
P A R T I

Procedural Abstraction

C omputer scientists study the processing of information. In this first part
of the book, we will focus our attention on specifying the nature of
that processing, rather than on the nature of the information being

processed. (The latter is the focus of Parts II and III.) For this part of the book,
we will look at procedures for processing only a few simple kinds of data, such
as numbers and images; in the final chapter of Part I, we will look at procedures
for processing other procedures.

We’ll examine procedures from several different viewpoints, focusing on the
connection between the form of the procedure and the form of the process
that results from carrying it out. We’ll see how to design procedures so that
they have a desired effect and how to prove that they indeed have that effect.
We’ll see various ways to make procedures generate “expansible” processes that
can grow to accommodate arbitrarily large instances of a general problem and
see how the form of the procedure and process influences the efficiency of this
growth. We’ll look at techniques for capturing common processing strategies in
general form, for example, by writing procedures that can write any of a family
of similar procedures for us.

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight

C H A P T E R O N E

Computer Science
and Programming

1.1 What’s It All About?

Computer science revolves around computational processes, which are also called in-
formation processes or simply processes. A process is a dynamic succession of events—a
happening. When your computer is busy doing something, a process is going on in-
side it. What differentiates a computational process from some other kind of process
(e.g., a chemical process)? Although computing originally referred to doing arith-
metic, that isn’t the essence of a computational process: For our purposes, a word, for
example, enjoys the same status as a number, and looking up the word in a dictionary
is as much a computational process as adding numbers. Nor does the process need
to go on inside a computer for it to be a computational process—it could go on in
an old-fashioned library, where a patron turns the pages of a dictionary by hand.

What makes the process a computational process is that we study it in ways that
ignore its physical nature. If we chose to study how the library patron turns the
pages, perhaps by bending them to a certain point and then letting gravity flop them
down, we would be looking at a mechanical process rather than a computational
one. Here, on the other hand, is a computational description of the library patron’s
actions in looking up fiduciary:

1. Because fiduciary starts with an f , she uses the dictionary’s index tabs to locate
the f section.

2. Next, because the second letter (i) is about a third of the way through the alphabet,
she opens to a point roughly a third of the way into the f section.

3. Finding herself slightly later in the alphabet (fjord), she then scans backward in a
straightforward way, without any jumping about, until she finds fiduciary.

3

4 Chapter 1 Computer Science and Programming

Notice that although there are some apparently physical terms in this description
(index tab and section), the interesting thing about index tabs for the purposes of this
process description is not that they are tabs but that they allow one to zoom in on
those entries of the dictionary that have a particular initial letter. If the dictionary
were stored in a computer, it could still have index tabs in the sense of some structure
that allowed this operation, and essentially the same process could be used.

There are lots of questions one can ask about computational processes, such as

1. How do we describe one or specify which one we want carried out?
2. How do we prove that a process has a particular effect?
3. How do we choose a process from among several that achieve the same effect?
4. Are there effects we can’t achieve no matter what process we specify?
5. How do we build a machine that automatically carries out a process we’ve speci-

fied?
6. What processes in the natural world are fruitfully analyzed in computational

terms?

We’ll touch on all these questions in this book, although the level of detail varies
from several chapters down to a sentence or two. Our main goal, however, is not
so much to answer the questions computer scientists face as to give a feel for the
manner in which they formulate and approach those questions.

Because we’ll be talking about processes so much, we’ll need a notation for
describing them. We call our descriptions programs, and the notation a programming
language. For most of this book we’ll be using a programming language called
Scheme. (Two chapters near the end of the book use other programming languages
for specialized purposes: assembly language, to illustrate at a detailed level how
computers actually carry out computations, and Java, to illustrate how computational
processes can interact with other, concurrently active processes.) One advantage of
Scheme is that its structure is easy to learn; we will describe its basic structure in
Section 1.2. As your understanding of computational processes and the data on
which they operate grows, so too will your understanding of how those processes and
data can be notated in Scheme.

