A Logical Approach to Discrete Math

Definition of an expression

- A constant (e.g. 231) or variable (e.g. x) is an expression.
- If E is an expression, then (E) is an expression.
- If \circ is a unary prefix operator and E is an expression, then $\circ E$ is an expression, with operand E. For example, the negation symbol - is used as a unary operator, so -5 is an expression.
- If \star is a binary infix operator and D and E are expressions, then $D \star E$ is an expression, with operands D and E. For example, the symbols + (for addition) and - (for multiplication or product) are binary operators, so $1+2$ and $(-5) \cdot(3+x)$ are expressions.

A Logical Approach to Discrete Math

Table of Precedences
(a) $[x:=e]$ (textual substitution) (highest precedence)
(b) . (function application)
(c) unary prefix operators: $+\quad \neg \# \sim \mathcal{P}$
(d) $* *$
(e) $\cdot / \div \bmod \operatorname{gcd}$
(f) $+-\cup \cap \times \circ$ -
(g) $\downarrow \uparrow$
(h) \#
(i) $\triangleleft \triangleright^{\wedge}$
(j) $=<>\in \subset \subseteq \supset$ (conjunctional, see page 29)
(k) $\vee \wedge$
(l) $\Rightarrow \Leftarrow$
(m) \equiv

All nonassociative binary infix operators associate from left to right except $* *, \triangleleft$, and \Rightarrow, which associate from right to left.

Definition of /: The operators on lines (j), (l), and (m) may have a slash / through them to denote negation-e.g. $x \notin T$ is an abbreviation for $\neg(x \in T)$.

A Logical Approach to Discrete Math

State

A state is a list of variables and their values.

Example

$(x, 5),(y, 6)$

An expression may be true in some states, but not in other states.
$2 x+3 y=7$ is true in the state $(x, 5),(y,-1)$ but is not true in the state $(x, 1),(y, 2)$

A Logical Approach to Discrete Math

TABLE 1.1. Examples of Textual Substitution
Substitution for one variable

$$
\begin{aligned}
& 35[x:=2]=35 \\
& y[x:=2]=y \\
& x[x:=2]=2 \\
& (x \cdot x+y)[x:=c+y]=(c+y) \cdot(c+y)+y \\
& \left(x^{2}+y^{2}+x^{3}\right)[x:=x+y]=(x+y)^{2}+y^{2}+(x+y)^{3}
\end{aligned}
$$

Substitution for several variables

$$
\begin{aligned}
& (x+y+y)[x, y:=z, w]=z+w+w \\
& (x+y+y)[x, y:=2 \cdot y, x \cdot z]=2 \cdot y+x \cdot z+x \cdot z \\
& (x+2 \cdot y)[x, y:=y, x]=y+2 \cdot x \\
& (x+2 \cdot y \cdot z)[x, y, z:=z, x, y]=z+2 \cdot x \cdot y
\end{aligned}
$$

A Logical Approach to Discrete Math

A property of textual substitution

Example
$((a+b) \cdot c)[b:=x][x:=b]$
$=\langle$ t.s. and r.u.p \rangle
$((a+x) \cdot c)[x:=b]$
$=\langle$ t.s. and r.u.p \rangle
$(a+b) \cdot c$
Same as original expression

Example
$((a+b) \cdot x)[b:=x][x:=b]$
$=\langle$ t.s. and r.u.p \rangle
$((a+x) \cdot x)[x:=b]$
$=\langle$ t.s. and r.u.p \rangle
$(a+b) \cdot b$
Not the same as original

If $\quad \neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} E\right.$ ') \quad then $\quad E[y:=x][x:=y]=E$

A Logical Approach to Discrete Math

Proofs

Analogy of computational system:

Given a program, and its input, the program produces the output.

Axiomatic logic systems

Given the inference rules, and some axioms, the logic system produces theorems.

A Logical Approach to Discrete Math

Inference rules

An inference rule has a horizontal line.

The premise, or hypothesis, assumed to be true in all states

The conclusion

A Logical Approach to Discrete Math

Inference rules

There are four inference rules for logic proofs:
Substitution: $\frac{E}{E[z:=F]}$
Leibniz: $\quad \frac{X=Y}{E[z:=X]=E[z:=Y]}$
Equanimity: $\frac{X, X=Y}{Y}$
Transitivity:

$$
\frac{X=Y, \quad Y=Z}{X=Z}
$$

A Logical Approach to Discrete Math

Assignment 2

Exercises

1.7 ... Fill in the missing parts and write down what expression E is.
(a)

$$
\frac{x=x+2}{4 \cdot x+y=?}
$$

$1.8 \ldots$ For each of the expressions $E[z:=X]$ and hints $X=Y$ below, write the resulting expression $E[z:=Y]$.

	$E[z:=X]$	$\operatorname{hint} X=Y$
(a)	$x+y+w$	$x=b+c$

$1.9 \ldots$ For each of the following pair of expressions $E[z:=X]$ and $E[z:=Y]$, identify a hint $X=Y$ that would show them to be equal and indicate what E is.
$\begin{array}{ll} & E[z:=X]\end{array} E[z:=Y]$.

