
C H A P T E R E I G H T

Trees

8.1 Binary Search Trees

Joe S. Franksen, one of the co-owners of the video store that uses your query system,
has been getting a lot of customer complaints that searching for a video by director
takes too long. Now he’s hired us to try to fix the problem. The problem doesn’t
appear to be in the query-matching part of our system. Therefore, we will need to
look at the procedures we used for looking up a particular director or video.

Recall that we used a list of video records, and in Exercise 7.22c you wrote a
procedure for searching for the ones by a given director. This procedure has to
search through the entire list of movies, even if the ones by the specified director
happen to be near the front, because it has no way of knowing that there aren’t any
more movies by the same director later in the list. When Franksen’s video rental
business was only a small part of his gas station/convenience store, this was no big
deal because he only had about a hundred videos. But now that he’s expanded his
business and acquired 10,000 videos, the time it takes to find one becomes noticeably
long.

Are there better ways to structure the list of videos so that finding those by a
particular director won’t take so long? One idea would be to sort the list, say,
alphabetically by the director’s name. When we search for a particular director, we
can stop when we reach the first video by a director alphabetically “greater than” the
one we’re searching for.

Is this approach any better? A lot depends on the name of the director. If we’re
searching for videos directed by Alfred Hitchcock, the search will be relatively quick

212

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight



8.1 Binary Search Trees 213

(because this name begins with an A), whereas if we’re looking for videos directed
by Woody Allen, we will still need to search through essentially the entire list to get
to W. We can show that, on the average, using a sorted list will take about half the
time that using an unsorted one would. From an asymptotic point of view, this is not
a significant improvement.

We can find things in a sorted list much faster using what’s called a divide and
conquer approach. The main idea is to divide the list of records we’re searching
through in half at each point in our search. We start by looking in the middle of
the list. If the record we’re looking for is the same as the middle element of the
list, we are done. If it’s smaller than the middle record, we only need to look in
the first half of the list, and if it’s bigger, we only need to look in the second half.
This way of searching for something is often called binary search. Because each pass
of binary search at worst splits the search space in half, we would expect the time
taken to be at worst a multiple of log(n), where n is the size of the list. (In symbols
we say that the time is O(log(n)), pronounced “big oh of log en,” which means
that for all but perhaps finitely many exceptions, it is known to lie below a constant
multiple of log(n).) For large values of n, this is an enormous improvement because,
for example, log2(1,000,000) < 20, a speed-up factor of 1,000,0006 20 5 50,000.

But we run into trouble when we try to code this up because we can’t get to the
middle of a list quickly. In fact, the time it takes to get that middle element is long
enough to make the binary search algorithm as slow as doing the straightforward
linear search that constituted our first and second approaches. Can we do something
to our list that is more drastic than just sorting it? In other words, can we somehow
arrange the video records so that we could efficiently implement the binary search
algorithm? We would need to be able to easily access the middle element (i.e.,
the one where half the remaining records are larger than it and half are smaller).
We would also need to be able to access the records that are smaller than the
middle record, as well as those which are larger. Furthermore, both halves should
be structured in exactly the same way as the whole set of video records, so we can
search the relevant half in the same way.

How do we create such a structure? The answer is to use a data structure based on
the above description. Our new data type will have three elements: one movie record
(the “middle” one) and two collections of movie records (those that are smaller and
those that are larger). This way, we can get at any of the three parts we need by just
using the appropriate selector.

This type of structure is called a binary search tree. There is the hint of a recur-
sive definition in the preceding discussion: Most binary search trees have a middle
element and two subtrees, which are also binary search trees. We need to make this
more precise. First, we skipped over the base case: an empty tree. Secondly, we need
to define what we mean by a middle element. This is simply one that is greater than
every element in one subtree and less than every element in the other subtree. Thus
we can make the following definition:



214 Chapter 8 Trees

Binary search tree: A binary search tree is either empty or it consists of three
parts: the root, the left subtree, and the right subtree. The left and right subtrees
are themselves binary search trees. The root is an element that is greater than or
equal to each of the elements in the left subtree and less than or equal to each of
the elements in the right subtree.

Notice that there is no guarantee in this definition that the root is the median
element (i.e., that half of the elements in the tree are less than it and half are greater
than it). When the root of a tree is the median, and similarly for the roots of the
subtrees, sub-subtrees, etc., the tree will be as short as possible. We will see in the
next section that such trees are the binary search trees that are most efficient for
searching.

For the remainder of this section, we will work with two kinds of binary search
trees, ones that have numbers as their elements and ones that have video records.
Because trees with numbers are easier to conceptualize, we will write procedures
that work with them first. Then we can easily modify these procedures to work with
trees of video records.

In the numerical trees, we will assume that there are no duplicate items. In this
case, we say that the tree is strictly ordered. In the video record trees, there are
probably lots of “duplicates.” Recall that we compare two records by comparing their
directors. Because some people direct many videos, we would expect to see one entry
for each of these videos in the tree.

Binary search trees can be represented visually by diagrams in which each tree is a
box. Empty trees are represented by empty boxes, and nonempty trees are represented
by boxes containing the root value and the boxes for the two subtrees. For example,
a small binary search tree with seven elements looks like the following:

1 3

2

5 7

6

4

Note that the root of the tree, which is 4, is at the top, and the subtrees branch
downward. For some obscure reason, mathematicians and computer scientists almost
always draw their trees so that they grow upside down. The left subtree of this example
tree has 2 for its root. Notice that this subtree is a box much like the outer one, and



8.1 Binary Search Trees 215

so we can talk about its subtrees in turn (with roots 1 and 3), just as we talked about
the subtrees of the original tree.

This sort of boxes-within-boxes diagram is probably the best way to think of a tree
because it emphasizes the recursive three-part structure. However, another style of
diagram is so traditional that it is worth getting used to as well. In this traditional
style of tree diagram, the same binary search tree would look like the following:

4

2 6

1 3 5 7

Here you have to mentally recognize the whole collection of seven “nodes” as a
single tree, with the top node as the root, the three nodes on the left grouped
together in your mind as one subtree, and the three nodes on the right similarly
grouped together as the other subtree. You also have to remember that the “leaves”
at the bottom of the tree (1, 3, 5, and 7) are really roots of trees with empty subtrees
that are invisible in this style of diagram.