An added benefit of Scheme (as with most useful programming languages) is that
it allows us to make processes happen, because there are machines that can read our
notation and carry out the processes they describe. The fact that our descriptions of
abstract processes can result in their being concretely realized is a gratifying aspect
of computer science and reflects one side of this book’s title. It also means that
computer science is to some extent an experimental science.

However, computer science is not purely experimental, because we can apply
mathematical tools to analyze computational processes. Fundamental to this analysis
is a way of modeling these evolving processes; we describe the so-called substitution

1.2 Programming in Scheme 5

Responsible Computer Use

If you are using a shared computer system, there are some issues you should think
about regarding the social acceptability of your behavior.

The most important point to keep in mind is that the feasibility of an action
and its acceptability are quite different matters. You may well be technically cap-
able of rummaging through other people’s computer files without their approval.
However, this act is generally considered to be like going down the street turning
doorknobs and going inside if you find one unlocked.

Sometimes you won’t know what is acceptable. If you have any doubts about
whether a particular course of action is legal, ethical, and socially acceptable, err
on the side of caution. Ask a responsible system administrator or faculty member
first.

model in Section 1.2. This abstract model of a concrete process reflects another side
of the book’s title as it bears on the computational process itself.

As was mentioned above, computational processes do not only deal with numbers.
The final section of this chapter applies the concepts of this chapter to an example
involving building quilt-cover patterns out of more basic images. We will continue
this convention of having the last section of each chapter be an application of that
chapter’s concepts. Following this application section, each chapter concludes with
a collection of review problems, an inventory of the material introduced in the
chapter, and notes on reference sources.

1.2 Programming in Scheme

The simplest possible Scheme program is a single number. If you ask the Scheme
system to process such a program, it will simply return the number to you as its
answer. We call what the Scheme system does finding the value of the expression you
provide, or more simply evaluation. Exactly how this looks will vary from one version
of Scheme to another; in our book, we’ll show it as follows, with dark, upright
type for your input and light, slanted type for the computer’s output:

12
12

The first line here was typed by a human, whereas the second line was the com-
puter’s response. Other kinds of numbers also work: negative numbers, fractions, and
decimals:

-7
-7

6 Chapter 1 Computer Science and Programming

1/3
1/3

3.1415927
3.1415927

In Scheme, decimals are used for inexact approximations (as in the above approxi-
mation to p), and fractions are used for exact rational numbers.

Other kinds of expressions are less boring to evaluate. For example, the value of
a name is whatever it is a name for. In a moment we’ll see how we can name things
ourselves, but there are many names already in place when we start up Scheme.
Most are names for procedures; for example, the name sqrt names a procedure, as
does the name +. If we evaluate either of them, we’ll see a printed representation of
the corresponding procedure:

sqrt
#<procedure>

+
#<procedure>

The appearance of procedures varies from one version of Scheme to another; in this
book, we’ll show them as #<procedure>, but you may see something different on
your computer. However, this difference generally doesn’t matter because procedures
aren’t meant to be looked at; they’re meant to be used.

The way we use a procedure is to apply it to some values. For example, the
procedure named sqrt can be applied to a single number to take its square root,
and the procedure named + can be applied to two numbers to add them. The way
we apply a procedure to values is as follows:

(sqrt 9)
3

(+ 3 6)
9

In every case, an application consists of a parenthesized list of expressions, separated
by spaces. The first expression’s value is the procedure to apply; the values of the
remaining expressions are what the procedure should be applied to. Applications are
themselves expressions, so they can be nested:

(sqrt (+ 3 6))
3

1.2 Programming in Scheme 7

Here the value of the expression (+ 3 6) is 9, and that is the value to which the
procedure named sqrt is applied. (More succinctly, we say that 9 is the argument
to the sqrt procedure.)

There are any number of other useful procedures that already have names, such
as * for multiplying, - for subtracting, and / for dividing.

