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ABSTRACT. This is a collection of the axioms and theorems in Gries and Schneider’s book
A Logical Approach to Discrete Math (LADM), Springer-Verlag, 1993. The numbering is
consistent with that text. Additional theorems not included or numbered in LADM are
indicated by a three-part number. This document serves as a reference for homework
exercises and taking exams.

TABLE OF PRECEDENCES

(a) [x := e] (textual substitution) (highest precedence)
(b) . (function application)
(c) unary prefix operators: + � ¬ # s P
(d) ⇤⇤
(e) · / ÷ mod gcd
(f) + � [ \ ⇥ � •
(g) # "
(h) #
(i) / . ˆ
(j) = < > 2 ⇢ ✓ � ◆ | (conjunctional, see page 29)
(k) _ ^
(l) ) (
(m) ⌘

All nonassociative binary infix operators associate from left to right except ⇤⇤, /, and
), which associate from right to left.

Definition of /: The operators on lines (j), (l), and (m) may have a slash / through them
to denote negation—e.g. x /2 T is an abbreviation for ¬(x 2 T ).

SOME BASIC TYPES

Name Symbol Type (set of values)

integer Z integers: . . . ,�3,�2,�1, 0, 1, 2, 3, . . .

nat N natural numbers: 0, 1, 2, . . .

positive Z+ positive integers: 1, 2, 3, . . .

negative Z� negative integers: �1,�2,�3, . . .

rational Q rational numbers: i/j for i, j integers, j 6= 0
reals R real numbers
positive reals R+ positive real numbers
bool B booleans: true, false

Date: December 1, 2011.
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State

A state is a list of variables and their values.

Example

(x, 5), (y, 6)

An expression may be true in some states, but not in 
other states.

2x+3y = 7 is true in the state (x, 5), (y, –1) but is not 
true in the state (x, 1), (y, 2)
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A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · c)[x := b]
= 〈t.s. and r.u.p〉

(a+b) · c
Same as original expression

Example

((a+b) · x)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · x)[x := b]
= 〈t.s. and r.u.p〉

(a+b) ·b
Not the same as original

If ¬occurs(‘x’,‘E’) then E[y := x][x := y] = E

There are four inference rules for logic proofs:

Substitution:
E

E[z := F ]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

Equanimity:
X , X = Y

Y

Transitivity:
X = Y, Y = Z

X = Z

A property of textual substitution
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Proofs
Analogy of computational system:

8 Chapter 2 Axiomatic Logic Systems

Input ! Processing ! Output

Computational systems

Axioms ! Inference
rules

! Theorems

Axiomatic logic systems

Figure 2.1 Computational systems and axiomatic logic systems.

“Huardest gefburn”? Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an impression of the look. This
text should contain all letters of the alphabet and it should be written in of the original
language. There is no need for special content, but the length of words should match the
language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information. Really?
Is there no information? Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an impression of the look. This
text should contain all letters of the alphabet and it should be written in of the original
language. There is no need for special content, but the length of words should match the
language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information. Really?
Is there no information? Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an impression of the look. This
text should contain all letters of the alphabet and it should be written in of the original
language. There is no need for special content, but the length of words should match the
language.

Figure 2.2 is the table of precedences. Textual substitution has the highest prece
dence. All the unary operators have the next highest precedence. They are necessarily
right associative. For example, ¬ !¬p means ¬( !(¬p)). In this system, two binary
operators that have the same precedence require parentheses to disambiguate. As in
LADM, conjunction ∧ and disjunction ∨ have the same precedence so that p∧ q∨ r
must be disambiguated as either (p∧ q)∨ r or p∧ (q∨ r). This contrasts with many
systems in which conjunction has higher precedence than disjunction.

2.2 Textual Substitution
In a conventional computational system, placement of the hardware/software bound

ary is a design decision. Any given computational task can be implemented either in
hardware or in software. The tradeoff in such systems is usually between speed of ex
ecution and flexibility. Usually, a task implemented in hardware executes faster than if
it is implemented in software. However, once implemented in hardware a task is more
difficult to modify or extend than if it is implemented in software. One goal of RISC
design is to simplify the hardware by moving tasks from hardware to software. For
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Given a program, and its input, the program produces the output.

Axiomatic logic systems
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Computational systems
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rules

! Theorems
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about the selected font, how the letters are written and an impression of the look. This
text should contain all letters of the alphabet and it should be written in of the original
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Figure 2.2 is the table of precedences. Textual substitution has the highest prece
dence. All the unary operators have the next highest precedence. They are necessarily
right associative. For example, ¬ !¬p means ¬( !(¬p)). In this system, two binary
operators that have the same precedence require parentheses to disambiguate. As in
LADM, conjunction ∧ and disjunction ∨ have the same precedence so that p∧ q∨ r
must be disambiguated as either (p∧ q)∨ r or p∧ (q∨ r). This contrasts with many
systems in which conjunction has higher precedence than disjunction.