We can implement binary search trees by using lists with three elements. Using
the convention that the first element is the root, and the second and third elements
are the left and right subtrees, respectively, the list representation of the preceding
tree would be

(4 (2 (1 () ()) (3 () ())) (6 (5 () ()) (7 () ())))

Its tree structure is much easier to see if we write it on several different lines:

(4
(2
(1 () ())
(3 () ()))
(6
(5 () ())
(7 () ())))

What sort of operations do we need to implement binary search trees? We use
two constructors:



216 Chapter 8 Trees

(define make-empty-tree
(lambda () ’()))

(define make-nonempty-tree
(lambda (root left-subtree right-subtree)
(list root left-subtree right-subtree)))

and four selectors:

(define empty-tree? null?)

(define root car)

(define left-subtree cadr)

(define right-subtree caddr)

These procedures are all we need to implement the binary search algorithm
given above. Initially, we assume that we’re dealing with a binary search tree that
has numerical elements and does not have duplicate entries:

(define in?
(lambda (value tree)
(cond
((empty-tree? tree) #f)
((= value (root tree)) #t)
((< value (root tree)) (in? value (left-subtree tree)))
(else ; the value must be greater than the root
(in? value (right-subtree tree))))))

Notice how closely this procedure follows the definition of binary search trees. If
the tree is empty, the value can’t be in the tree. On the other hand, if the tree is not
empty, the value is either equal to the root or it’s in one of the subtrees. Furthermore,
we can tell which subtree it’s in by how it compares to the root.

There are two related points worth noting here because they will crop up time
and time again. One is the parallelism between the recursive structure of the data
and that of the procedure that operates on it. The other is that our one-layer thinking
about the design of the procedure goes along with a one-layer perspective on the
structure of the data. We don’t think about searching through a succession of values
in the tree, but rather about looking at the root and then one or the other subtree.
Similarly, we don’t view the tree as composed of a bunch of values, but rather of
a root and two subtrees. We can summarize these points as a general principle for
future reference:



8.1 Binary Search Trees 217

The one-layer data structure principle: Hierarchical data structures should not
be thought of in their entirety but rather in a one-layer fashion, as a recursive
composition of substructures. This one-layer thinking guides one to write recursive
procedures that naturally parallel the recursive structure of the data.

Exercise 8.1

Write a procedure called minimum that will find the smallest element in a nonempty
binary search tree of numbers.

Exercise 8.2

Write a procedure called number-of-nodes that will count the number of elements
in a binary search tree.

In the video catalog example, we will want a version of in? that returns a list
of all the videos directed by a given person. Therefore, we will need a procedure
that takes a video record and a director’s name and determines how the name of
the director of the video compares alphabetically to the given name. The director
field of the video record is often called the key field; the particular name that we’re
searching for is called the key value. Now, any two names could be identical, the
first one could come before the second in alphabetical order, or the first one could
come after the second. Therefore we’ll assume our comparison procedure returns
one of three symbols, =, <, or >.

(define compare-by-director
(lambda (video-record name)
; Returns one of the symbols <, =, or > according to how the
; director in video-record compares alphabetically to name.
; For example, if video-record’s director alphabetically
; precedes name, < would be returned.
the code implementing this would go here))

We’re now in a position to modify in? so that it can list all of the videos in a
binary search tree that are directed by a given person. The basic idea is to traverse
the tree looking for a node whose director is the same as the given key value. Once
we find such a subtree, we must still search both halves of it, looking for all of the
other records that match the key value. This may seem to defeat the efficiency of
the procedure. However, it can be shown that so long as the tree isn’t unnecessarily
tall and skinny, this search method is in fact very efficient.

To make our procedure work generally, and not just for the director, let’s suppose
that we have a general comparison operator (such as compare-by-director). Such



218 Chapter 8 Trees

a procedure takes a video record and a key value, compares the appropriate field of
the record to the key value, and returns exactly one of the symbols =, <, or >. We can
then write a procedure that returns the list of records matching a given key value as
follows:

(define list-by-key
(lambda (key-value comparator tree)
(if (empty-tree? tree)

’()
(let ((comparison-result (comparator (root tree)

key-value)))
(cond
((equal? comparison-result ’=)
(cons (root tree)

(append (list-by-key key-value comparator
(left-subtree tree))

(list-by-key key-value comparator
(right-subtree tree)))))

((equal? comparison-result ’<)
(list-by-key key-value comparator

(right-subtree tree)))
(else ;it must be the symbol >
(list-by-key key-value comparator

(left-subtree tree))))))))

Of course, because we haven’t explained how to do alphabetical comparison,
you’re not in a very good position to complete the compare-by-director pro-
cedure above. You could, of course, try list-by-key out with an analogous
compare-by-year instead, or alternatively consult a Scheme reference manual to
learn how to do alphabetical comparisons. However, our main point was to illustrate
the nature of accessing a binary search tree, not to get into the details of the specific
kind of comparison used.

The procedure list-by-key typifies a process called tree traversal. We call it a
preorder traversal because we consider the root of the tree first and then the left and
right subtrees, in that order. When the root of the tree should be included in the
result, it is consed on in front of the elements from the left and right subtrees. The
lists from the left and right subtrees are appended together using a built-in procedure
we haven’t seen before, append. Here is a simpler example of append:

(append ’(a b c) ’(1 2 3 4))
(a b c 1 2 3 4)

We can use this idea of preorder traversal with cons and append to produce a list
of all the nodes in the tree:



8.1 Binary Search Trees 219

(define preorder
(lambda (tree)
(if (empty-tree? tree)

’()
(cons (root tree)

(append (preorder (left-subtree tree))
(preorder (right-subtree tree)))))))

The append in this procedure can be avoided if we generalize to a preorder-
onto procedure that conses the tree’s nodes onto the front of a specified list. This is
analogous to our definition of reverse in terms of reverse-onto and is motivated
by the same concern: efficiency.

(define preorder
(lambda (tree)
(preorder-onto tree ’())))

(define preorder-onto
(lambda (tree list)
(if (empty-tree? tree)

list
(cons (root tree)

(preorder-onto (left-subtree tree)
(preorder-onto (right-subtree tree)

list))))))

Exercise 8.3

Use this technique to eliminate the append from list-by-key.