Exercise 1.1

What is the value of each of the following expressions? You should be able to do
them in your head, but checking your answers using a Scheme system will be a good
way to get comfortable with the mechanics of using your particular system.

a. (* 3 4)

b. (* (+ 5 3) (- 5 3))

c. (/ (+ (* (- 17 14) 5) 6) 7)

It is customary to break complex expressions, such as in Exercise 1.1c, into several
lines with indentation that clarifies the structure, as follows:

(/ (+ (* (- 17 14)
5)

6)
7)

This arrangement helps make clear what’s being multiplied, what’s being added, and
what’s being divided.

Now that we’ve gained some experience using those things for which we already
have names, we should learn how to name things ourselves. In Scheme, we do this
with a definition, such as the following:

(define ark-volume (* (* 300 50) 30))

Scheme first evaluates the expression (* (* 300 50) 30) and gets 450000; it then
remembers that ark-volume is henceforth to be a name for that value. You may
get a response from the computer indicating that the definition has been performed;
whether you do and what it is varies from system to system. In this book, we’ll show
no response. The name you defined can now be used as an expression, either on its
own or in a larger expression:

ark-volume
450000

8 Chapter 1 Computer Science and Programming

(/ ark-volume 8)
56250

Although naming allows us to capture and reuse the results of computations, it
isn’t sufficient for capturing reusable methods of computation. Suppose, for example,
we want to compute the total cost, including a 5 percent sales tax, of several different
items. We could take the price of each item, compute the sales tax, and add that tax
to the original price:

(+ 1.29 (* 5/100 1.29))
1.3545

(+ 2.40 (* 5/100 2.40))
2.52
...

Alternatively, we could define a procedure that takes the price of an item (such as
$1.29 or $2.40) and returns the total cost of that item, much as sqrt takes a number
and returns its square root. To define such a total cost procedure we need to specify
how the computation is done and give it a name.

We can specify a method of computation by using a lambda expression. In our
sales tax example, the lambda expression would be as follows:

(lambda (x) (+ x (* 5/100 x)))

Other than the identifying keyword lambda, a lambda expression has two parts: a
parameter list and a body. The parameter list in the example is (x) and the body is
(+ x (* 5/100 x)). The value of a lambda expression is a procedure:

(lambda (x) (+ x (* 5/100 x)))
#<procedure>

Normally, however, we don’t evaluate lambda expressions in isolation. Instead, we
apply the resulting procedure to one or more argument values:

((lambda (x) (+ x (* 5/100 x))) 1.29)
1.3545

((lambda (x) (+ x (* 5/100 x))) 2.40)
2.52

1.2 Programming in Scheme 9

When the procedure is applied to a value (such as 1.29), the body is evaluated, but
with the parameter (x in this example) replaced by the argument value (1.29). In our
example, when we apply (lambda (x) (+ x (* 5/100 x))) to 1.29, the compu-
tation done is (+ 1.29 (* 5/100 1.29)). When we apply the same procedure to
2.40, the computation done is (+ 2.40 (* 5/100 2.40)), and so on.

Including the lambda expression explicitly each time it is applied is unwieldy, so
we usually use a lambda expression as part of a definition. The lambda expression
produces a procedure, and define simply associates a name with that procedure.
This process is similar to what mathematicians do when they say “let f (x) 5 x 3 x”.
In this case, the parameter is x, the body is x 3 x, and the name is f . In Scheme we
would write

(define f (lambda (x) (* x x)))

or more descriptively

(define square
(lambda (x) (* x x)))

Now, whenever we need to square a number, we could just use square:

(square 3)
9

(square -10)
100

Exercise 1.2

a. Create a name for the tax example by using define to name the procedure
(lambda (x) (+ x (* 5/100 x))).

b. Use your named procedure to calculate the total price with tax of items costing
$1.29 and $2.40.

