## A Logical Approach to Discrete Math

## Boolean operators

Operator: Conjunction
Symbol:
English: $\quad p$ and $q$
Conjuncts: $p, q$
Truth table:

| $p$ | $q$ | $p \wedge q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | F |

Operator: Disjunction
Symbol: V
English: $\quad p$ or $q$
Disjuncts: $p, q$
Truth table:

| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |

## A Logical Approach to Discrete Math

## Boolean operators

Operator: Implication
Symbol: $\Rightarrow$
English: $p$ implies $q$
English: if $p$ then $q$
Antecedent: $p$
Consequent: $q$
Truth table:

| $p$ | $q$ | $p \Rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

Operator: Implication
Symbol: $\Leftarrow$
English: $p$ follows from $q$
English: if $q$ then $p$
Antecedent: q
Consequent: $p$
Truth table:

| $p$ | $q$ | $p \Leftarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | F |
| F | F | T |

## A Logical Approach to Discrete Math

## Boolean operators

Operator: Equivalence
Symbol: $\equiv$
English: $p$ equivales $q$
English: $\quad p$ equals $q$
Truth table:

| $p$ | $q$ | $p \equiv q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |

Operator: Inequivalence
Symbol: $\not \equiv$
English: $\quad p$ exclusive or $q$
English: $\quad p$ different from $q$
Truth table:

| $p$ | $q$ | $p \not \equiv q$ |
| :---: | :---: | :---: |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | F |

## A Logical Approach to Discrete Math

## Boolean operators

Operator: Negation
Symbol:
English: not $p$
Truth table:

| $p$ | $\neg p$ |
| :---: | :---: |
| T | F |
| F | T |

## A Logical Approach to Discrete Math

| $p$ | $q$ | $r$ | $\neg r$ | $q \wedge \neg r$ | $p \vee(q \wedge \neg r)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t$ | $t$ | $t$ | $f$ | $f$ | $t$ |
| $t$ | $t$ | $f$ | $t$ | $t$ | $t$ |
| $t$ | $f$ | $t$ | $f$ | $f$ | $t$ |
| $t$ | $f$ | $f$ | $t$ | $f$ | $t$ |
| $f$ | $t$ | $t$ | $f$ | $f$ | $f$ |
| $f$ | $t$ | $f$ | $t$ | $t$ | $t$ |
| $f$ | $f$ | $t$ | $f$ | $f$ | $f$ |
| $f$ | $f$ | $f$ | $t$ | $f$ | $f$ |

## A Logical Approach to Discrete Math

Table of Precedences
(a) $[x:=e]$ (textual substitution) (highest precedence)
(b) . (function application)
(c) unary prefix operators: $+\quad \neg \quad \# \sim \mathcal{P}$
(d) $* *$
(e) $\cdot / \div \bmod \operatorname{gcd}$
(f) $+-\cup \cap \times \circ$ -
(g) $\downarrow \uparrow$
(h) \#
(i) $\triangleleft \triangleright^{\wedge}$
(j) $=<>\in \subset \subseteq \supset$ (conjunctional, see page 29)
(k) $\vee \wedge$
(l) $\Rightarrow \Leftarrow$
(m) $\equiv$

All nonassociative binary infix operators associate from left to right except $* *, \triangleleft$, and $\Rightarrow$, which associate from right to left.

Definition of /: The operators on lines (j), (l), and (m) may have a slash / through them to denote negation-e.g. $x \notin T$ is an abbreviation for $\neg(x \in T)$.

## A Logical Approach to Discrete Math

## Precedence

$\wedge$ and $\vee$ have the same precedence.
When they are together, parentheses are necessary.
$p \wedge q \vee r \quad$ Incorrect
Must be written $\quad(p \wedge q) \vee r \quad$ or $\quad p \wedge(q \vee r)$

## A Logical Approach to Discrete Math

## Equality vs Equivalence

$=$ and $\equiv$ have the same truth tables.
But, there are four differences:
$(1)=$ is for numbers and booleans.
$\equiv$ is only for booleans.
(2) = has higher precedence than $\equiv$

Example: Do not need parentheses for

$$
x \cdot y=0 \equiv x=0 \vee y=0
$$

## A Logical Approach to Discrete Math

## Equality vs Equivalence

(3) $=$ is conjunctional, while $\equiv$ is not.

$$
b=c=d \quad \text { means } \quad b=c \wedge c=d
$$

(4) $\equiv$ is associative, while $=$ is not.

$$
(b \equiv c) \equiv d \quad \text { is equivalent to } \quad b \equiv(c \equiv d)
$$

## A Logical Approach to Discrete Math

## Equality vs Equivalence

## Example

Consider the state $(b$, false $),(c$, false $) .(d$, true $)$

$$
\begin{array}{ccc}
(b \equiv c) \equiv d & b \equiv(c \equiv d) & b=c=d \\
(F \equiv F) \equiv T & F \equiv(F \equiv T) & b=c \wedge c=d \\
T \equiv T & F \equiv F & F=F \wedge F=T \\
T & T & T \wedge F \\
\uparrow & 4 & F
\end{array}
$$

## A Logical Approach to Discrete Math

(2.1) Definition. A boolean expression $P$ is satisfied in a state if its value is true in that state; $P$ is satisfiable if there is a state in which it is satisfied; and $P$ is valid if it is satisfied in every state. A valid boolean expression is called a tautology.

## Example

Is $p \wedge \neg q$ satisfied in state $(p$, true $),(q$, true $)$ ? no
Is $p \wedge \neg q$ satisfiable?
yes
Is $p \wedge \neg q$ valid?
no
Is $p \wedge \neg q$ a tautology?
no

## A Logical Approach to Discrete Math

(2.1) Definition. A boolean expression $P$ is satisfied in a state if its value is true in that state; $P$ is satisfiable if there is a state in which it is satisfied; and $P$ is valid if it is satisfied in every state. A valid boolean expression is called a tautology.