One of the problems with preorder is that the list it produces is not sorted. We
can get a list of the nodes that’s sorted by doing what’s called an in order traversal of
the tree. The “in” refers to the fact that you include the root of the tree in between
the left and right subtrees:

(define inorder
(lambda (tree)
(if (empty-tree? tree)

’()
(append (inorder (left-subtree tree))

(cons (root tree)
(inorder (right-subtree tree)))))))



220 Chapter 8 Trees

Now when we call inorder on a binary search tree, the resulting list has the elements
in it listed in increasing order.

Exercise 8.4

Again, eliminate append by using an “onto” parameter.

Exercise 8.5

The third standard way of traversing a tree is called a postorder traversal. Here, you
enumerate the left subtree, then the right subtree, and finally the root. Write a
procedure that takes a binary search tree and produces the list of nodes that describe
a postorder traversal of the tree.

Exercise 8.6

Suppose we want to create a new binary search tree by adding another element to
an already existing binary search tree. Where is the easiest place to add such an
element? Write a procedure called insert that takes a number and a binary search
tree of numbers and returns a new binary search tree whose elements consist of the
given number together with all of the elements of the binary search tree. You may
assume that the given number isn’t already in the tree.

Exercise 8.7

Using the procedure insert, write a procedure called list->bstree that takes a
list of numbers and returns a binary tree whose elements are those numbers. Try this
on several different lists and draw the corresponding tree diagrams. What kind of list
gives you a short bushy tree? What kind of list gives a tall skinny tree?

8.2 Efficiency Issues with Binary Search Trees

Now that we have some experience with binary search trees, we need to ask if they
really are a better structure for storing our catalog of videos than sorted lists. In
order to do that, we first look at a general binary tree and get some estimates on the
number of nodes in a tree. We start with some definitions.

If we ignore the ordering properties that are part of a binary search tree’s definition,
we get something called a binary tree. More precisely,



8.2 Efficiency Issues with Binary Search Trees 221

Binary tree: A binary tree is either empty or it consists of three parts: the root,
the left subtree, and the right subtree. The left and right subtrees are themselves
binary trees.

Needless to say, binary search trees are special cases of binary trees. Furthermore, we
set up the basic constructors and selectors for binary search trees so that they work
equally well for implementing binary trees.

There is an enormous amount of terminology commonly used with binary trees.
The elements that make up roots of binary trees (or roots of subtrees of binary trees)
are called the nodes of the tree. In the graphical representation of a tree, the nodes
are often represented by circles with values inside them. If a particular node in a
binary tree is the root of a subtree that has two empty subtrees, that node is called
a leaf. On the other hand, if a node is the root of a subtree that has at least one
nonempty subtree, that node is called an internal node. If you look at the graphical
representation, the leaves of a tree are the nodes at the very bottom of the tree and
all of the rest of the nodes are internal ones. Of course, if we drew out trees with
the root at the bottom of the diagram, the leaves would correspond more closely to
real leaves on real trees. The two subtrees of a binary tree are often labeled as the
left subtree and the right subtree. Sometimes these subtrees are called the left child
or the right child. More commonly, we define a parent-child relationship between
nodes. If an internal node has a nonempty left subtree, the root of that left subtree
is called the left child of the node. The right child is similarly defined. The internal
node is the parent node of its children. The parent-child relationship is indicated
graphically by drawing an edge between the two nodes. The root of the whole tree
has no parent, all internal nodes have at least one and at most two children, and the
leaves in a tree have no children at all.

Imagine traveling through a binary tree starting at the root. At each point, we
make a choice to go either left or right. If we only travel downward (i.e., without
backing up), there is a unique path from the root to any given node. The depth of a
node is the length of the path from the root to that node, where we define the length
of a path to be the number of edges that we passed along. For example, if we travel
from 7 to 2 to 3 in the tree

7

2 8

3 9



222 Chapter 8 Trees

we take a path of length 2. The height of a tree is the length of the longest path
from the root down to a leaf without any doubling back. In other words, it is the
maximum depth of the nodes in the tree. Thus, the height of the above tree is 2
because every path from the root to a leaf has length 2. According to our definition,
a tree having a single node will have height 0. The height of an empty tree is
undefined; in the remainder of this section, we’ll assume all the trees we’re talking
about are nonempty.

Exercise 8.8

Write a predicate that will return true if the root node of a tree is a leaf (i.e., the tree
has only one node).

Exercise 8.9

Write a procedure that will compute the height of a tree.

Suppose we have a binary tree of height h. What is the maximum number of
nodes that it can have? What is the maximum number of leaves that it can have?
These maximum values occur for complete trees, where a complete tree of height h is
one where all of the leaves occur at depth h and all of the internal nodes have exactly
two children. (Why is the number of leaves maximum then?) Let’s let leaves(h) and
nodes(h), respectively, denote the maximum number of leaves and nodes of a tree
of height h and look at a few small examples to see if we can determine a general
formula. A tree of height 0 has one node and one leaf. A tree of height 1 can have at
most two leaves, and those plus the root make a total of three nodes. A tree of height
2 can have at most four leaves, and those plus the three above make a maximum of
seven nodes.

In general, the maximum number of leaves doubles each time h is increased by 1.
This combined with the fact that leaves(0) 5 1 implies that leaves(h) 5 2h. On the
other hand, because every node in a complete tree is either a leaf or a node that
would remain were the tree shortened by 1, the maximum number of nodes of a tree
of height h . 0 is equal to the maximum number of leaves of a tree of height h plus
the maximum number of nodes of a tree of height h 2 1. Thus, we have derived the
following recursive formula, or recurrence relation:

nodes(h) 5

{
1 if h 5 0
leaves(h) 1 nodes(h 2 1) if h . 0

If we take the second part of this recurrence relation, nodes(h) 5 leaves(h) 1
nodes(h 2 1), and substitute in our earlier knowledge that leaves(h) 5 2h, it follows
that when h is positive, nodes(h) 5 2h 1 nodes(h 2 1). Similarly, for h . 1, we could



8.2 Efficiency Issues with Binary Search Trees 223

show that nodes(h21) 5 2h21 1nodes(h22), so nodes(h) 5 2h 12h21 1nodes(h22).
Continuing this substitution process until we reach the base case of nodes(0) 5 1,
we find that nodes(h) 5 2h 1 2h21 1 2h22 1 ? ? ? 1 4 1 2 1 1. This sum can be
simplified by taking advantage of the fact that multiplying it by 2 effectively shifts it
all over by one position, that is, 2 3 nodes(h) 5 2h11 1 2h 1 2h21 1 ? ? ? 1 8 1 4 1 2.
The payoff comes if we now subtract nodes(h) from this:

2 3 nodes(h) 5 2h11 1 2h 1 2h211? ? ? 1 4 1 2
2 nodes(h) 5 2h 1 2h211? ? ? 1 4 1 2 1 1

nodes(h) 5 2h11 2 1

Exercise 8.10

You can also use the recurrence relation together with induction to prove that
nodes(h) 5 2h11 2 1. Do so.

