
Notes on readers writers in C++17 CoSc 450, Programming Paradigms

References
Ben-Ari, Principles of Concurrent and Distributed Programming, second edition, Addison-Wesley, 2006.
Hinnant, Howard E., “Mutex, Lock, Condition Variable Rationale”, Document number: N2406=07-0266,
September 2007.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2406.html

Introduction
Ben-Ari’s Algorithm 7.4 is the solution to the readers writers problem for a Hoare semantics monitor. It defines
four monitor operations, StartRead, EndRead, StartWrite, and EndWrite, implemented with the help of two con-
dition variables, OKtoRead and OKtoWrite.

Program ReadersWritersA in our Chapter 7 slides shows how to use the shared_mutex and shared_lock
types with the RAII design pattern. In that pattern, the lock and unlock operations are implicit. When a lock is
allocated on the run-time stack, its constructor locks the mutex. The declaration of the lock is visible in the
code, but the lock operation is not. When a lock is deallocated on function termination, its destructor unlocks
the mutex. Neither the deallocation nor the unlock operation is visible in the code. That is why the code in
ReadersWritersA appears so simple.

Here is the correspondence between the terminology of Ben-Ari and C++17.

! StartRead corresponds to lock_shared().

! EndRead corresponds to unlock_shared().

! StartWrite corresponds to lock().

! EndWrite corresponds to unlock().

The Terekhov algorithm
Without the shared_mutex type, introduced in C++17, you would need to program the readers writers prob-
lem with just the mutex type. The Terekhov algorithm is a solution to the readers writers problem without the
shared_mutex type. It is the algorithm C++17 uses to implement the shared_mutex type with the above
correspondence.

ProgramReadersWritersB, which is available in ourcosc450CppDistr software distribution, is the Terekhov
algorithm for the readers writers problem using the Ben-Ari terminology. The monitor code is below. See the
software distribution for the complete program in the CLion IDE.

The algorithm maintains two condition variables, gate1 and gate2, with the following rules.

! When a reader enters gate1, it has read access. However, a writer must enter first gate1 and then gate2
to have write access.

! There can be any number of readers and at most one writer inside gate1. There cannot be any readers
inside gate2.

! No one can enter gate1 if a writer is inside gate1 or gate2. If a reader or writer tries to enter it is blocked
on gate1.

! A writer can only enter gate2 when the number of readers inside gate1 drops to 0. If it tries to enter
gate2 when there are readers inside gate1 it is blocked on gate2.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2406.html
https://www.cslab.pepperdine.edu/warford/cosc450/cosc450CppDistr.zip

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Implementation of the Terekhov algorithm

class RWMonitor {
private:

mutex rwMutex;
condition_variable gate1;
condition_variable gate2;
int readers = 0;
bool writer = false;

public:
void startRead() {

unique_lock<mutex> guard(rwMutex);
gate1.wait(guard, [this] { return !writer; });
readers++;

}

void endRead() {
unique_lock<mutex> guard(rwMutex);
readers--;
if (writer && (readers == 0)) {

gate2.notify_one();
}

}

void startWrite() {
unique_lock<mutex> guard(rwMutex);
gate1.wait(guard, [this] { return !writer; });
writer = true;
gate2.wait(guard, [this] { return readers == 0; });

}

void endWrite() {
unique_lock<mutex> guard(rwMutex);
readers = 0;
writer = false;
gate1.notify_all();

}
};

2

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Terekhov algorithm scenario
The following figure illustrates the progression of states with the Terekhov algorithm.

gate1

gate2

readers’
exit

writer’s
exit

Initial state

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

Some readers enter gate1 and exit.

W W
RR

RR
R

R

R
R

gate1

gate2

readers’
exit

writer’s
exit

A writer enters gate1.
Readers and writers are blocked on gate1.

W W
RR

RR
R

gate1

gate2

readers’
exit

writer’s
exit

The number of readers inside gate1 drops to 0.

W W
RR

RR
R

R

R
R

W

W

gate1

gate2

readers’
exit

writer’s
exit

The writer enters gate2.
Readers and writers are still blocked on gate1.
When the writer exits, the system returns to its initial state.

W W
RR

RR
R

W

3

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Optimization techniques
Program ReadersWritersC in our software distribution is an optimized implementation of the Terekhov algo-
rithm for the readers writers problem using the Ben-Ari terminology. For example, startRead() is how C++17
implements lock_shared(). The monitor code is below.

The number of readers inside gate 1, an integer, and whether a writer is inside gate1 or gate2, a boolean, define
the state of the computation. The optimized version encodes the state in a single unsigned integer named state.
The first bit of state is 1 if writer is true and 0 otherwise. The remaining bits are the count of readers.

The optimization uses two constant masks, writerMask, whose first bit is 1 and remaining bits are 0, and
readerMask, whose first bit is 0 and remaining bits are 1.

Typically, an unsigned integer would be 32 or 64 bits long. Here are some examples with an 8-bit unsigned inte-
ger.

writerMask: 1000 0000
readerMask: 0111 1111

state: 0000 0110⇒ six readers inside gate1 and no writer inside gate1 or gate2
state: 1000 0110⇒ six readers inside gate1 and one writer inside gate1 or gate2

The optimization uses bitwise & and bitwise | operations, which are extremely fast, with the masks to extract the
readers and writer values on the fly. It is coded to be safe from integer overflow. Here are some examples of
expressions in the optimized code and their meanings. Note the C semantics that integer zero is false and nonzero
is true.

Expression Meaning

state & writerMask True iff a writer is inside gate1 or gate2

state & readerMask Number of readers inside gate1

(state & readerMask) True iff the number of readers inside gate1
== readerMask is the maximum we can count

readers == readerMask - 1 True iff the number of readers inside gate1 is one less
than the maximum we can count

unsigned readers = Adds 1 to number of readers
(state & readerMask) + 1;

state &= writerMask;
state |= readers;

state |= writerMask; Sets state to specify that a writer is inside

The optimized code also programs the spurious wakeup loop explicitly without the predicate parameter in the
wait() function. For example, in startWrite() the unoptimized statement

gate1.wait(guard, [this] { return !writer; });

is coded as

while (state & writerMask)
gate1.wait(guard);

4

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

Optimized implementation of the Terekhov algorithm

class RWMonitor {
private:

mutex rwMutex;
condition_variable gate1;
condition_variable gate2;
unsigned state = 0;
static const unsigned writerMask = 1U << (sizeof(unsigned) * CHAR_BIT - 1);
static const unsigned readerMask = ~writerMask;

public:
void startRead() {

unique_lock<mutex> guard(rwMutex);
while ((state & writerMask) || (state & readerMask) == readerMask)

gate1.wait(guard);
unsigned readers = (state & readerMask) + 1;
state &= writerMask;
state |= readers;

}

void endRead() {
unique_lock<mutex> guard(rwMutex);
unsigned readers = (state & readerMask) - 1;
state &= writerMask;
state |= readers;
if (state & writerMask) {

if (readers == 0)
gate2.notify_one();

} else {
if (readers == readerMask - 1)

gate1.notify_one();
}

}

5

Notes on readers writers in C++17 CoSc 450, Programming Paradigms

void startWrite() {
unique_lock<mutex> guard(rwMutex);
while (state & writerMask)

gate1.wait(guard);
state |= writerMask;
while (state & readerMask)

gate2.wait(guard);
}

void endWrite() {
unique_lock<mutex> guard(rwMutex);
state = 0;
gate1.notify_all();

}
};

6

