Definition of an expression

- A constant (e.g. 231) or variable (e.g. x) is an expression.
- If E is an expression, then (E) is an expression.
- If \circ is a unary prefix operator and E is an expression, then $\circ E$ is an expression, with operand E. For example, the negation symbol is used as a unary operator, so -5 is an expression.
- If ★ is a binary infix operator and D and E are expressions, then D ★ E is an expression, with operands D and E. For example, the symbols + (for addition) and (for multiplication or product) are binary operators, so 1+2 and (-5)•(3+x) are expressions.

TABLE OF PRECEDENCES

(a) [x := e] (textual substitution) (highest precedence) (b) . (function application) (c) unary prefix operators: $+ - \neg \# \sim \mathcal{P}$ (d) ** (e) \cdot / \div mod gcd $(f) \ + \ - \ \cup \ \cap \ \times \ \circ \ \bullet$ $(g) \downarrow \uparrow$ (h) # (i) ⊲ ▷ ^ (j) = $\langle \rangle \in \subset \subseteq \supset \supseteq$ | (conjunctional, see page 29) (k) $\vee \wedge$ (1) $\Rightarrow \leftarrow$ $(m) \equiv$

All nonassociative binary infix operators associate from left to right except **, \triangleleft , and \Rightarrow , which associate from right to left.

Definition of /: The operators on lines (j), (l), and (m) may have a slash / through them to denote negation—e.g. $x \notin T$ is an abbreviation for $\neg(x \in T)$.

State

A state is a list of variables and their values.

Example

(x, 5), (y, 6)

An expression may be true in some states, but not in other states.

2x+3y = 7 is true in the state (x, 5), (y, -1) but is not true in the state (x, 1), (y, 2)

TABLE 1.1. EXAMPLES OF TEXTUAL SUBSTITUTION Substitution for one variable 35[x := 2] = 35y[x := 2] = yx[x := 2] = 2 $(x \cdot x + y)[x := c + y] = (c + y) \cdot (c + y) + y$ $(x^{2} + y^{2} + x^{3})[x := x + y] = (x + y)^{2} + y^{2} + (x + y)^{3}$ Substitution for several variables (x+y+y)[x,y:=z,w] = z+w+w $(x+y+y)[x,y:=2\cdot y,x\cdot z] = 2\cdot y + x\cdot z + x\cdot z$ $(x+2 \cdot y)[x, y := y, x] = y + 2 \cdot x$ $(x+2\cdot y\cdot z)[x,y,z:=z,x,y] = z + 2\cdot x\cdot y$

A property of textual substitution

Example

$$((a+b) \cdot c)[b := x][x := b]$$

= $\langle \text{t.s. and r.u.p} \rangle$
= $\langle \text{t.s. and r.u.p} \rangle$
 $(a+b) \cdot c$

Same as original expression

Example

$$((a+b) \cdot x)[b := x][x := b]$$

$$= \langle \text{t.s. and r.u.p} \rangle$$

$$((a+x) \cdot x)[x := b]$$

$$= \langle \text{t.s. and r.u.p} \rangle$$

$$(a+b) \cdot b$$

 \underline{Not} the same as original

If
$$\neg \operatorname{occurs}(x', E')$$
 then $E[y := x][x := y] = E$

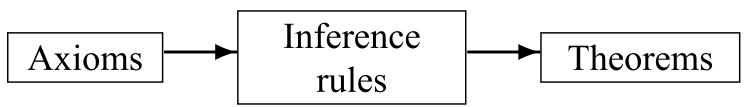
Proofs

Analogy of computational system:



Given a program, and its input, the program produces the output.

Axiomatic logic systems



Given the inference rules, and some axioms, the logic system produces theorems.

Inference rules

An inference rule has a horizontal line.