Exercise 8.11

In many applications, binary trees aren’t sufficient because we need more than two
subtrees. An m-ary tree is a tree that is either empty or has a root and m subtrees,
each of which is an m-ary tree. Generalize the previous results to m-ary trees.

Now suppose we have a binary tree that has n nodes total. What could the height
of the tree be? In the worst-case scenario, each internal node has one nonempty
child and one empty child. For example, imagine a tree where the left subtree of
every node is empty (i.e., it branches only to the right). (This will happen with a
binary search tree if the root at each level is always the smallest element.) In this
case, the resulting tree is essentially just a list. Thus the maximum height of a tree
with n nodes is n 2 1.

What about the minimum height? We saw that a tree of height h can accommodate
up to 2h11 2 1 nodes. On the other hand, if there are fewer than 2h nodes, even
a tree of height h 2 1 would suffice to hold them all. Therefore, for h to be the
minimum height of any tree with n nodes, we must have 2h # n , 2h11. If we take
the logarithm base 2 of this inequality, we find that

h # log2(n) , h 1 1

In other words, the minimum height of a tree with n nodes is blog2(n)c. (The
expression blog2(n)c is pronounced “the floor of log en.” In general, the floor of a
real number is the greatest integer that is less than or equal to that real number.)

Because searching for an element in a binary search tree amounts to finding a
path from the root node to a node containing that element, we will clearly prefer



224 Chapter 8 Trees

trees of minimum height for the given number of nodes. In some sense, such trees
will be as short and bushy as possible. There are several ways to guarantee that a tree
with n nodes has minimum height. One is given in Exercise 8.12. In Chapter 13
we’ll consider the alternative of settling for trees that are no more than 4 times the
minimum height.

We now have all of the mathematical tools we need to discuss why and when
binary search trees are an improvement over straightforward lists. We will consider the
procedure in? because it is somewhat simpler than list-by-key. However, similar
considerations apply to the efficiency of list-by-key, just with more technical
difficulties. Remember that with the in? procedure, we are only concerned with
whether or not a given element is in a binary search tree, whereas with list-by-key
we want to return the list of all records matching a given key.

Let’s consider the time taken by the procedure in? on a tree of height h having n
nodes. Searching for an element that isn’t in the tree is equivalent to traveling from
the root of the tree to one of its leaves. In this case, we will pass through at most
h 1 1 nodes. If we’re searching for an element that is in the tree, we will encounter
it somewhere along a path from the root to a leaf. Because the number of operations
performed by in? is proportional to the number of nodes encountered, we conclude
that in either case, searching for an element in the tree takes O(h) time. If the tree
has minimum height, this translates to O(log(n)). In the worst case, where the height
of the tree is n 2 1, this becomes O(n).

Exercise 8.12

In Exercise 8.7, you wrote a procedure list->bstree that created a binary search
tree from a list by successively inserting the elements into the tree. This procedure
can lead to trees that are far from minimum height—surprisingly, the worst case oc-
curs if the list is in sorted order. However, if you know the list is already in sorted order,
you can do much better: Write a procedure sorted-list->min-height-bstree
that creates a minimum height binary search tree from a sorted list of numbers. Hint:
If the list has more than one element, split it into three parts: the middle element, the
elements before the middle element, and the elements after. Construct the whole
tree by making the appropriate recursive calls on these sublists and combining the
results.

Exercise 8.13

Using sorted-list->min-height-bstree and inorder (which constructs a
sorted list from a binary search tree), write a procedure optimize-bstree that
optimizes a binary search tree. That is, when given an arbitrary binary search tree, it
should produce a minimum-height binary search tree containing the same nodes.



8.2 Efficiency Issues with Binary Search Trees 225

Exercise 8.14

Using list->bstree and inorder, write a procedure sort that sorts a given list.

Privacy Issues

How would you feel if you registered as a child at a chain ice-cream parlor for
their “birthday club” by providing name, address, and birth date, only to find
years later the Selective Service using that information to remind you of your
legal obligation to register for the draft?

This case isn’t a hypothetical one: It is one of many real examples of personal
data voluntarily given to one organization for one purpose being used by a different
organization for a different purpose.

Some very difficult social, ethical, and legal questions occur here. For example,
did the ice-cream chain “own” the data it collected and hence have a right to
sell it as it pleased? Did the the government step outside of the Bill of Rights
restrictions on indiscriminate “dragnet” searches? Did the social good of catching
draft evaders justify the means? How about if it had been tax or welfare cheats or
fathers delinquent in paying child support? (All of the above have been tracked
by computerized matching of records.) Should the computing professionals who
wrote the “matching” program have refused to do so?

The material we have covered on binary search trees may help you to define
efficient structures to store and retrieve data. However, because many information
storage and retrieval systems are used to store personal information, we urge you
to also take the following to heart when and if you undertake such a design.
The Code of Ethics and Professional Conduct of the Association for Computing
Machinery, or ACM (which is the major computing professional society) contains
as General Moral Imperative 1.7:

Respect the privacy of others
Computing and communication technology enables the collection and exchange of
personal information on a scale unprecedented in the history of civilization. Thus
there is increased potential for violating the privacy of individuals and groups. It is the
responsibility of professionals to maintain the privacy and integrity of data describing
individuals. This includes taking precautions to ensure the accuracy of data, as well
as protecting it from unauthorized access or accidental disclosure to inappropriate
individuals. Furthermore, procedures must be established to allow individuals to
review their records and correct inaccuracies.

