
C H A P T E R F I V E

Higher-Order Procedures

5.1 Procedural Parameters

In the earlier chapters, we twice learned how to stop writing lots of specific expressions
that differed only in details and instead to write one general expression that captured
the commonality:

In Chapter 1, we learned how to define procedures. That way when we had several
expressions that differed only in the specific values being operated on, such as
(* 3 3), (* 4 4), and (* 5 5), we could instead define a general procedure:

(define square
(lambda (x)
(* x x)))

This one procedure can be used to do all of the specific calculations just listed;
the procedure specifies what operations to do, and the parameter allows us to vary
which value is being operated on.
In Chapter 2, we learned how to generate variable-size computational processes.
That way if we had several procedures that generated processes of the same
form, but differing in size, such as (define square (lambda (x) (* x x)))
and (define cube (lambda (x) (* (* x x) x))), we could instead define
a general procedure:

(define power
(lambda (b e)
(if (= e 1)

b
(* (power b (- e 1)) b))))

109

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight

110 Chapter 5 Higher-Order Procedures

This one procedure can be used in place of the more specific procedures listed
previously; the procedure still specifies what operations to do, but the parameters
now specify how many of these operations to do as well as what values to do them
to.

Since learning about these two kinds of variability—variability of values and of
computation size—we’ve concentrated on other issues, such as the amount of time
and memory that a process consumes. In this chapter, we will learn about a third
kind of variability, which, once again, will allow us to replace multiple specific
definitions with a single more general one.

Suppose that you replace the operation name * with stack in the previous
definition of power. By making this one change, you’ll have a procedure for stacking
multiple copies of an image instead of doing exponentiation. That is, the general
structure of the two procedures is the same; the only difference is the specific
operation being used. (Of course, it would make the procedure easier to understand
if you also made some cosmetic changes, such as changing the name from power
to stack-copies-of and changing the name and order of the parameters. If you
do this, you’ll probably wind up with the exact same procedure you wrote for
Exercise 2.13 on page 40.)

This commonality of structure raises an interesting question: Can we write one
general purpose procedure for all computations of this kind and then tell it not only
how many copies we want of what but also how they should be combined? If so, we
could ask it to stack together 3 copies of rcross-bb, to multiply together 5 copies of
2, or We might use it like this:

(together-copies-of stack 3 rcross-bb) ⇒

(together-copies-of * 5 2)
32

The first argument is a procedure, which is how we specify the kind of combining we
want done. The names stack and * are evaluated, just like the name rcross-bb
is or any other expression would be. Therefore, the actual argument value is the
procedure itself, not the name.

To start writing the procedure together-copies-of, we give a name for its
procedural parameter in the parameter list, along with the other parameters:

(define together-copies-of
(lambda (combine quantity thing)

Here we have three parameters, called combine, quantity, and thing, filling in the
blanks in “combine together quantity copies of thing.” We chose to use a verb for the
procedural parameter and nouns for the other parameters to remind ourselves how

5.1 Procedural Parameters 111

they are used. Now we can finish writing the procedure, using the parameter names
in the body wherever we want to have the specifics substituted in. For example,
when we want to check whether the specific quantity requested is 1, we write
(= quantity 1). Similarly, when we want to use the specific combining operation
that was requested, we write (combine). Here is the resulting procedure:

(define together-copies-of
(lambda (combine quantity thing)
(if (= quantity 1)

thing
(combine (together-copies-of combine

(- quantity 1)
thing)

thing))))

Once we’ve got this general purpose procedure, we can use it to simplify the
definition of other procedures:

(define stack-copies-of
(lambda (quantity image)
(together-copies-of stack quantity image)))

(define power
(lambda (base exponent)
(together-copies-of * exponent base)))

(define mod-expt
(lambda (base exponent modulus)
(together-copies-of (lambda (x y)

(remainder (* x y) modulus))
exponent base)))

(Notice that we didn’t bother giving a name, such as mod*, to the combining proce-
dure used in mod-expt. Typically, using a lambda expression to supply the proce-
dural argument directly is easier than stopping to give it a name with define and
then referring to it by name.)