The premise, or hypothesis, assumed to be true in all states

The conclusion

Inference rules

There are four inference rules for logic proofs:

Substitution:
$$\frac{E}{E[z := F]}$$
Leibniz: $X = Y$ $E[z := X] = E[z := Y]$ Equanimity: $\frac{X, X = Y}{Y}$ Transitivity: $\frac{X = Y, Y = Z}{X = Z}$

Assignment 2

Exercises

1.7 ... Fill in the missing parts and write down what expression E is. (a)

$$\frac{x = x + 2}{4 \cdot x + y = ?}$$

1.8 ... For each of the expressions E[z := X] and hints X = Y below, write the resulting expression E[z := Y].

$$E[z := X] \quad \text{hint } X = Y$$
(a) $x + y + w \quad x = b + c$

1.9 ... For each of the following pair of expressions E[z := X] and E[z := Y], identify a hint X = Y that would show them to be equal and indicate what E is.

$$E[z := X] E[z := Y]$$
(a) $(x + y) \cdot (x + y) (x + y) \cdot (y + x)$

The four laws of equality

- (1.2) **Reflexivity:** x = x
- (1.3) **Symmetry** : (x = y) = (y = x)

(1.4) **Transitivity:**
$$\frac{X = Y, \ Y = Z}{X = Z}$$

(1.5) Leibniz:
$$\frac{X = Y}{E[z := X] = E[z := Y]}$$

Example proof

Assuming these axioms

Proof
$$a \cdot b \cdot a = a^2 \cdot b$$

(1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x

prove that

$$a \cdot b \cdot a = a^2 \cdot b$$

Example proof

Assuming these axioms

(1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x

Proof

$$a \cdot b \cdot a = a^2 \cdot b$$

 $= \langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$

prove that

$$a \cdot b \cdot a = a^2 \cdot b$$

Example proof

Proof

Assuming these axioms

(1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x

$$a \cdot b \cdot a = a^2 \cdot b$$

= $\langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$
 $a \cdot a \cdot b = a^2 \cdot b$

prove that

 $a \cdot b \cdot a = a^2 \cdot b$

Example proof

Assuming these axioms

(1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x

prove that

 $a \cdot b \cdot a = a^2 \cdot b$

Proof $a \cdot b \cdot a = a^2 \cdot b$ $= \langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$ $a \cdot a \cdot b = a^2 \cdot b$ $= \langle (2) \text{ with } x := a, \text{ which is } a \cdot a = a^2 \rangle$

Example proof

Assuming these axioms

(1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x

prove that

 $a \cdot b \cdot a = a^2 \cdot b$

Proof $a \cdot b \cdot a = a^2 \cdot b$ $= \langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$ $a \cdot a \cdot b = a^2 \cdot b$ $= \langle (2) \text{ with } x := a, \text{ which is } a \cdot a = a^2 \rangle$ $a^2 \cdot b = a^2 \cdot b$

Example proof

Assuming these axioms

(1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x

prove that

$$a \cdot b \cdot a = a^2 \cdot b$$

Proof $a \cdot b \cdot a = a^2 \cdot b$ $= \langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$ $a \cdot a \cdot b = a^2 \cdot b$ $= \langle (2) \text{ with } x := a, \text{ which is } a \cdot a = a^2 \rangle$ $a^2 \cdot b = a^2 \cdot b$ $= \langle (3) \text{ with } x := a^2 \cdot b, \text{ which is } a^2 \cdot b = a^2 \cdot b \rangle$

Example proof

Assuming these axioms (1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ (3) x = x $a \cdot b \cdot a = a^2 \cdot b$ prove that $a \cdot b \cdot a = a^2 \cdot b$ $a \cdot a \cdot b = a^2 \cdot b$ $a \cdot a \cdot b = a^2 \cdot b$ $a^2 \cdot b = a^2 \cdot b$ $= \langle (2) \text{ with } x := a, \text{ which is } a \cdot a = a^2 \rangle$ $a^2 \cdot b = a^2 \cdot b$ $= \langle (3) \text{ with } x := a^2 \cdot b, \text{ which is } a^2 \cdot b = a^2 \cdot b \rangle$ true //

Example proof

Assuming these axioms Proof (1) $x \cdot y = y \cdot x$ $a \cdot b \cdot a = a^2 \cdot b$ (2) $x \cdot x = x^2$ $=\langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$ (3) x = x $a \cdot a \cdot b = a^2 \cdot b$ = $\langle (2) \text{ with } x := a, \text{ which is } a \cdot a = a^2 \rangle$ prove that $a^2 \cdot b = a^2 \cdot b$ $a \cdot b \cdot a = a^2 \cdot b$ = $\langle (3) \text{ with } x := a^2 \cdot b, \text{ which is } a^2 \cdot b = a^2 \cdot b \rangle$ true // $\frac{E}{E[z := F]} \quad \frac{x \cdot y = y \cdot x}{(x \cdot y = y \cdot x)[x, y := b, a]}$ **Substitution:**