(Continued)



226 Chapter 8 Trees

Privacy Issues (Continued)

This imperative implies that only the necessary amount of personal information be
collected in a system, that retention and disposal periods for that information be
clearly defined and enforced, and that personal information gathered for a specific
purpose not be used for other purposes without consent of the individual(s). These
principles apply to electronic communications, including electronic mail, and pro-
hibit procedures that capture or monitor electronic user data, including messages,
without the permission of users or bona fide authorization related to system operation
and maintenance. User data observed during the normal duties of system operation
and maintenance must be treated with strictest confidentiality, except in cases where
it is evidence for the violation of law, organizational regulations, or this Code. In
these cases, the nature or contents of that information must be disclosed only to proper
authorities.

8.3 Expression Trees

So far, we’ve used binary trees and binary search trees as a way of storing a collection
of numbers or records. What makes these trees different from lists is the way we
can access the elements. A list has one special element, the first element, and all
the rest of the elements are clumped together into another list. Binary trees also
have a special element, the root, but they divide the rest of the elements into two
subtrees, instead of just one, which gives a hierarchical structure that is useful in
many different settings. In this section we’ll look at another kind of tree that uses this
hierarchical structure to represent arithmetical expressions. In these trees, the way a
tree is structured indicates the operands for each operation in the expression.

Consider an arithmetic expression, such as the one we’d write in Scheme notation
as (+ 1 (* 2 (- 3 5))). We can think of this as being a tree-like structure with
numbers at the leaves and operators at the other nodes:

–

3 5

+

∗

2

1



8.3 Expression Trees 227

Such a structure is often called an expression tree. As we did with binary trees, we
can define an expression tree more precisely:

Expression tree: An expression tree is either a number or it has three parts, the
name of an operator, a left operand and a right operand. Both the left and right
operands are themselves expression trees.

There are several things to notice about this definition:

We are restricting ourselves to expressions that have binary operators (i.e., operators
that take exactly two operands).
We are also restricting ourselves to having numbers as our atomic expressions. In
general, expression trees also include other kinds of constants and variable names
as well.
There is nothing in the definition that says an expression tree must be written in
prefix order, that is, with the name of the operator preceding the two operands.
Indeed, most people would find infix order more natural. An infix expression has
the name of the operator in between the two operands.

How do we implement expression trees? We will do it in much the same way that
we implemented binary trees, except that we will follow the idea of the last note in
the preceeding list and list the parts of an expression in infix order:

(define make-constant
(lambda (x) x))

(define constant? number?)

(define make-expr
(lambda (left-operand operator right-operand)
(list left-operand operator right-operand)))

(define operator cadr)

(define left-operand car)

(define right-operand caddr)

Now that we have a way of creating expressions, we can write the procedures
necessary to evaluate them using the definition to help us decide how to structure our
code. To buy ourselves some flexibility, we’ll use a procedure called look-up-value
to map an operator name into the corresponding operator procedure. Then the main
evaluate procedure just needs to apply that operator procedure to the values of the
operands:



228 Chapter 8 Trees

(define evaluate
(lambda (expr)
(cond ((constant? expr) expr)

(else ((look-up-value (operator expr))
(evaluate (left-operand expr))
(evaluate (right-operand expr)))))))

(define look-up-value
(lambda (name)
(cond ((equal? name ’+) +)

((equal? name ’*) *)
((equal? name ’-) -)
((equal? name ’/) /)
(else (error "Unrecognized name" name)))))

With these definitions, we would have the following interaction:

(evaluate ’(1 + (2 * (3 - 5))))
-3

Exercise 8.15

In the preceding example, we’ve “cheated” by using a quoted list as the expression to
evaluate. This method relied on our knowledge of the representation of expression
trees. How could the example be rewritten to use the constructors to form the
expression?

We can do more with expression trees than just finding their values. For example,
we could modify the procedure for doing a postorder traversal of a binary search tree
so that it works on expression trees instead. In this case, our base case will be when
we have a constant, or a leaf, instead of an empty tree:

(define post-order
(lambda (tree)
(define post-order-onto
(lambda (tree list)
(if (constant? tree)

(cons tree list)
(post-order-onto (left-operand tree)

(post-order-onto
(right-operand tree)
(cons (operator tree) list))))))

(post-order-onto tree ’())))



8.4 An Application: Automated Phone Books 229

If we do a postorder traversal of the last tree shown, we get:

(post-order ’(1 + (2 * (3 - 5))))
(1 2 3 5 - * +)

This result is exactly the sequence of keys that you would need to punch into a
Hewlett-Packard calculator in order to evaluate the expression. Such an expression
is said to be a postfix expression.

Exercise 8.16

Define a procedure for determining which operators are used in an expression.

Exercise 8.17

Define a procedure for counting how many operations an expression contains.

Note that all of the operators in our expressions were binary operators, and thus
we needed nodes with two children to represent them; we say the operator nodes
all have degree 2. If we had operators that took m expressions instead of just two, we
would need nodes with degree m (i.e., trees that have m subtrees).

The kind of tree we’ve been using in this section differs subtly from the binary
and m-ary trees we saw earlier in the chapter. In those positional trees, it was possible
to have a node with a right child but no left child, for example. In the ordered trees
we’re using for expressions, on the other hand, there can’t be a second operand
unless there is a first operand. Other kinds of trees exist as well, for example, trees
in which no distinction is made among the children—none is first or second, left or
right; they are all just children. Most of the techniques and terminology carry over
for all kinds of trees.

8.4 An Application: Automated Phone Books

Have you ever called a university’s information service to get the phone number of a
friend and, instead of talking to a human operator, found yourself following instruc-
tions given by a computer? Perhaps you were even able to look up the friend’s phone
number using the numbers on the telephone keypad. Such automated telephone
directory systems are becoming more common. In this section we will explore one
version of how such a directory might be implemented.

In this version, a user looks up the telephone number of a person by spelling
the person’s name using the numbers on the telephone keypad. When the user has
entered enough numbers to identify the person, the system returns the telephone



230 Chapter 8 Trees

number. Can we rephrase this problem in a form that we can treat using Scheme?
Suppose that we have a collection of pairs, where each pair consists of a person’s
name and phone number. How could we store the pairs so that we can easily retrieve
a person’s phone number by giving the sequence of digits (from 2 to 9) corresponding
to the name? Perhaps our system might do even more: For example, we could have
our program repeatedly take input from the user until the identity of the desired
person is determined, at which point the person’s name and phone number is given.