Together-copies-of is an example of a higher-order procedure. Such proce-
dures have procedural parameters or (as we’ll see later) return procedural values. One
great benefit of building a higher-order procedure is that the client procedures such
as stack-copies-of and mod-expt are now completely independent of the process
used for combining copies. All they say is that so many copies of such and such should
be combined with this combiner, without saying how that combining should be orga-

112 Chapter 5 Higher-Order Procedures

nized. This means that we can improve the technique used by together-copies-of
and in one fell swoop the performance of stack-copies-of, mod-expt, and any
other client procedures will all be improved.

Exercise 5.1

Write a linear iterative version of together-copies-of.

Exercise 5.2

Write a logarithmic-time version of together-copies-of. You may assume that
the combiner is associative.

Exercise 5.3

What does the following procedure compute? Also, compare its performance with
each of the three versions of together-copies-of installed, using relatively large
values for the first argument, perhaps in the ten thousand to a million range.

(define mystery
(lambda (a b)
(together-copies-of + a b)))

For our second example, note that counting the number of times that 6 is a digit
in a number (Exercise 2.9 on page 39) is very similar to counting the number of
odd digits in a number (Exercise 2.10 on page 39). In the former case, you’re testing
to see if each digit is equal to 6 and in the latter you’re testing to see if each digit
is odd. Thus we can write a general procedure, num-digits-in-satisfying, that
we can use to define both of these procedures. Its second parameter is the particular
test predicate to use on each digit.

(define num-digits-in-satisfying
(lambda (n test?)
(cond ((< n 0)

(num-digits-in-satisfying (- n) test?))
((< n 10)
(if (test? n) 1 0))
((test? (remainder n 10))
(+ (num-digits-in-satisfying (quotient n 10) test?)

1))
(else
(num-digits-in-satisfying (quotient n 10) test?)))))

5.2 Uncomputability 113

We can then define the procedures asked for in Exercises 2.9 and 2.10 as special
cases of the more general procedure num-digits-in-satisfying:

(define num-odd-digits
(lambda (n)
(num-digits-in-satisfying n odd?)))

(define num-6s
(lambda (n)
(num-digits-in-satisfying n (lambda (n) (= n 6)))))

Exercise 5.4

Use num-digits-in-satisfying to define the procedure num-digits, which was
defined “from scratch” in Section 2.3.

Exercise 5.5

Rewrite num-digits-in-satisfying so that it generates an iterative process.

Another computational pattern that occurs very frequently involves summing the
values of a function over a given range of integers.

Exercise 5.6

Write a general purpose procedure, that when given two integers, low and high, and
a procedure for computing a function f , will compute f (low) 1 f (low 1 1) 1 f (low 1
2) 1 ? ? ? 1 f (high). Show how it can be used to sum the squares of the integers from
5 to 10 and to sum the square roots of the integers from 10 to 100.

5.2 Uncomputability

Designing general purpose procedures with procedural parameters is an extremely
practical skill. It can save considerable programming, because a procedure can be
written a single time but reused in many contexts. However, despite this practicality,
the single most interesting use of a procedure with a procedural parameter is in a
theoretical proof. In this section we’ll take a look at the history and importance of
this proof.

By now we’ve seen that procedures are quite powerful. They can be used for
doing arithmetic on 200-digit numbers in order to produce digital signatures, for

114 Chapter 5 Higher-Order Procedures

making a variety of complex images, and for looking words up in dictionaries. You
probably know of lots of other things procedures can be used for. There seems
to be no limit to what we can do with them. At the beginning of the twentieth
century, mathematicians addressed exactly that question: whether a procedure could
be found to compute any function that could be precisely mathematically specified.
That question was settled in the 1930s by the discovery of several uncomputable
functions (one of which we’ll examine in this section).

The specific function we’ll prove uncomputable is a higher-order one and is
often called the halting problem. It takes a procedure as an argument and returns a
true/false value telling whether the given procedure generates a terminating process,
as opposed to going into an infinite loop. Now imagine that one of your brilliant
friends gives you a procedure, called halts?, that supposedly computes this function.
You could then use this procedure on the simple procedures return-seven and
loop-forever defined below. Evaluating (halts? return-seven) should result
in #t, whereas (halts? loop-forever) should evaluate to #f.