A Logical Approach to Discrete Math

The four laws of equality

(1.2) Reflexivity: $x=x$
(1.3) Symmetry : $(x=y)=(y=x)$
(1.4) Transitivity: $\frac{X=Y, Y=Z}{X=Z}$
(1.5) Leibniz:

$$
\frac{X=Y}{E[z:=X]=E[z:=Y]}
$$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms
Proof
(1) $x \cdot y=y \cdot x$
$a \cdot b \cdot a=a^{2} \cdot b$
(2) $x \cdot x=x^{2}$
(3) $x=x$
prove that

$$
a \cdot b \cdot a=a^{2} \cdot b
$$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms
Proof
(1) $x \cdot y=y \cdot x$
$a \cdot b \cdot a=a^{2} \cdot b$
(2) $x \cdot x=x^{2}$
$=\langle(1)$ with $x, y:=b, a$, which is $b \cdot a=a \cdot b\rangle$
(3) $x=x$
prove that

$$
a \cdot b \cdot a=a^{2} \cdot b
$$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms

$$
\begin{aligned}
& \text { Proof } \\
& \qquad \begin{array}{l}
a \cdot b \cdot a=a^{2} \cdot b \\
=\quad\langle(1) \text { with } x, y:=b, a, \text { which is } b \cdot a=a \cdot b\rangle \\
\\
a \cdot a \cdot b=a^{2} \cdot b
\end{array}
\end{aligned}
$$

(1) $x \cdot y=y \cdot x$
prove that

$$
a \cdot b \cdot a=a^{2} \cdot b
$$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x^{2}$
(3) $x=x$
prove that
$a \cdot b \cdot a=a^{2} \cdot b$

Proof
$a \cdot b \cdot a=a^{2} \cdot b$
$=\langle(1)$ with $x, y:=b, a$, which is $b \cdot a=a \cdot b\rangle$ $a \cdot a \cdot b=a^{2} \cdot b$
$=\left\langle(2)\right.$ with $x:=a$, which is $\left.a \cdot a=a^{2}\right\rangle$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x^{2}$
(3) $x=x$
prove that
$a \cdot b \cdot a=a^{2} \cdot b$

Proof

$$
a \cdot b \cdot a=a^{2} \cdot b
$$

$=\langle(1)$ with $x, y:=b, a$, which is $b \cdot a=a \cdot b\rangle$ $a \cdot a \cdot b=a^{2} \cdot b$
$=\left\langle(2)\right.$ with $x:=a$, which is $\left.a \cdot a=a^{2}\right\rangle$ $a^{2} \cdot b=a^{2} \cdot b$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x^{2}$
(3) $x=x$
prove that
$a \cdot b \cdot a=a^{2} \cdot b$

Proof
$a \cdot b \cdot a=a^{2} \cdot b$
$=\langle(1)$ with $x, y:=b, a$, which is $b \cdot a=a \cdot b\rangle$ $a \cdot a \cdot b=a^{2} \cdot b$
$=\quad\left\langle(2)\right.$ with $x:=a$, which is $\left.a \cdot a=a^{2}\right\rangle$ $a^{2} \cdot b=a^{2} \cdot b$
$=\left\langle(3)\right.$ with $x:=a^{2} \cdot b$, which is $\left.a^{2} \cdot b=a^{2} \cdot b\right\rangle$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x^{2}$
(3) $x=x$
prove that
$a \cdot b \cdot a=a^{2} \cdot b$

Proof
$a \cdot b \cdot a=a^{2} \cdot b$
$=\langle(1)$ with $x, y:=b, a$, which is $b \cdot a=a \cdot b\rangle$ $a \cdot a \cdot b=a^{2} \cdot b$
$=\left\langle(2)\right.$ with $x:=a$, which is $\left.a \cdot a=a^{2}\right\rangle$ $a^{2} \cdot b=a^{2} \cdot b$
$=\left\langle(3)\right.$ with $x:=a^{2} \cdot b$, which is $\left.a^{2} \cdot b=a^{2} \cdot b\right\rangle$ true //

A Logical Approach to Discrete Math

Example proof

Assuming these axioms Proof
(1) $x \cdot y=y \cdot x$
$a \cdot b \cdot a=a^{2} \cdot b$
(2) $x \cdot x=x^{2}$
$=\quad(1)$ with $x, y:=b, a$, which is $b \cdot a=a \cdot b$ $a \cdot a \cdot b=a^{2} \cdot b$
(3) $x=x$
prove that
$a \cdot b \cdot a=a^{2} \cdot b$

Substitution:

$$
\frac{E}{E[z:=F]} \quad \frac{x \cdot y=y \cdot x}{(x \cdot y=y \cdot x)[x, y:=b, a]}
$$