Notice the similarity between this problem and the video catalog problem con-
sidered in Section 8.1. There we wanted to store the videos in a way that allowed us
to efficiently find all videos with a given director. Our desire to implement binary
search led us to develop the binary search tree ADT. Searching was accomplished
by choosing the correct child of each subtree and therefore amounted to finding the
path from the root node to the node storing the desired value.

We are also searching for things with the automated phone book, but the difference
is the method of retrieval: we want to retrieve a phone number by successively giving
the digits corresponding to the letters in the person’s name. How should we structure
our data in a way that facilitates this type of retrieval? Suppose we use a tree to store
the phone numbers. What type of tree would lend itself to such a search?

If we are going to search by the sequence of digits corresponding to the person’s
name, then these digits could describe the path from the root node to the node
storing the desired value. Each new digit would get us closer to our goal. The easiest
way to accomplish this is to have the subtrees of a given node labeled (indexed) by
the digits themselves. Then the sequence of digits would exactly describe the path
to the desired node because we would always choose the subtree labeled by the next
digit in our sequence. Such a tree is called a trie. This name is derived from the
word retrieval, though the conventional pronunciation has become “try” rather than
the logical but confusing “tree.” More precisely,

Trie: A trie is either empty or it consists of two parts: a list of root values and a
list of subtries, which are indexed by labels. Each subtrie is itself a trie.

Because we have the eight digits from 2 to 9 as labels in our example, our tries
will be 8-ary trees. The first child of a node will be implicitly labeled as the “2” child,
the second as the “3” child, etc. In other words, the digits the user enters describe a
path starting from the root node. If the user types a 2, we move to the first child of
the root node. If the user types a 3 next, we then move to the second child of that
node.

The values stored at a particular node are those corresponding to the path from
the root of the trie to that node. If anyone had an empty name (i.e., zero letters
long), that name and number would be stored on the root node of the trie. Anyone
with the one-letter name A, B, or C would be on the first child of the root (the one
for the digit 2 on the phone keypad, which is also labeled ABC). Anyone with the



8.4 An Application: Automated Phone Books 231

Ben
Children of each node, left to right:
2=ABC 3=DEF 4=GHI 5=JKL 6=MNO 7=PQRS 8=TUV 9=WXYZ

Figure 8.1 An example phone trie, with Ben’s position indicated

one-letter name D, E, or F would be on the second child of the root. Anyone with
any of the two-letter names Ad, Ae, Af, Bd, Be, Bf, Cd, Ce, or Cf would be on the
second child of the first child of the root. For example, the trie in Figure 8.1 shows
where the name and number of someone named Ben would be stored.

Note that a given node may or may not store a value: In our example, the nodes
encountered on the way to Ben’s node don’t have any values because no one has
an empty name, the one-letter name A, B, or C, or any of the 9 two-letter names
listed above. Not all the values need be at leaf nodes, however. For example, Ben’s
name corresponds on a phone to the digits 2-3-5. However, these are also the first
three digits in the name Benjamin, and in fact even the first three digits in the name
Adonis, because B and A share a phone digit, as do E and D and also N and O.
Therefore, the node in our trie that stores the value Ben may also be encountered
along a path to a deeper node that stores Benjamin or Adonis.

We must also allow more than one value to be stored at a given node, because,
for example, Jim and Kim would be specified by the same sequence of digits (5-4-6)
on the telephone. Therefore, we have a list of root values in our definition.

How can we implement tries? As described above, we will implement them as
8-ary trees, where every tree has exactly eight subtrees, even if some (or all) of them
are empty. These subtrees correspond to the digits 2 through 9, which have letters
on a phone keypad. We call these digits 2 through 9 the “labels” of the subtrees and
define a selector called subtrie-with-label that returns the subtrie of a nonempty
trie that corresponds to a given label:

(define make-empty-trie
(lambda () ’()))



232 Chapter 8 Trees

(define make-nonempty-trie
(lambda (root-values ordered-subtries)
(list root-values ordered-subtries)))

(define empty-trie? null?)

(define root-values car)

(define subtries cadr)

(define subtrie-with-label
(lambda (trie label)
(list-ref (subtries trie) (- label 2))))

Note that the constructor make-nonempty-trie assumes that the subtries are given
to it in order (including possibly some empty subtries). Constructing a specific phone
trie is a somewhat difficult task that we will consider later in this section. In fact,
we will write a procedure values->trie that takes a list of values (people’s names
and phone numbers) and returns the trie containing those values. Note also that
the procedure subtrie-with-label must subtract 2 from the label because list
convention refers to the first element (corresponding to the digit 2) as element
number zero.

The values in our automated phone book are the phone numbers of various
people. In order to store the person’s name and phone number together, we create
a simple record-structured ADT called person:

(define make-person
(lambda (name phone-number)
(list name phone-number)))

(define name car)

(define phone-number cadr)

How do we construct the trie itself? As we said in the preceeding, we will do this
later in the section by writing a procedure values->trie that creates a trie from a
list of values. For example, a definition of the form:

(define phone-trie
(values->trie (list (make-person ’lindt 7483)

(make-person ’cadbury 7464)
(make-person ’wilbur 7466)
(make-person ’hershey 7482)



8.4 An Application: Automated Phone Books 233

(make-person ’spruengli 7009)
(make-person ’merkens 7469)
(make-person ’baker 7465)
(make-person ’ghiradelli 7476)
(make-person ’tobler 7481)
(make-person ’suchard 7654)
(make-person ’callebaut 7480)
(make-person ’ritter 7479)
(make-person ’maillard 7477)
(make-person ’see 7463)
(make-person ’perugina 7007))))

will define phone-trie to be the trie containing the given people, which can then
be used to look up phone numbers. You can work on other exercises involving tries
before we write values->trie because we’ve included an alternate definition on
the web site for this book, which simply defines phone-trie as a quoted list.