(define return-seven
(lambda ()
7))

(define loop-forever
(lambda ()
(loop-forever)))

(Return-seven and loop-forever happen to be our first examples of procedures
with no parameters. This is indicated by the empty parentheses.)

Clearly halts? would be a handy procedure to have, if it really worked. To start
with, it could be used to test for a common kind of bug. Never again would you have
to guess whether you’d goofed and accidentally written a nonterminating procedure.
You could tell the difference between a computation that was taking a long time
and one that would never finish.

Above and beyond this, you could answer all sorts of open mathematical questions.
For example, we mentioned earlier that no one knows whether there are any odd
perfect numbers. It would be easy enough to write a procedure that tested all the odd
numbers, one by one, stopping when and if it found one that was perfect. Then all
we’d have to do is apply halts? to it, and we’d have the answer—if we’re told that
our search procedure halts, there are odd perfect numbers; otherwise, there aren’t.
This suggests that such a procedure might be a bit too wonderful to exist—it would
make obsolete centuries of mathematicians’ hard work. However, this is far from a
proof that it doesn’t exist.

Another related sense in which halts? is a bit too good to be true forms a
suitable basis for a proof that it can’t be a sure-fire way to determine whether a given

5.2 Uncomputability 115

procedure generates a halting process. (In other words, there must be procedures for
which it either gives the wrong answer or fails to give an answer.) Halts? in effect
claims to predict the future: It can tell you now whether a process will terminate or
not at some point arbitrarily far into the future. The way to debunk such a fortune-
teller is to do the exact opposite of what the fortune-teller foretells (provided that the
fortune-teller is willing to give unambiguous answers to any question and that you
believe in free will). This will be the essence of our proof that halts? can’t work as
claimed.

What we want is a procedure that asks halts? whether it is going to stop and
then does the opposite:

(define debunk-halts?
(lambda ()
(if (halts? debunk-halts?)

(loop-forever)
666)))

Debunk-halts? halts if and only if debunk-halts? doesn’t halt—provided the
procedure halts? that it calls upon performs as advertised. But nothing can both
halt and not halt, so there is only one possible conclusion: our assumption that such
a halts? procedure exists must be wrong—there can be no procedure that provides
that functionality.

The way we proved that the halting problem is uncomputable is called a proof
by contradiction. What we did was to assume that it was computable, that is, that a
procedure (halts?) exists that computes it. We then used this procedure to come
up with debunk-halts?, which halts if and only if it doesn’t halt. In other words,
whether we assume that debunk-halts? halts or that it doesn’t halt, we can infer
the opposite; we are stuck with a contradiction either way. Because we arrived at
this self-contradictory situation by assuming that we had a halts? procedure that
correctly solved the halting problem, that assumption must be false; in other words,
the halting problem is uncomputable.

This version of proof by contradiction, where the contradiction is arrived at by
using an alleged universal object to produce the counterexample to its own univer-
sality, is known as a diagonalization proof. Another variation on the theme can be
used to show that most functions can’t even be specified, let alone implemented by
a procedure.

We should point out that we’ve only given what most mathematicians would call
a “sketch” of the actual proof that the halting problem is uncomputable. In a formal
proof, the notions of what a procedure is, what process that procedure generates,
and whether that process terminates need to be very carefully specified in formal
mathematical terms. This ensures that the function mapping each procedure to a
truth value based on whether or not it generates a terminating process is a well-

116 Chapter 5 Higher-Order Procedures

defined mathematical function. The mathematician Alan Turing spent considerable
effort on these careful specifications when he originated the proof that halts? can’t
exist.

The discovery that there are mathematical functions that can be specified but
not computed is one of the wedges that served to split computer science off from
mathematics in the middle of the twentieth century. Of course, this was the same
period when programmable electronic computers were first being designed and built
(by Turing himself, among others). However, we can now see that the fundamental
subject matter of mathematics and computer science are distinct: Mathematicians
study any abstraction that can be formally specified, whereas computer scientists
confine their attention to the smaller realm of the computable. Mathematicians
sometimes are satisfied with an answer to the question “is there a . . . ,” whereas
computer scientists ask “How do I find it?”