2.2 Textual Substitution
In a conventional computational system, placement of the hardware/software bound

ary is a design decision. Any given computational task can be implemented either in
hardware or in software. The tradeoff in such systems is usually between speed of ex
ecution and flexibility. Usually, a task implemented in hardware executes faster than if
it is implemented in software. However, once implemented in hardware a task is more
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Copyright ©: 2020, Fernando Saca and J. Stanley Warford Revised: July 14, 2023

Given the inference rules, and some axioms, the logic system produces 
theorems.
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Inference rules

An inference rule has a horizontal line.

The premise, or hypothesis,
assumed to be true in all states

The conclusion
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Inference rules
There are four inference rules for logic proofs:

1

A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
= 〈t.s and r.u.p〉

((a+ x) · c)[x := b]
= 〈t.s and r.u.p〉

((a+b) · c)
Same as original expression

Example

((a+b) · x)[b := x][x := b]
= 〈t.s and r.u.p〉

((a+ x) · x)[x := b]
= 〈t.s and r.u.p〉

((a+b) ·b)
Not the same as original

If¬occurs(‘x’,‘E’) then E[y := x][x := y] =E

There are four inference rules for logic proofs:

Substitution:
E

E[z := F ]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

Equanimity:
X , X = Y

Y

Transitivity:
X = Y, Y = Z

X = Z
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Exercises

1.7 ... Fill in the missing parts and write down what expression E is.
(a)

x = x + 2
4 · x + y = ?

1.8 ... For each of the expressions E[z := X] and hints X = Y below, write the
resulting expression E[z := Y ].

E[z := X] hint X = Y
(a) x + y + w x = b + c

1.9 ... For each of the following pair of expressions E[z := X] and E[z := Y ], identify
a hint X = Y that would show them to be equal and indicate what E is.

E[z := X] E[z := Y ]
(a) (x + y) · (x + y) (x + y) · (y + x)

1

Assignment 2



A Logical Approach to Discrete Math

The four laws of equality
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Example proof

Assuming these axioms

1

A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · c)[x := b]
= 〈t.s. and r.u.p〉

(a+b) · c
Same as original expression

Example

((a+b) · x)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · x)[x := b]
= 〈t.s. and r.u.p〉

(a+b) ·b
Not the same as original

If ¬occurs(‘x’,‘E’) then E[y := x][x := y] = E

There are four inference rules for logic proofs:

Substitution:
E

E[z := F ]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

Equanimity:
X , X = Y

Y

Transitivity:
X = Y, Y = Z

X = Z
(1) x · y = y · x
(2) x · x = x2

(3) x = x

a ·b ·a = a2 ·b
= 〈(1) with x,y := b,a, which is b ·a = a ·b〉

a ·a ·b = a2 ·b
= 〈(2) with x := a, which is a ·a = a2〉

a2 ·b = a2 ·b
= 〈(3) with x := a2 ·b, which is a2 ·b = a2 ·b〉

true //

prove that

1

A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · c)[x := b]
= 〈t.s. and r.u.p〉

(a+b) · c
Same as original expression

Example

((a+b) · x)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · x)[x := b]
= 〈t.s. and r.u.p〉

(a+b) ·b
Not the same as original

If ¬occurs(‘x’,‘E’) then E[y := x][x := y] = E

There are four inference rules for logic proofs:

Substitution:
E

E[z := F ]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

Equanimity:
X , X = Y

Y

Transitivity:
X = Y, Y = Z

X = Z
(1) x · y = y · x
(2) x · x = x2

(3) x = x

a ·b ·a = a2 ·b
= 〈(1) with x,y := b,a, which is b ·a = a ·b〉

a ·a ·b = a2 ·b
= 〈(2) with x := a, which is a ·a = a2〉

a2 ·b = a2 ·b
= 〈(3) with x := a2 ·b, which is a2 ·b = a2 ·b〉

true //

1

A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · c)[x := b]
= 〈t.s. and r.u.p〉

(a+b) · c
Same as original expression

Example

((a+b) · x)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · x)[x := b]
= 〈t.s. and r.u.p〉

(a+b) ·b
Not the same as original

If ¬occurs(‘x’,‘E’) then E[y := x][x := y] = E

There are four inference rules for logic proofs:

Substitution:
E

E[z := F ]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

Equanimity:
X , X = Y

Y

Transitivity:
X = Y, Y = Z

X = Z
(1) x · y = y · x
(2) x · x = x2

(3) x = x

Proof
a ·b ·a = a2 ·b

= 〈(1) with x,y := b,a, which is b ·a = a ·b〉
a ·a ·b = a2 ·b

= 〈(2) with x := a, which is a ·a = a2〉
a2 ·b = a2 ·b

= 〈(3) with x := a2 ·b, which is a2 ·b = a2 ·b〉
true //
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Example proof