Exercise 1.3

a. In the text example, we defined f and square in exactly the same way. What
happens if we redefine f? Does the procedure associated with square change
also?

b. Suppose we wrote:

(define f (lambda (x) (* x x)))
(define square f)

10 Chapter 1 Computer Science and Programming

Fill in the missing values:

(f 7)

(square 7)

(define f (lambda (x) (+ x 2)))

(f 7)

(square 7)

Here is another example of defining and using a procedure. Its parameter list is
(radius height), which means it is intended to be applied to two values. The
first should be substituted where radius appears in the body, and the second where
height appears:

(define cylinder-volume
(lambda (radius height)
(* (* 3.1415927 (square radius))

height)))

(cylinder-volume 5 4)
314.15927

Notice that because we had already given the name square to our procedure for
squaring a number, we were then able to simply use it by name in defining another
procedure. In fact, it doesn’t matter which order the two definitions are done in as
long as both are in place before an attempt is made to apply the cylinder-volume
procedure.

We can model how the computer produced the result 314.15927 by consulting
Figure 1.1. In this diagram, the vertical arrows represent the conversion of a problem
to an equivalent one, that is, one with the same answer. Alternatively, the same
process can be more compactly represented by the following list of steps leading
from the original expression to its value:

1.2 Programming in Scheme 11

(cylinder-volume 5 4)
(* (* 3.1415927 (square 5)) 4)
(* (* 3.1415927 (* 5 5)) 4)
(* (* 3.1415927 25) 4)
(* 78.5398175 4)
314.15927

Whether we depict the evaluation process using a diagram or a sequence of expres-
sions, we say we’re using the substitution model of evaluation. We use this name
because of the way we handle procedure application: The argument values are sub-

(* (* 3.1415927 (square 5))
 4)

(* 3.1415927 (square 5))

(* 3.1415927 25)

(* 78.5398175
 4)

(cylinder-volume 5 4)

(square 5)

314.15927

Problem Subproblem Sub-subproblem

(* 5 5)

25

78.5398175

Figure 1.1 The process of evaluating (cylinder-volume 5 4)

12 Chapter 1 Computer Science and Programming

stituted into the procedure body in place of the parameter names and then the
resulting expression is evaluated.

Exercise 1.4

According to the Joy of Cooking, candy syrups should be cooked 1 degree cooler than
listed in the recipe for each 500 feet of elevation above sea level.

a. Define candy-temperature to be a procedure that takes two arguments: the
recipe’s temperature in degrees and the elevation in feet. It should calculate the
temperature to use at that elevation. The recipe for Chocolate Caramels calls for
a temperature of 244 degrees; suppose you wanted to make them in Denver, the
“mile high city.” (One mile equals 5280 feet.) Use your procedure to find the
temperature for making the syrup.

b. Candy thermometers are usually calibrated only in integer degrees, so it would be
handy if the candy-temperature procedure would give an answer rounded to
the nearest degree. Rounding can be done using the predefined procedure called
round. For example, (round 7/3) and (round 5/3) both evaluate to 2. Insert
an application of round at the appropriate place in your procedure definition and
test it again.

Procedures give us a way of doing the same computation to different values.
Sometimes, however, we have a computation we want to do to different values,
but not exactly in the same way with each. Instead, we want to choose a particular
computation based on the circumstances. For example, consider a simplified income
tax, which is a flat 20 percent of income; however, those earning under $10,000 don’t
have to pay any tax at all. We can write a procedure for calculating this tax as follows:

(define tax
(lambda (income)
(if (< income 10000)

0
(* 20/100 income))))

Two things are new in this example. The first is the procedure named <. Unlike
the procedures we’ve seen so far, it doesn’t calculate a number. Instead it calculates a
boolean or truth value—i.e., either true or false. It’s what we call a test or predicate: a
procedure that determines whether some fact is true or not. (In this case, it determines
whether the income is less than $10,000.) The other new thing is the if expression,
which uses the truth value to decide which of the remaining two expressions to
evaluate. (As you may have guessed, there are other predefined predicates, including

1.2 Programming in Scheme 13

>, =, <=, >=, even?, odd?, and many others. Of those we mentioned, only <= and
>= are perhaps not self-explanatory; they correspond to the mathematical symbols #
and $ respectively.)