Alan Turing

One of the surest signs of genius in a computer scientist is the ability to excel
in both the theoretical and the practical sides of the discipline. All the greatest
computer scientists have had this quality, and most have even gone far beyond the
borders of computer science in their breadth. Given the youth of the discipline,
most of these greats are still alive, still alternating between theory and application,
the computer and the pipe organ. Alan Turing, however, has the dual distinction
of having been one of these greats who passed into legend.

Turing developed one of the first careful theoretical models of the notions of
algorithm and process in the 1930s, basing it on a bare-bones computing machine
that is still an important theoretical model—the Turing machine, as it is called.
He did this as the basis of his careful proof of the uncomputability of the halting
problem, sketched in this section. In so doing he made a contribution of the first
magnitude to the deepest theoretical side of computer science.

During World War II, Turing worked in the British code-breaking effort and
successfully designed real-life computing machines dedicated to this purpose.
He is given a considerable portion of the credit for the Allied forces’ decisive
cryptographic edge and in particular for the breaking of the German “Enigma”
ciphers.

After the war Turing led the design of the National Physical Laboratory’s ACE
computer, which was one of the first digital electronic stored-program computers
designed anywhere and the first such project started in England.

During this same post-war period of the late forties Turing returned more se-
riously to a question he had dabbled with for years, the question of artificial

Continued

5.2 Uncomputability 117

Alan Turing (Continued)

intelligence: whether intelligence is successfully describable as a computational
process, such that a computing machine could be programmed to be intelligent.
He made a lasting contribution to this area of thought by formulating the question
in operational terms. In other words, he made the significant choice not to ask “is
the machine really intelligent inside or just faking” but rather “can the machine
be distinguished from a human, simply by looking at its outward behavior.” He
formulated this in a very specific way: Can a computer be as successful as a man at
convincing an interrogator that it is a woman? He also stipulated that the computer
and the man should both be communicated with only through a textual computer
terminal (or teletype). In the decades since Turing published this idea in 1950, it
has been generalized such that any operational test of intelligence is today referred
to as a “Turing test.” Theoretical foundations, applications to code breaking,
computer design, and questions of artificial intelligence weren’t all that concerned
Turing, however. He also made an important contribution to theoretical biology.
His famous 1952 paper “The Chemical Basis of Morphogenesis” showed how
chemical reactions in an initially homogeneous substance can give rise to large-
scale orderly forms such as are characteristic of life.

Turing’s work on morphogenesis (the origins of form) never reached com-
pletion, however, because he tragically took his own life in 1954, at the age of
42. There is considerable uncertainty about exactly why he did this, or more
generally about his state of mind. It is documented that he had gone through
periods of depression, as well as considerable trauma connected with his sexual
orientation. Turing was rather openly homosexual, at a time when sex between
men was a crime in England, even if in private and with consent. In 1952
Turing was convicted of such behavior, based on his own frank admission. His
lawyer asked the court to put him on probation, rather than sentence him to
prison, on the condition that he undergo experimental medical treatment for his
homosexuality—paradoxically it was considered an illness as well as a crime. The
treatment consisted of large doses of estrogen (female hormones), which caused
impotence, depression, and further stigmatization in the form of enlarged breasts.
The treatment ended in 1953, but there is circumstantial evidence suggesting
that British intelligence agencies kept close tabs on Turing thereafter, including
detaining a foreign lover to prevent a rendezvous. (Apparently they were con-
cerned that Turing might divulge his secret information regarding cryptography
and related fields.) Although there is no clear evidence, this sequence of events
probably played a role in the overall emotional progression leading to Turing’s
suicide, cutting off what could have been the entire second half of his career.

118 Chapter 5 Higher-Order Procedures

Since the 1930s, when Turing showed that there could be no procedure that solves
this halting problem, many other functions have been shown to be uncomputable.
Many of these proofs have the form: “If I had this procedure, I could use it in this
clever way to implement halts?. But halts? can’t exist, so this procedure must
not either.” This is known as a proof by reduction.

