise emphasized work-
depth analysis. However, to match cur-
rent commercial hardware, the 2009 
chapter turned to a variant of dynamic 
multithreading (in lieu of work-depth 
design) in which the main primitive 
was similar to the XMT sspawn com-
mand (discussed here). One thread 
was able to generate only one more 
thread at a time; these two threads 
would then generate one more thread 
each, and so on, instead of freeing the 
programmer to directly design for the 
work-depth analysis that follows (per 
the same 2009 chapter). 

Cormen et al.’s9 dynamic multi-
threading should encourage hardware 

enhancement to allow simultaneously 
starting many threads in the same 
time required to start one thread. 
A step ahead of available hardware, 
XMT includes a spawn command that 
spawns any number of threads upon 
transition to parallel mode. More-
over, the ICE abstraction incorporates 
work-depth early in the design work-
flow, similar to Cormen et al.’s 1990 
first edition.9 

The O(log n) depth parallel merging 
algorithm versus the O(log2 n) depth 
one in Cormen et al.9 demonstrated an 
XMT advantage over current hardware, 
as XMT allows a parallel algorithm for 
the same problem that is both fast-
er and simpler. The XMT hardware 
scheduling brought the hardware per-
formance model much closer to work-
depth and allowed the XMT workflow 
to streamline the design with the anal-
ysis from the start. 

Several features of the serial para-
digm made it a success, including a 
simple abstraction at the heart of the 
“contract” between programmers 
and builders, the software spiral, ease 
of programming, ease of teaching, 
and backward compatibility on serial 
code and application programming. 
The only feature that XMT, as in other 
multi-core approaches, does not pro-
vide is speedups for serial code. The 
ICE/PRAM/XMT workflow and archi-
tecture provide a viable option for 
the many-core era. My XMT solution 
should challenge and inspire others to 
come up with competing abstraction 
proposals or alternative architectures 
for ICE/PRAM. Consensus around an 
abstraction will move CS closer to con-
vergence toward a many-core platform 
and putting the software spiral back 
on track. 

The XMT workflow also gives pro-
grammers a productivity advantage. 
For example, I have traced several er-
rors in student-developed XMTC pro-
grams to shortcuts the students took 
around the ICE algorithms. Overall, 
improved understanding of program-
mer productivity, a traditionally dif-
ficult issue in parallel computing, 
must be a top priority for architec-
ture research. To the extent possible, 
evaluation of productivity should be 
on par with performance and power. 
For starters, productivity benchmarks 
must be developed. 

The XMT  
on-chip  
general-purpose 
computer 
architecture  
is aimed at the 
classic goal  
of reducing  
single-task 
completion time.
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Ease of programming, or program-
mability, is a necessary condition for 
the success of any many-core plat-
form, and teachability is a necessary 
condition for programmability and in 
turn for productivity. The teachability 
of the XMT approach has been demon-
strated extensively; for example, since 
2007 more than 100 students in grades 
K–12 have learned to program XMT, 
including in two magnet programs: 
Montgomery Blair High School, Silver 
Spring, MD, and Thomas Jefferson 
High School for Science and Technol-
ogy, Alexandria, VA.22 Others are Balti-
more Polytechnic High School, where 
70% of the students are African Ameri-
can, and a summer workshop for mid-
dle-school students from underrepre-
sented groups in Montgomery County, 
MD, public schools. 

In the fall of 2010, I jointly con-
ducted another experiment, this one 
via video teleconferencing with Pro-
fessor David Padua of the University 
of Illinois, Urbana-Champaign using 
Open MP and XMTC, with XMTC pro-
gramming assignments run on the 
XMT 64-processor FPGA machine. 
Our hope was to produce a meaning-
ful comparison of programming de-
velopment time from the 30 partici-
pating Illinois students. The topics 
and problems covered in the PRAM/
XMT part of the course were signifi-
cantly more advanced than Open MP 
alone. Having sought to demonstrate 
the importance of teachability from 
middle school on up, I strongly rec-
ommend that it becomes a standard 
benchmark for evaluating many-core 
hardware platforms. 

Blake et al.4 reported that after ana-
lyzing current desktop/laptop appli-
cations for which the goal was better 
performance, the applications tend to 
comprise many threads, though few 
of them are used concurrently; conse-
quently, the applications fail to trans-
late the increasing thread-level paral-
lelism in hardware to performance 
gains. This problem is not surprising 
given that most programmers can’t 
handle multi-core microprocessors. 
In contrast, guided by the simple ICE 
abstraction and by the rich PRAM 
knowledgebase to find parallelism, 
XMT programmers are able to repre-
sent that parallelism using a type of 
threading the XMT hardware is engi-
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neered to exploit for performance. 
For more, see the XMT home page 

at the University of Maryland http://
www.umiacs.umd.edu/users/vishkin/
XMT/. The XMT software environment 
release is available by free download 
there and from sourceforge.net at 
http://sourceforge.net/projects/xmtc/, 
along with extensive documentation. 
A 2010 release of the XMTC compiler 
and cycle-accurate simulator of XMT 
can also be downloaded to any stan-
dard desktop computing platform. 
Teaching materials covering a Uni-
versity of Maryland class-tested pro-
gramming methodology in which even 
college freshmen and high school 
students are taught only parallel al-
gorithms are also available from the 
XMT Web pages. 
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