We can trace through the steps the computer would take in evaluating (tax
30000) as follows:

(tax 30000)
(if (< 30000 10000) 0 (* 20/100 30000))
(if #f 0 (* 20/100 30000))
(* 20/100 30000)
6000

In going from the second to the third line, the expression (< 30000 10000) is
evaluated to the false value, which is written #f. (Correspondingly, the true value is
written #t.) Because the if’s test evaluated to false, the second subexpression (the
0) is ignored and the third subexpression (the (* 20/100 30000)) is evaluated. We
can again show the computational process in a diagram, as in Figure 1.2.

Exercise 1.5

The preceding tax example has (at least) one undesirable property, illustrated by the
following: if you earn $9999, you pay no taxes, so your net income is also $9999.
However, if you earn $10,000, you pay $2000 in taxes, resulting in a net income of
$8000. Thus, earning $1 more results in a net loss of $1999!

The U.S. tax code deals with this potential inequity by using what is called a
marginal tax rate. This policy means roughly that each additional dollar of income
is taxed at a given percentage rate, but that rate varies according to what income
level the dollar represents. In the case of our simple tax, this would mean that the
first $10,000 of a person’s income is not taxed at all, but the amount above $10,000
is taxed at 20 percent. For example, if you earned $12,500, the first $10,000 would
be untaxed, but the amount over $10,000 would be taxed at 20 percent, yielding a
tax bill of 20% 3 ($12, 500 2 $10, 000) 5 $500. Rewrite the procedure tax to reflect
this better strategy.

Exercise 1.6

The Joy of Cooking suggests that to figure out how many people a turkey will serve,
you should allow 36 4 of a pound per person for turkeys up to 12 pounds in weight, but
only 16 2 pound per person for larger turkeys. Write a procedure, turkey-servings,
that when given a turkey weight in pounds will calculate the number of people it
serves.

14 Chapter 1 Computer Science and Programming

(if (< 30000 10000)
 0
 (* 20/100 30000))

(if #f
 0
 (* 20/100 30000))

(tax 30000)

(< 30000 10000)

Problem Subproblem

#f

(* 20/100 30000)

6000

Figure 1.2 The process of evaluating (tax 30000)

Exercise 1.7

Write a succinct English description of the effect of each of the following procedures.
Try to express what each calculates, not how it calculates that.

a. (define puzzle1
(lambda (a b c)
(+ a (if (> b c)

b
c))))

b. (define puzzle2
(lambda (x)
((if (< x 0)

-
+)

0 x)))

1.3 An Application: Quilting 15

Figure 1.3 A sample of the Repeating Crosses quilt

1.3 An Application: Quilting

Now we turn our attention to building procedures that operate on rectangular im-
ages, rather than numbers. Using these procedures we can produce geometric quilt
patterns, such as the Repeating Crosses pattern shown in Figure 1.3.

In doing numeric computations, the raw materials are numbers you type in and
some primitive numeric procedures, such as +. (By primitive procedures, we mean
the fundamental predefined procedures that are built into the Scheme system.) The
situation here is similar. We will build our images out of smaller images, and we will
build our image procedures out of a few primitive image procedures that are built
into our Scheme system. Unfortunately, image procedures are not as standardized as
numeric procedures, so you can’t count on these procedures to work in all versions
of Scheme; any Scheme used with this book, however, should have the procedures
we use here. There is also the problem of how to input the basic building-block
images that are to be manipulated. Graphic input varies a great deal from computer
to computer, so rather than tell you how to do it, we’ve provided a file on the web
site for this book that you can load into Scheme to define some sample images.
Loading that file defines each of the names shown in Figure 1.4 as a name for the
corresponding image. (Exercise 1.11 at the end of this section explains how these
blocks are produced.)