Using what we have already developed, we can implement a simple automated
phone book as follows:

(define look-up-with-menu
(lambda (phone-trie)
(menu)
(look-up-phone-number phone-trie)))

(define menu
(lambda ()
(newline)
(display "Enter the name, one digit at a time.")
(newline)
(display "Indicate you are done by 0.")
(newline)))

(define look-up-phone-number
(lambda (phone-trie)
(newline)
(if (empty-trie? phone-trie)

(display "Sorry we can’t find that name.")
(let ((user-input (read)))
(if (= user-input 0)

(display-phone-numbers (root-values phone-trie))
(look-up-phone-number (subtrie-with-label

phone-trie
user-input)))))))



234 Chapter 8 Trees

(define display-phone-numbers
(lambda (people)
(define display-loop
(lambda (people)
(cond ((null? people) ’done)

(else (newline)
(display (name (car people)))
(display "’s phone number is ")
(display (phone-number (car people)))
(display-loop (cdr people))))))

(if (null? people)
(display "Sorry we can’t find that name.")
(display-loop people))))

Here is how you could use look-up-with-menu to look up the telephone number
of Spruengli, for example:

(look-up-with-menu phone-trie)
Enter the name, one digit at a time.

Indicate you are done with 0.

7
7
7
8
3
6
4
5
4
0
spruengli's phone number is 7009

This method is certainly progress, but it is also somewhat clunky. After all, in our
example Spruengli is already determined by the first two digits (7 and 7). It seems
silly to require the user to enter more digits than are necessary to specify the desired
person. We could make our program better if we had a procedure that tells us when
we have exactly one remaining value in a trie, and another procedure that returns
that value.

We can write more general versions of both of these procedures; one would return
the number of values in a trie and the other the list of values. Notice that these two
procedures are quite similar. In either case you can compute the answer by taking



8.4 An Application: Automated Phone Books 235

the number of values (respectively, the list of values) at the root node and adding
that to the number of values (respectively, the list of values) in each of the subtries.
The difference is that in the former case you add the numbers by regular addition,
whereas in the latter case you add by appending the various lists.

Exercise 8.18

Write the procedure number-in-trie that calculates the total number of values
in a trie. Hint: In the general case, you can compute the list of numbers in the
various subtries by using number-in-trie in conjunction with the built-in Scheme
procedure map. The total number of values in all the subtries can then be gotten
by applying the sum procedure from Section 7.3. Of course, you have to take into
account the values that are at the root node of the trie.

Exercise 8.19

Write the procedure values-in-trie that returns the list of all values stored in a
given trie. It should be very similar in form to number-in-trie. You may find your
solution to Exercise 7.5 on page 173 useful. In fact, if you rewrote number-in-trie
to use Exercise 7.5’s solution in place of sum, values-in-trie would be nearly
identical in form to number-in-trie.

Exercise 8.20

Let’s use these procedures to improve what is done in the procedure look-up-
phone-number.

a. Use number-in-trie to determine if there are fewer than two values in phone-
trie and immediately report the appropriate answer if so, using values-in-trie
and display-phone-numbers.

b. Further modify look-up-phone-number so that if the user enters 1, the names
of all the people in the current trie will be reported, but the procedure
look-up-phone-number will continue to read input from the user. You will
also want to make appropriate changes to menu.

We now confront the question of how these tries we have been working with
can be created in the first place. As we indicated earlier, we will write a procedure
values->trie that will take a list of values (i.e., people) and will return the trie
containing them. First some remarks on vocabulary: Because we have so many
different data types floating around (and we will soon define one more), we need to
be careful about the words we use to describe them. A value is a single data item (in



236 Chapter 8 Trees

our case a person, that is, name and phone number) being stored in a trie. A label is
in our case a digit from 2 to 9; it is what is used to select a subtrie. Plurals will always
indicate lists; for example, values will mean a list of values and labels will mean a
list of labels. This may seem trivial, but it will prove very useful for understanding
the meanings of the following procedures and their parameters.

Exercise 8.21

Write a procedure letter->number that takes a letter (i.e., a one-letter symbol) and
returns the number corresponding to it on the telephone keypad. For q and z use 7
and 9, respectively. Hint: The easiest way to do this exercise is to use a cond together
with the list membership predicate member we introduced in the previous chapter.

Exercise 8.22

To break a symbol up into a list of one-character symbols, we need to use
some features of Scheme that we’d rather not talk about just now. The follow-
ing explode-symbol procedure uses these magic features of Scheme so that
(explode-symbol ’ritter) would evaluate to the list of one-letter symbols
(r i t t e r), for example:

(define explode-symbol
(lambda (sym)
(map string->symbol

(map string
(string->list (symbol->string sym))))))

Use this together with letter->number to write a procedure name->labels that
takes a name (symbol) and returns the list of numbers corresponding to the name.
You should see the following interaction:

(name->labels ’ritter)
(7 4 8 8 3 7)

To make a trie from a list of values, we will need to work with the labels associated
with each of the values. One way is to define a simple ADT called labeled-value that
packages these together. This could be done as follows:

(define make-labeled-value
(lambda (labels value)
(list labels value)))



8.4 An Application: Automated Phone Books 237

(define labels car)

(define value cadr)

Because we will use this abstraction to construct tries, we will need some procedures
that allow us to manipulate labeled values.

Exercise 8.23

Write a procedure empty-labels? that takes a labeled value and returns true if and
only if its list of labels is empty.

Exercise 8.24

Write a procedure first-label that takes a labeled value and returns the first label
in its list of labels.

Exercise 8.25

Write a procedure strip-one-label that takes a labeled value and returns the
labeled value with one label removed. For example, you would have the following
interaction:

(define labeled-ritter
(make-labeled-value ’(7 4 8 8 3 7)

(make-person ’ritter 7479)))

(labels (strip-one-label labeled-ritter))
(4 8 8 3 7)

(name (value (strip-one-label labeled-ritter)))
ritter

(phone-number (value (strip-one-label labeled-ritter)))
7479

Exercise 8.26

Write a procedure value->labeled-value that takes a value (person) and re-
turns the labeled value corresponding to it. You must of course use the procedure
name->labels.



238 Chapter 8 Trees

We can now write values->trie in terms of a yet to be written procedure that
operates on labeled values:

(define values->trie
(lambda (values)
(labeled-values->trie (map value->labeled-value

values))))

How do we write labeled-values->trie? The argument to this procedure is a
list of labeled values, and we must clearly use the labels in the trie construction. If
a given labeled value has the empty list of labels (in other words, we have gotten
to the point in the recursion where all of the labels have been used), the associated
value should be one of the values at the trie’s root node. We can easily isolate these
labeled values using the filter procedure from Section 7.3, as in:

(filter empty-labels? labeled-values)

We can similarly isolate those with nonempty labels, which belong in the subtries;
the first label of each labeled value determines which subtrie it goes in.