5.3 Procedures That Make Procedures

Now we can return to the more practical question of what programming techniques
are made possible by procedures that operate on procedures. (Recall that this is what
higher-order means.) So far we have seen procedures that take other procedures as
parameters, just as they might take numbers or images. However, procedures don’t
just take values in: They also return values as the result of their computations. This
carries over to procedural values as well; higher-order procedures can be used to
compute procedural results. In other words, we can build procedures that will build
procedures. Clearly this could be a very labor-saving device.

How do we get a procedure to return a new procedure? We do it in the same way
that we get a procedure to return a number. Recall that in order to ensure that a
procedure returns a number when it is applied, its body must be an expression that
evaluates to a number. Similarly, for a procedure to create a new procedure when it
is applied, its body must be an expression that evaluates to a procedure. At this point,
we know of only one kind of expression that can evaluate to a new procedure—a
lambda expression. For example, here is a simple “procedure factory” with examples
of its use:

(define make-multiplier
(lambda (scaling-factor)
(lambda (x)
(* x scaling-factor))))

(define double (make-multiplier 2))

(define triple (make-multiplier 3))

(double 7)
14

(triple 12)
36

When we evaluate the definition of make-multiplier, the outer lambda ex-
pression is evaluated immediately and has as its value the procedure named
make-multiplier. That procedure is waiting to be told what the scaling factor
is. When we evaluate

5.3 Procedures That Make Procedures 119

(define double (make-multiplier 2))

the body of the procedure named make-multiplier is evaluated, with the value
2 substituted for scaling-factor. In other words, the expression (lambda (x)
(* x scaling-factor)) is evaluated with 2 substituted for scaling-factor.
The result of this evaluation is the procedure that is named double, just as though
the definition had been (define double (lambda (x) (* x 2))). When we
apply double to 7, the procedure (lambda (x) (* x 2)) is applied to 7, and the
result is, of course, 14.

Exercise 5.7

Write a procedure make-exponentiater that is passed a single parameter e (an
exponent) and returns a function that itself takes a single parameter, which it raises
to the e power. You should use the built-in Scheme procedure expt. As examples,
you could define square and cube as follows:

(define square (make-exponentiater 2))

(define cube (make-exponentiater 3))

(square 4)
16

(cube 4)
64

For another example of a procedure factory, suppose that we want to automate
the production of procedures like repeatedly-square, from Section 3.2. That pro-
cedure took two arguments, the number to square and how many times it should be
squared. We could make a procedure factory called make-repeated-version-of
that would be able to make repeatedly-square out of square:

(define make-repeated-version-of
(lambda (f) ; make a repeated version of f
(define the-repeated-version
(lambda (b n) ; which does f n times to b
(if (= n 0)

b
(the-repeated-version (f b) (- n 1)))))

the-repeated-version))

(define square (lambda (x) (* x x)))

120 Chapter 5 Higher-Order Procedures

(define repeatedly-square
(make-repeated-version-of square))

(repeatedly-square 2 3) ; 2 squared squared squared
256

One thing worth noticing in this example is that we used an internal definition
of the-repeated-version to provide a name for the generated procedure. That
way we can refer to it by name where it reinvokes itself to do the n 2 1 remaining
repetitions. Having internally defined this name, we then return the procedure it is
a name for.

Exercise 5.8

Define a procedure that can be used to produce factorial (Section 2.1) or
sum-of-first (Section 2.3). Show how it can be used to define those two pro-
cedures.

Exercise 5.9

Generalize your solution to the previous exercise so it can also be used to produce
sum-of-squares and sum-of-cubes from Exercise 2.8 on page 38.

5.4 An Application: Verifying ID Numbers

Does this scenario sound familiar?

May I have your credit card number please?
Yes, it’s 6011302631452178.
I’m sorry, I must have typed that wrong. Could you please say it again?