A Logical Approach to Discrete Math

Example proof

Assuming these axioms

$$
\begin{aligned}
& \text { Proof } \\
& \begin{array}{l}
a \cdot b \cdot a=a^{2} \cdot b \\
= \\
\langle(1) \text { with } x, y:=b, a, \text { which is } b \cdot a=a \cdot b\rangle \\
\\
a \cdot a \cdot b=a^{2} \cdot b \\
= \\
\left\langle(2) \text { with } x:=a \text {, which is } a \cdot a=a^{2}\right\rangle \\
a^{2} \cdot b=a^{2} \cdot b \\
= \\
\left\langle(3) \text { with } x:=a^{2} \cdot b, \text { which is } a^{2} \cdot b=a^{2} \cdot b\right\rangle \\
\text { true } / /
\end{array}
\end{aligned}
$$

(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x^{2}$
(3) $x=x$
prove that
$a \cdot b \cdot a=a^{2} \cdot b$

Leibniz:

$$
\begin{array}{cc}
X=Y & \quad b \cdot a=a \cdot b \\
E[z:=X]=E[z:=Y] & \left(a \cdot z=a^{2} \cdot b\right)[z:=b \cdot a]=\left(a \cdot z=a^{2} \cdot b\right)[z:=a \cdot b]
\end{array}
$$

A Logical Approach to Discrete Math

General proof step

Leibniz:

$$
\frac{X=Y}{E[z:=X]=E[z:=Y]}
$$

Proof step:

$$
\begin{aligned}
& E[z:=X] \\
& =\langle X=Y\rangle \\
& E[z:=Y]
\end{aligned}
$$

A Logical Approach to Discrete Math

The assignment statement

Uses the same symbol as textual substitution :=
The effect is to change the state.
Example

$$
\begin{array}{ll}
\text { Initial state: } & (x, 3),(y, 2),(z, 6) \\
\text { Assignment: } & y:=z+1 \\
\text { Final state: } & (x, 3),(y, 7),(z, 6)
\end{array}
$$

A Logical Approach to Discrete Math

The assignment statement

Notation

Operation	Formal methods	Java, C++
Equals	$=$	$==$
Assignment	$:=$	$=$

A Logical Approach to Discrete Math

TABLE 1.2. Examples of Multiple Assignments

$$
\begin{array}{ll}
x, y:=y, x & \text { Swap } x \text { and } y \\
x, i:=0,0 & \text { Store } 0 \text { in } x \text { and } i \\
i, x:=i+1, x+i & \text { Add } 1 \text { to } i \text { and } i \text { to } x \\
x, i:=x+i, i+1 & \text { Add } 1 \text { to } i \text { and } i \text { to } x
\end{array}
$$

A Logical Approach to Discrete Math

The Hoare triple

Definition: An expression is valid if it is true in all states.

Interpretation: If the precondition is true, and you execute the statement, then the statement terminates, and the postcondition is guaranteed to be true.

A Logical Approach to Discrete Math

The Hoare triple

$$
\{P\} S\{Q\}
$$

Examples

$$
\begin{array}{ll}
\{x=0\} x:=x+1\{x>0\} & \text { valid } \\
\{x>5\} x:=x+1\{x>0\} & \text { valid } \\
\{x+1>0\} x:=x \cdot 2\{x>0\} & \text { not valid } \\
\{x>-2\} x:=x+1\{x>0\} & \text { not valid }
\end{array}
$$

A Logical Approach to Discrete Math

The definition of assignment

$$
\{R[x: \underset{\sim}{=} E]\} x: \underset{\text { Textual substitution }}{=} E\{R\}
$$

You calculate the precondition from the statement and the postcondition.

$$
\begin{aligned}
& \{x+1>4\} \quad x:=x+1 \quad\{x>4\} \\
& \{x \cdot 6>0\} \quad y:=6 \quad\{x \cdot y>0\} \\
& \{x \cdot 2=10\} \quad x:=x \cdot 2 \quad\{x=10\} \\
& \{y=6\} \quad x:=y \quad\{x=6\} \\
& \{y=6\} \quad x:=y \quad\{y=6\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \left\{\begin{array}{l}
\{x+i=1+2+\cdots+(i+1-1)\} \\
x, i:=x+i, i+1 \\
\{x=1+2+\cdots+(i-1)\} \\
\{x+i=1+2+\cdots+(i+1-1)\} \\
i, x:=i+1, x+i \\
\{x=1+2+\cdots+(i-1)\}
\end{array}\right.
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \begin{array}{l}
\{x+i=1+2+\cdots+(i+1-1)\} \\
x, i:=x+i, i+1 \\
\{x=1+2+\cdots+(i-1)\} \\
\{x+i=1+2+\cdots+(i+1-1)\} \\
i, x:=i+1, x+i \\
\{x=1+2+\cdots+(i-1)\}
\end{array}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

A Logical Approach to Discrete Math

TABLE 1.3. Examples of Hoare Triples for Multiple Assignment

$$
\begin{aligned}
& \{y>x\} \quad x, y:=y, x \quad\{x>y\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& x, i:=x+i, i+1 \\
& \{x=1+2+\cdots+(i-1)\} \\
& \{x+i=1+2+\cdots+(i+1-1)\} \\
& i, x:=i+1, x+i \\
& \{x=1+2+\cdots+(i-1)\}
\end{aligned}
$$