Exercise 8.27

Write a procedure values-with-first-label that takes a list of labeled values and
a label and returns a list of those labeled values that have the given first label, but with
that first label removed. You may assume that none of the labeled values has an empty
list of labels. Thus, the call (values-with-first-label labeled-values 4)
should return the list of those labeled values in labeled-values with a first label
of 4, but with the 4 removed from the front of their lists of labels. (This would only
be legal assuming each labeled value in labeled-values has a nonempty list of
labels.) Stripping off the first label makes sense because it was used to select out the
relevant labeled values, which will form one subtrie of the overall trie. Within the
subtrie, that first label no longer plays a role.

Exercise 8.28

Using the procedure values-with-first-label, write a procedure categorize-
by-first-label that takes a list of labeled values, each with a nonempty list of
labels, and returns a list of lists of labeled values. The first list in the list of lists should
contain all those labeled values with first label 2, the next list, those that start with
3, etc. (If there are no labeled values with a particular first label, the corresponding
list will be empty. There will always be eight lists, one for each possible first label,



Review Problems 239

select out
those that

have empty
labels

select out
those that

have
nonempty

labels

turn each
labeled-value
into a value

categorize
by first label
(removing
that first

label in the
process)

turn each
category
(list of
labeled

values) into
a trie

make a
nonempty

trie

labeled-values the root values

the subtries

Case 2, labeled-values is nonempty

Case 1, labeled-values is empty

make an
empty trie

Figure 8.2 The design of the labeled-values->trie procedure

ranging from 2 to 9.) Each labeled value should have its first label stripped off, which
values-with-first-label takes care of. (Thus the labeled values in the first list,
for example, no longer have the label of 2 on the front.)

Exercise 8.29

Finally, write the procedure labeled-values->trie. If the list of labeled values
is empty, you can just use make-empty-trie. On the other hand, if the list is
not empty, you can isolate those labeled values with empty labels and those with
nonempty labels, as indicated above. You can turn the ones with empty labels into
the root values by applying value to each of them. You can turn the ones with
nonempty labels into the subtries by using categorize-by-first-label, map,
and labeled-values->trie. Once you have the root values and the subtries, you
can use make-nonempty-trie to create the trie. Figure 8.2 illustrates this design.

Review Problems

Exercise 8.30

Fill in the following definition of the procedure successor-of-in-or. This pro-
cedure should take three arguments: a value (value), a binary search tree (bst), and
a value to return if no element of the tree is larger than value (if-none). If there is
any element, x, of bst such that x . value, the smallest such element should be
returned. Otherwise, if-none should be returned.



240 Chapter 8 Trees

(define successor-of-in-or
(lambda (value bst if-none)
(cond ((empty-tree? bst)

)
((<= (root bst) value)
(successor-of-in-or

))
(else
(successor-of-in-or

)))))

Exercise 8.31

Write a procedure that takes as arguments a binary search tree of numbers, a lower
bound, and an upper bound and counts how many elements of the tree are greater
than or equal to the lower bound and less than or equal to the upper bound. Assume
that the tree may contain duplicate elements. Make sure your procedure doesn’t
examine more of the tree than is necessary.

Exercise 8.32

Write a procedure that takes as arguments a binary search tree of numbers, a lower
bound, and an upper bound and returns an ordered list of those elements of the tree
that are greater than or equal to the lower bound and less than or equal to the upper
bound. Assume that the tree may contain duplicate elements. Use the technique of
an “onto” parameter to avoid unnecessary appending of lists, and make sure your
procedure doesn’t examine more of the tree than is necessary.

Chapter Inventory

Vocabulary

divide and conquer
binary search
root
subtree
strictly ordered
node

leaf
internal node
child
parent
tree traversal
preorder



Chapter Inventory 241

in-order
postorder
depth
length of a path
height
complete tree
recurrence relation
b c (floor)
minimum height binary tree
The Code of Ethics and

Professional Conduct

Association for Computing
Machinery (ACM)

binary operator
atomic expression
prefix
infix
postfix
degree
positional tree
ordered tree

Slogans

The one-layer data structure principle

Abstract Data Types

binary search tree
binary tree
expression tree

trie
person
labeled value

New Predefined Scheme Names

append

Scheme Names Defined in This Chapter

make-empty-tree
make-nonempty-tree
empty-tree?
root
left-subtree
right-subtree
in?
minimum
number-of-nodes
list-by-key
preorder
preorder-onto
inorder
insert
list->bstree
sorted-list->min-height-bstree
optimize-bstree

sort
make-constant
constant?
make-expr
operator
left-operand
right-operand
look-up-value
evaluate
post-order
make-empty-trie
make-nonempty-trie
empty-trie?
root-values
subtries
subtrie-with-label
values->trie



242 Chapter 8 Trees

make-person
name
phone-number
phone-trie
look-up-with-menu
menu
look-up-phone-number
display-phone-numbers
number-in-trie
values-in-trie
letter->number
explode-symbol

name->labels
make-labeled-value
labels
value
empty-labels?
first-label
strip-one-label
value->labeled-value
labeled-values->trie
values-with-first-label
categorize-by-first-label
successor-of-in-or

Sidebars

Privacy Issues

Notes

As with Q in Chapter 4, the conventional definition of O allows any number of
exceptions up to some cutoff point, rather than finitely many exceptions as we
do. Again, so long as n is restricted to the nonnegative integers, our definition is
equivalent.

The example of personal information divulged to an ice-cream parlor “birthday
club” winding up in the hands of the Selective Service is reported in [24].

The ACM Code of Ethics and Professional Conduct can be found in [17]; a set
of illustrative case studies accompanies it in [4].

Regarding the pronunciation of “trie,” we’ve had to take Aho and Ullman’s word
for it—none of us can recall ever having heard “trie” said aloud. Aho and Ullman
should know, though and they write on page 217 of their Foundations of Computer
Science [3] that “it was originally intended to be pronounced ‘tree.’ Fortunately,
common parlance has switched to the distinguishing pronunciation ‘try.’ ”