How did the sales representative know the number was wrong?
Credit card numbers are one of the most common examples of self-verifying num-

bers. Other examples include the ISBN numbers on books, the UPC (Universal
Product Code) numbers on groceries, the bank numbers on checks, the serial num-
bers on postal money orders, the membership numbers in many organizations, and
the student ID numbers at many universities.

Self-verifying numbers are designed in such a way that any valid number will have
some specific numerical property and so that most simple errors (such as getting two
digits backward or changing the value of one of the digits) result in numbers that
don’t have the property. That way a legitimate number can be distinguished from
one that is in error, even without taking the time to search through the entire list of
valid numbers.

5.4 An Application: Verifying ID Numbers 121

What interests us about self-verifying numbers is that there are many different
systems in use, but they are almost all of the same general form. Therefore, although
we will need separate procedures for checking the validity of each kind of number,
we can make good use of a higher-order procedure to build all of the verifiers for us.

Suppose we call the rightmost digit of a number d1, the second digit from the right
d2, etc. All of the kinds of identifying numbers listed previously possess a property of
the following kind:

f (1, d1) 1 f (2, d2) 1 f (3, d3) 1 ? ? ? is divisible by m

All that is different between a credit card and a grocery item, or between a book and
a money order, is the specific function f and the divisor m.

How do we define a procedure factory that will construct verifiers for us? As we did
in Section 5.3, we will first look at one of the procedures that this factory is supposed
to produce. This verifier checks to see whether the sum of the digits is divisible by
17; in other words, the divisor is 17 and the function is just f (i, di) 5 di. To write the
verifier, we’ll first write a procedure to add the digits. Recall from Chapter 2 that we
can get at the individual digits in a number by using division by 10. The remainder
when we divide by 10 is the rightmost digit, d1, and the quotient is the rest of the
digits. For example, here is how we could compute the sum of the digits in a number
(as in Exercise 2.11 on page 39) using an iterative process:

(define sum-of-digits
(lambda (n)
(define sum-plus ;(sum of n’s digits) + addend
(lambda (n addend)
(if (= n 0)

addend
(sum-plus (quotient n 10)

(+ addend (remainder n 10))))))
(sum-plus n 0)))

Exercise 5.10

Write a predicate that takes a number and determines whether the sum of its digits
is divisible by 17.

Exercise 5.11

Write a procedure make-verifier, which takes f and m as its two arguments
and returns a procedure capable of checking a number. The argument f is itself a

122 Chapter 5 Higher-Order Procedures

procedure, of course. Here is a particularly simple example of a verifier being made
and used:

(define check-isbn (make-verifier * 11))

(check-isbn 0262010771)
#t

The value #t is the “true” value; it indicates that the number is a valid ISBN.

As we just saw, for ISBN numbers the divisor is 11 and the function is simply
f (i, di) 5 i 3 di. Other kinds of numbers use slightly more complicated functions,
but you will still be able to use make-verifier to make a verifier much more easily
than if you had to start from scratch.

Exercise 5.12

For UPC codes (the barcodes on grocery items), the divisor is 10, and the function
f (i, di) is equal to di itself when i is odd, but to 3di when i is even. Build a verifier for
UPC codes using make-verifier, and test it on some of your groceries. (The UPC
number consists of all the digits: the one to the left of the bars, the ones underneath
the bars, and the one on the right.) Try making some mistakes, like switching or
changing digits. Does your verifier catch them?

Exercise 5.13

Credit card numbers also use a divisor of 10 and also use a function that yields di

itself when i is odd. However, when i is even, the function is a bit fancier: It is 2di if
di , 5, and 2di 1 1 if di $ 5. Build a verifier for credit card numbers. In the dialog
at the beginning of this section, did the order taker really mistype the number, or
did the customer read it incorrectly?

Exercise 5.14

The serial number on U.S. postal money orders is self-verifying with a divisor of 9 and
a very simple function: f (i, di) 5 di, with only one exception, namely, f (1, d1) 5 2d1.
Build a verifier for these numbers, and find out which of these two money orders is
mistyped: 48077469777 or 48077462766.

Actually, both of those money order numbers were mistyped. In one case the error
was that a 0 was replaced by a 7, and in the other case two digits were reversed.
Can you figure out which kind of error got caught and which didn’t? Does this help
explain why the other kinds of numbers use fancier functions?