We’ll build our quilts by piecing together small square images called basic blocks.
The four examples in Figure 1.4 are all basic blocks; the one called rcross-bb was
used to make the Repeating Crosses quilt. The quilt was made by piecing together
copies of the basic block, with some of them turned.

To make the Repeating Crosses quilt, we need at least two primitive procedures:
one that will produce an image by piecing together two smaller images and one

16 Chapter 1 Computer Science and Programming

rcross-bb corner-bb test-bb nova-bb
Figure 1.4 Predefined images

that will turn an image a quarter turn to the right. These procedures, which are
built into the Scheme systems recommended for this book, are called stack and
quarter-turn-right.

Exercise 1.8

Try evaluating the following expressions:

(stack rcross-bb corner-bb)
(quarter-turn-right test-bb)

What happens if you nest several expressions, such as in the following:

(stack (stack rcross-bb corner-bb) test-bb)
(stack (stack rcross-bb corner-bb)

(stack (quarter-turn-right test-bb) test-bb))

Can you describe the effect of each primitive?

Exercise 1.9

Before undertaking anything so ambitious as making an actual quilt, it may pay to
have a few more tools in our kit. For example, it would be nice if we could turn an
image to the left, or half way around, as well as to the right. Similarly, it would be
desirable to be able to join two images side by side as well as stacking them on top
of one another.

a. Define procedures half-turn and quarter-turn-left that do as their names
suggest. Both procedures take a single argument, namely, the image to turn. You
will naturally need to use the built-in procedure quarter-turn-right.

b. Define a procedure side-by-side that takes two images as arguments and creates
a composite image having the first image on the left and the second image on
the right.

1.3 An Application: Quilting 17

If you don’t see how to build the three additional procedures out of quarter-
turn-right and stack, you may want to play more with combinations of those
two. Alternatively, try playing with paper squares with basic blocks drawn on them.
(The web site for this book has some basic blocks you can print out, but hand-drawn
ones work just as well.)

Exercise 1.10

Each dark cross in the repeating crosses pattern is formed by joining together four
copies of the basic block, each facing a different way. We can call this operation
pinwheeling the basic block; here is an example of the same operation performed on
the image test-bb:

(pinwheel) ⇒

Define the pinwheel procedure and show how you can use it to make a cross out
of the basic block.

Now try pinwheeling the cross—you should get a sample of the quilt, with four
dark crosses, as shown at the beginning of the section. If you pinwheel that, how big
is the quilt you get?

Try making other pinwheeled quilts in the same way, but using the other basic
blocks. What do the designs look like?

Although you have succeeded (through the exercises) in making the Repeating
Crosses quilt described at the beginning of this section, there are at least two ques-
tions you may have. First, how are the basic blocks constructed in the first place? And
second, how could we create quilts that aren’t pinwheels of pinwheels? This latter
question will be dealt with in the next two chapters, which introduce new program-
ming techniques called recursion and iteration. The former question is addressed in
the following exercise.

Exercise 1.11

All four basic blocks shown previously can be produced using two primitive graphics
procedures supported by all the Scheme systems recommended for this book. The

18 Chapter 1 Computer Science and Programming

first of these procedures, filled-triangle, takes six arguments, which are the x
and y coordinates of the corners of the triangle that is to be filled in. The coordinate
system runs from 21 to 1 in both dimensions. For example, here is the definition of
test-bb:

(define test-bb
(filled-triangle 0 1 0 -1 1 -1))

The second of these procedures, overlay, combines images. To understand how it
works, imagine having two images on sheets of transparent plastic laid one on top of
the other so that you see the two images together. For example, here is the definition
of nova-bb, which is made out of two triangles:

(define nova-bb
(overlay (filled-triangle 0 1 0 0 -1/2 0)

(filled-triangle 0 0 0 1/2 1 0)))

a. Use these primitive graphics procedures to define the other two basic blocks from
Figure 1.4.

b. Now that you know how it is done, be inventive. Come up with some basic blocks
of your own and make pinwheeled quilts out of them. Of course, if your system
supports direct graphical input, you can also experiment with freehand images,
or images from nature. You might find it interesting to try experiments such as
overlaying rotated versions of an image on one another.