Example proof

Proof

Assuming these axioms

 $a \cdot b \cdot a = a^2 \cdot b$ (1) $x \cdot y = y \cdot x$ (2) $x \cdot x = x^2$ $= \langle (1) \text{ with } x, y := b, a, \text{ which is } b \cdot a = a \cdot b \rangle$ (3) x = x $a \cdot a \cdot b = a^2 \cdot b$ = $\langle (2) \text{ with } x := a, \text{ which is } a \cdot a = a^2 \rangle$ prove that $a^2 \cdot b = a^2 \cdot b$ $a \cdot b \cdot a = a^2 \cdot b$ = $\langle (3) \text{ with } x := a^2 \cdot b, \text{ which is } a^2 \cdot b = a^2 \cdot b \rangle$ true // $\frac{X = Y}{E[z := X] = E[z := Y]} \quad \boxed{(a \cdot z = a^2 \cdot b)[z := b \cdot a]} = (a \cdot z = a^2 \cdot b)[z := a \cdot b]$ Leibniz:

General proof step

Leibniz:

$$\frac{X = Y}{E[z := X] = E[z := Y]}$$

Proof step:

$$E[z := X]$$
$$= \langle X = Y \rangle$$
$$E[z := Y]$$

The assignment statement

Uses the same symbol as textual substitution :=

The effect is to change the state.

Example

Initial state:(x,3), (y,2), (z,6)Assignment:y := z+1Final state:(x,3), (y,7), (z,6)

The assignment statement

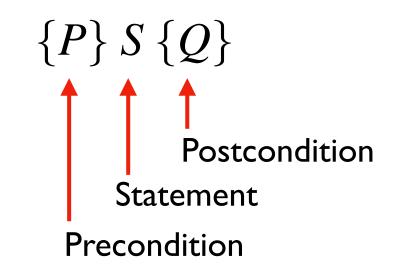
Notation

Operation	Formal methods	Java, C++
Equals	=	==
Assignment	:=	=

TABLE 1.2. EXAMPLES	OF MULTIPLE ASSIGNMENTS
	Swap x and y Store 0 in x and i Add 1 to i and i to x Add 1 to i and i to x

The Hoare triple

Definition: An expression is <u>valid</u> if it is true in all states.



Interpretation: If the precondition is true, and you execute the statement, then the statement terminates, and the postcondition is guaranteed to be true.

The Hoare triple

 $\{P\} S \{Q\}$

Examples

$$\{x = 0\} x := x + 1 \{x > 0\}$$
valid

$$\{x > 5\} x := x + 1 \{x > 0\}$$
valid

$$\{x + 1 > 0\} x := x \cdot 2 \{x > 0\}$$
not valid

$$\{x > -2\} x := x + 1 \{x > 0\}$$
not valid

The definition of assignment

$$\{R[x := E]\} x := E \{R\}$$

$$f$$
Assignment
Textual substitution

You calculate the precondition from the statement and the postcondition.

$$\{x+1 > 4\} \quad x := x+1 \quad \{x > 4\}$$

$$\{x \cdot 6 > 0\} \quad y := 6 \quad \{x \cdot y > 0\}$$

$$\{x \cdot 2 = 10\} \quad x := x \cdot 2 \quad \{x = 10\}$$

$$\{y = 6\} \quad x := y \quad \{x = 6\}$$

$$\{y = 6\} \quad x := y \quad \{y = 6\}$$

TABLE 1.3. EXAMPLES OF HOARE TRIPLES FOR MULTIPLE ASSIGNMENT

$$\{y > x\} \ x, y := y, x \ \{x > y\}$$

 $\{x + i = 1 + 2 + \dots + (i + 1 - 1)\}$
 $x, i := x + i, i + 1$
 $\{x = 1 + 2 + \dots + (i - 1)\}$
 $\{x + i = 1 + 2 + \dots + (i + 1 - 1)\}$
 $i, x := i + 1, x + i$
 $\{x = 1 + 2 + \dots + (i - 1)\}$