Review Problems 123

Review Problems

Exercise 5.15

Write a higher-order procedure called make-function-with-exception that takes
two numbers and a procedure as parameters and returns a procedure that has the
same behavior as the procedural argument except when given a special argument.
The two numerical arguments to make-function-with-exception specify what
that exceptional argument is and what the procedure made by make-function-
with-exception should return in that case. For example, the usually-sqrt pro-
cedure that follows behaves like sqrt, except that when given the argument 7, it
returns the result 2:

(define usually-sqrt
(make-function-with-exception 7 2 sqrt))

(usually-sqrt 9)
3

(usually-sqrt 16)
4

(usually-sqrt 7)
2

Exercise 5.16

If two procedures f and g are both procedures of a single argument such that the val-
ues produced by g are legal arguments to f , the composition of f and g is defined to be
the procedure that first applies g to its argument and then applies f to the result. Write
a procedure called compose that takes two one-argument procedures and returns
the procedure that is their composition. For example, ((compose sqrt abs) -4)
should compute the square root of the absolute value of 24.

Exercise 5.17

Suppose you have a function and you want to find at what integer point in a given
range it has the smallest value. For example, looking at the following graph of the
function f (x) 5 x2 2 2x, you can see that in the range from 0 to 4, this function has
the smallest value at 1.

124 Chapter 5 Higher-Order Procedures

1 2 3 4

–1

1

2

3

4

We could write a procedure for answering questions like this; it could be used as
follows for this example:

(integer-in-range-where-smallest (lambda (x)
(- (* x x) (* 2 x)))

0 4)
1

Here is the procedure that does this; fill in the two blanks to complete it:

(define integer-in-range-where-smallest
(lambda (f a b)
(if (= a b)

a
(let ((smallest-place-after-a

))
(if

a
smallest-place-after-a)))))

Exercise 5.18

Consider the following definitions:

(define make-scaled
(lambda (scale f)
(lambda (x)
(* scale (f x)))))

(define add-one
(lambda (x)
(+ 1 x)))

Review Problems 125

(define mystery
(make-scaled 3 add-one))

For the following questions, be sure to indicate how you arrived at your answer:

a. What is the value of (mystery 4)?
b. What is the value of the procedural call ((make-scaled 2 (make-scaled

3 add-one)) 4)?

Exercise 5.19

If l and h are integers, with l , h, we say f is an increasing function on the integer
range from l to h if f (l) , f (l 1 1) , f (l 1 2) , ? ? ? , f (h). Write a procedure,
increasing-on-integer-range?, that takes f , l, and h as its three arguments and
returns true or false (that is, #t or #f) as appropriate.

Exercise 5.20

Suppose the following have been defined:

(define f
(lambda (m b)
(lambda (x) (+ (* m x) b))))

(define g (f 3 2))

For each of the following expressions, indicate whether an error would be signaled,
the value would be a procedure, or the value would be a number. If an error is
signaled, explain briefly the nature of the error. If the value is a procedure, specify
how many arguments the procedure expects. If the value is a number, specify which
number.

a. f
b. g
c. (* (f 3 2) 7)

d. (g 6)

e. (f 6)

f. ((f 4 7) 5)

126 Chapter 5 Higher-Order Procedures

Exercise 5.21

We saw in Section 5.3 the following procedure-generating procedure:

(define make-multiplier
(lambda (scaling-factor)
(lambda (x)
(* x scaling-factor))))

You were also asked in Exercise 5.7 to write the procedure make-exponentiater.
Notice that these two procedures are quite similar. We could abstract out the

commonality into an even more general procedure make-generator such that we
could then just write:

(define make-multiplier (make-generator *))

(define make-exponentiater (make-generator expt))

Write make-generator.

Exercise 5.22

The function halts? was defined as a test of whether a procedure with no parameters
would generate a terminating process. That is, (halts? f) returns true if and
only if the evaluation of (f) would terminate. What about procedures that take
arguments? Suppose we had a procedure halts-on? that tests whether a one-
argument procedure generates a terminating process when given some particular
argument. That is, (halts-on? f x) returns true if and only if the evaluation of
(f x) would terminate.

a. Use halts-on? in a definition of halts?.
b. What does this tell you about the possibility of halts-on?