Assuming these axioms

1

A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
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A property of textual substitution
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X = Z
(1) x · y = y · x
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1

A property of textual substitution

Example

((a+b) · c)[b := x][x := b]
= 〈t.s. and r.u.p〉

((a+ x) · c)[x := b]
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Equanimity:
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X = Z
(1) x · y = y · x
(2) x · x = x2
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Proof
a ·b ·a = a2 ·b
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true //
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Example proof

Assuming these axioms

1

A property of textual substitution
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X = Y

E[z := X ] = E[z := Y ]
b ·a = a ·b

(a · z = a2 ·b)[z := b ·a] = (a · z = a2 ·b)[z := a ·b]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

E[z := X ]

= 〈X = Y 〉
E[z := Y ]

Initial state: (x,3),(y,2),(z,6)
Assignment: y := z+1
Final state: (x,3),(y,7),(z,6)

The assignment statement

Uses the same symbol as textual substitution      :=

The effect is to change the state.

Example
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The assignment statement

Notation

Operation Formal
methods Java, C++

Equals = ==

Assignment := =
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The Hoare triple

Definition:   An expression is valid if it is true in all states.

2

Leibniz:
X = Y

E[z := X ] = E[z := Y ]
b ·a = a ·b

(a · z = a2 ·b)[z := b ·a] = (a · z = a2 ·b)[z := a ·b]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

E[z := X ]

= 〈X = Y 〉
E[z := Y ]

Initial state: (x,3),(y,2),(z,6)
Assignment: y := z+1
Final state: (x,3),(y,7),(z,6)

{P} S {Q}

Precondition

Statement
Postcondition

Interpretation:   If the precondition is true, and you execute the 
statement, then the statement terminates, and the postcondition is 
guaranteed to be true.
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The Hoare triple

Examples

2

Leibniz:
X = Y

E[z := X ] = E[z := Y ]
b ·a = a ·b

(a · z = a2 ·b)[z := b ·a] = (a · z = a2 ·b)[z := a ·b]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

E[z := X ]

= 〈X = Y 〉
E[z := Y ]

Initial state: (x,3),(y,2),(z,6)
Assignment: y := z+1
Final state: (x,3),(y,7),(z,6)

{P} S {Q}

2

Leibniz:
X = Y

E[z := X ] = E[z := Y ]
b ·a = a ·b

(a · z = a2 ·b)[z := b ·a] = (a · z = a2 ·b)[z := a ·b]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

E[z := X ]

= 〈X = Y 〉
E[z := Y ]

Initial state: (x,3),(y,2),(z,6)
Assignment: y := z+1
Final state: (x,3),(y,7),(z,6)

{P} S {Q}

{x = 0} x := x+1 {x > 0} valid
{x > 5} x := x+1 {x > 0} valid
{x+1 > 0} x := x ·2 {x > 0} not valid
{x >−2} x := x+1 {x > 0} not valid
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The definition of assignment

You calculate the precondition from the statement and the 
postcondition.

2

Leibniz:
X = Y

E[z := X ] = E[z := Y ]
b ·a = a ·b

(a · z = a2 ·b)[z := b ·a] = (a · z = a2 ·b)[z := a ·b]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

E[z := X ]

= 〈X = Y 〉
E[z := Y ]

Initial state: (x,3),(y,2),(z,6)
Assignment: y := z+1
Final state: (x,3),(y,7),(z,6)

{P} S {Q}

{x = 0} x := x+1 {x > 0} valid
{x > 5} x := x+1 {x > 0} valid
{x+1 > 0} x := x ·2 {x > 0} not valid
{x >−2} x := x+1 {x > 0} not valid

{R[x := E]} x := E {R}

Textual substitution
Assignment

2

Leibniz:
X = Y

E[z := X ] = E[z := Y ]
b ·a = a ·b

(a · z = a2 ·b)[z := b ·a] = (a · z = a2 ·b)[z := a ·b]

Leibniz:
X = Y

E[z := X ] = E[z := Y ]

E[z := X ]

= 〈X = Y 〉
E[z := Y ]

Initial state: (x,3),(y,2),(z,6)
Assignment: y := z+1
Final state: (x,3),(y,7),(z,6)

{P} S {Q}

{x = 0} x := x+1 {x > 0} valid
{x > 5} x := x+1 {x > 0} valid
{x+1 > 0} x := x ·2 {x > 0} not valid
{x >−2} x := x+1 {x > 0} not valid

{R[x := E]} x := E {R}

{x+1 > 4} x := x+1 {x > 4}
{x ·6 > 0} y := 6 {x · y > 0}
{x ·2 = 10} x := x ·2 {x = 10}
{y = 6} x := y {x = 6}
{y = 6} x := y {y = 6}
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