Review Problems

Exercise 1.12

Find two integers such that applying f to them will produce 16 as the value, given
that f is defined as follows:

(define f
(lambda (x y)
(if (even? x)

7
(* x y))))

Exercise 1.13

Write a Scheme expression with no multidigit numbers in it that has 173 as its value.

Chapter Inventory 19

Exercise 1.14

Write a procedure that takes two arguments and computes their average.

Exercise 1.15

What could be filled into the blank in the following procedure to ensure that no
division by zero occurs when the procedure is applied? Give several different answers.

(define foo
(lambda (x y)
(if

(+ x y)
(/ x y))))

Exercise 1.16

A 10-foot-long ladder leans against a wall, with its base 6 feet away from the bottom
of the wall. How high on the wall does it reach? This question can be answered by
evaluating (ladder-height 10 6) after entering the following definition. Make a
diagram such as the one in Figure 1.1 showing the evaluation of (ladder-height
10 6) in the context of this definition:

(define ladder-height
(lambda (ladder-length base-distance)
(sqrt (- (square ladder-length)

(square base-distance)))))

Chapter Inventory

Vocabulary

computer science
computational process
information process
process
program
programming language
Scheme
value
expression
evaluation

procedure
apply
argument
parameter
substitution model
boolean
truth value
test
predicate
primitive procedure

20 Chapter 1 Computer Science and Programming

New Predefined Scheme Names

The dagger symbol (†) indicates a name that is not part of the R4RS standard for
Scheme.

sqrt
+
*
-
/
round
<
>
=

<=
>=
even?
odd?
stack†
quarter-turn-right†
filled-triangle†
overlay†

New Scheme Syntax

number
name
application
definition
lambda expression

parameter list
body
if expression
#f
#t

Scheme Names Defined in This Chapter

ark-volume
square
cylinder-volume
candy-temperature
tax
turkey-servings
puzzle1
puzzle2
rcross-bb

corner-bb
test-bb
nova-bb
half-turn
quarter-turn-left
side-by-side
pinwheel
ladder-height

Sidebars

Responsible Computer Use

Notes

The identifying keyword lambda, which indicates that a procedure should be created,
has a singularly twisted history. This keyword originated in the late 1950s in a
programming language (an early version of Lisp) that was a direct predecessor to
Scheme. Why? Because it was the name of the Greek letter l, which Church
had used in the 1930s to abstract mathematical functions from formulas [12]. For

Notes 21

example, where we write (lambda (x) (* x x)), Church might have written
lx.x 3 x. Because the computers of the 1950s had no Greek letters, the l needed
to be spelled out as lambda. This development wasn’t the first time that typographic
considerations played a part in the history of lambda. Barendregt [6] tells “what
seems to be the story” of how Church came to use the letter l. Apparently Church
had originally intended to write x̂.x 3 x, with a circumflex or “hat” over the x. (This
notation was inspired by a similar one that Whitehead and Russell used in their
Principia Mathematica [53].) However, the typesetter of Church’s work was unable
to center the hat over the top of the x and so placed it before the x, resulting in

ˆx.x 3 x instead of x̂.x 3 x; a later typesetter then turned that hat with nothing under
it into a l, presumably based on the visual resemblance.

The formula for candy-making temperatures at higher elevations, the recipe for
chocolate caramels, and the formula for turkey servings are all from the Joy of Cooking
[42]. The actual suggested formula for turkey servings gives a range of serving sizes
for each class of turkeys; we’ve chosen to use the low end of each range, because
we’ve never had a shortage of turkey.

The quilting application is rather similar to the “Little Quilt” language of Sethi
[49]. The Repeating Crosses pattern is by Helen Whitson Rose [43].