Exercise 5.23

Consider the following example:

(define double (lambda (x) (* x 2)))
(define square (lambda (x) (* x x)))
(define new-procedure
(make-averaged-procedure double square))

Review Problems 127

(new-procedure 4)
12

(new-procedure 6)
24

In the first example, the new-procedure that was made by make-averaged-
procedure returned 12 because 12 is the average of 8 (twice 4) and 16 (4 squared).
In the second example, it returned 24 because 24 is the average of 12 (twice 6)
and 36 (6 squared). In general, new-procedure will return the average of what-
ever double and square return because those two procedures were passed to
make-averaged-procedure when new-procedure was made.

Write the higher-order procedure factory make-averaged-procedure.

Exercise 5.24

Consider the following procedure:

(define positive-integer-upto-where-smallest
(lambda (n f) ; return an integer i such that

; 1 <= i <= n and for all integers j
; in that same range, f(i) <= f(j)

(define loop
(lambda (where-smallest-so-far next-to-try)
(if (> next-to-try n)

where-smallest-so-far
(loop (if (< (f next-to-try)

(f where-smallest-so-far))
next-to-try
where-smallest-so-far)

(+ next-to-try 1)))))
(loop 1 2)))

a. Write a mathematical formula involving n that tells how many times this proce-
dure uses the procedure it is given as its second argument. Justify your answer.

b. Give a simple Q order of growth for the quantity you determined in part a. Justify
your answer.

c. Suppose you were to rewrite this procedure to make it more efficient. What (in
terms of n) is the minimum number of times it can invoke f and still always
determine the correct answer? Justify your answer. (You are not being asked to
actually rewrite the procedure.)

128 Chapter 5 Higher-Order Procedures

Chapter Inventory

Vocabulary

procedural parameter
higher-order procedure
uncomputable function
halting problem
proof by contradiction
diagonalization proof
proof by reduction

Turing machine
artificial intelligence
operational test of intelligence
Turing test
self-verifying number
composition

Scheme Names Defined in This Chapter

together-copies-of
stack-copies-of
power
mod-expt
mystery
num-digits-in-satisfying
num-odd-digits
num-6s
num-digits
return-seven
loop-forever
debunk-halts?
make-multiplier
double
triple
make-exponentiater
square
cube
make-repeated-version-of

repeatedly-square
factorial
sum-of-first
sum-of-squares
sum-of-cubes
sum-of-digits
make-verifier
check-isbn
make-function-with-exception
compose
integer-in-range-where-smallest
make-scaled
add-one
increasing-on-integer-range?
make-generator
new-procedure
make-averaged-procedure
positive-integer-upto-

where-smallest

Sidebars

Alan Turing

Notes

Turing’s original proof that halts? can’t exist is in [51]. The standard biography of
Turing is Hodges’s [26], and we heartily recommend it.

Notes 129

We remarked in passing that diagonalization can also be used to prove that most
functions can’t even be specified, let alone implemented by a procedure. To give
some flavor for this, let’s restrict ourselves to functions mapping positive integers
to positive integers and show that any notational scheme must miss at least one of
them. Consider an infinitely long list of all possible function specifications in the
notational scheme under consideration, arranged in alphabetical order; call the first
one f1, the second one f2, etc. Now consider the function f that has the property
that for all n, f (n) 5 fn(n) 1 1. Clearly there is no n for which f is identical to fn,
because it differs from each of them in at least one place (namely, at n). Thus f is a
function that is not on the list.

Our information about the various schemes used for self-verifying numbers is
gleaned in small part from experimentation but primarily from two articles by Gal-
lian, [20] and [19]. Those articles contain more of the mathematical underpinnings
and citations for additional sources. We confess that the ISBN checker we defined as
an example will only work for those ISBNs that consist purely of digits; one-eleventh
of all ISBNs end with an X rather than a digit. This X is treated as though it were a
digit with value 10.