## Example

| $p$ | $q$ | $p \Rightarrow q$ | $p \wedge \neg q$ | $\neg(p \wedge \neg q)$ | $p \Rightarrow q \equiv \neg(p \wedge \neg q)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | T | T |
| T | F | F | T | F | T |
| F | T | T | F | T | T |
| F | F | T | F | T | T |

So, $p \Rightarrow q \equiv \neg(p \wedge \neg q)$ is valid, i.e. is a tautology.

## A Logical Approach to Discrete Math

(2.2) Definition. The dual $P_{D}$ of a boolean expression $P$ is constructed from $P$ by interchanging occurrences of
true and false,
$\wedge$ and $\vee$,
$\equiv$ and $\not \equiv$,
$\Rightarrow$ and $\nLeftarrow$, and
$\Leftarrow$ and $\nRightarrow$.

TABLE 2.1. Examples of Duals

| $P$ | $P_{D}$ |
| :--- | :--- |
| $p \vee q$ | $p \wedge q$ |
| $p \Rightarrow q$ | $p \nLeftarrow q$ |
| $p \equiv \neg p$ | $p \not \equiv \neg p$ |
| false $\not \equiv$ true $\vee p$ | true $\equiv$ false $\wedge p$ |
| $\neg p \wedge \neg q \equiv r$ | $\neg p \vee \neg q \not \equiv r$ |

## A Logical Approach to Discrete Math

(2.3) Metatheorem Duality:
(a) $\operatorname{valid}(P) \equiv \operatorname{valid}\left(\neg P_{D}\right)$
(b) $\operatorname{valid}(P \equiv Q) \equiv \operatorname{valid}\left(P_{D} \equiv Q_{D}\right)$

TABLE 2.2. Using Duality to Generate Valid Expressions

| $\boldsymbol{P}$ (valid) | $\neg P_{D}$ (also valid) |
| :--- | :--- |
| true | $\neg$ false |
| $p \vee$ true | $\neg(p \wedge$ false $)$ |
| $p \vee \neg p$ | $\neg(p \wedge \neg p)$ |


| $\boldsymbol{P} \equiv Q($ valid $)$ | $P_{D} \equiv Q_{D}$ (also valid) |
| :--- | :--- |
| true $\equiv$ true | false $\equiv$ false |
| $p \vee q \equiv q \vee p$ | $p \wedge q \equiv q \wedge p$ |
| $p \equiv q \equiv q \equiv p$ | $p \not \equiv q \equiv q \not \equiv p$ |
| $\neg(p \vee q) \equiv \neg p \wedge \neg q$ | $\neg(p \wedge q) \equiv \neg p \vee \neg q$ |

## A Logical Approach to Discrete Math

(2.5) Translation into a boolean expression. To translate proposition $p$ into a boolean expression:

1. Introduce boolean variables to denote subpropositions.
2. Replace these subpropositions by their corresponding boolean variables.
3. Translate the result of step 2 into a boolean expression, using "obvious" translations of the English words into operators. Table 2.3 gives examples of translations of English words.
table 2.3. Translation of English Words

| and | becomes | $\wedge$ |
| :--- | :--- | :--- |
| or | becomes | $\vee$ |
| not | becomes | $\neg$ |
| it is not the case that | becomes | $\neg$ |
| if $p$ then $q$ | becomes | $p \Rightarrow q$ |

## A Logical Approach to Discrete Math

```
x : Henry VIII had one son,
y: Cleopatra had two (sons),
z : I'll eat my hat,
w:1 is prime.
```

We then have the following sentences and their translations. proposition translation

Henry VIII had one son or I'll eat my hat. Henry VIII had one son and 1 is not prime. If 1 is prime and Cleopatra had two sons, I'll eat my hat.
$x \vee z$.
$x \wedge \neg w$.
$w \wedge y \Rightarrow z$.

## A Logical Approach to Discrete Math

English expression 1. $p$, if $q$
Same as, If $q$ then $p, q \Rightarrow p$

English expression 2. $p$, only if $q$
Same as, If $p$ then $q, p \Rightarrow q$
Be careful. This is not the same as English expression 1.
For example,
"You can be president, only if you are at least 35 years old." means
"If you are president, then you are at least 35 years old."

## A Logical Approach to Discrete Math

English expression 3. $p$, if and only if $q$
Same as, $(q \Rightarrow p) \wedge(p \Rightarrow q)$
Same as, $p \equiv q$
Abbreviated in English as $p$ iff $q$

## A Logical Approach to Discrete Math

English expression 4. $p$ is a sufficient condition for $q$
Same as, If $p$ then $q, p \Rightarrow q$

English expression 5. $p$ is a necessary condition for $q$
Same as, If $q$ then $p, q \Rightarrow p$
Remember 4. and 5. by sufficient $\Rightarrow$ necessary

English expression 6. $p$ is a necessary and sufficient condition for $q$
Same as, $p \equiv q$

## A Logical Approach to Discrete Math

English expression 7. $p$, whenever $q$
Same as, If $q$ then $p, q \Rightarrow p$
"Whenever" means the same thing as "if".

English expression 8. $p$, provided that $q$
Same as, If $q$ then $p, q \Rightarrow p$
"Provided that" means the same thing as "if".

## A Logical Approach to Discrete Math

English expression 9. $p$, unless $q$
Same as, If not $q$ then $p, \neg q \Rightarrow p$
For example,
"I will buy it, unless you do."
means
"If you do not buy it, then I will buy it."

English expression 10. $p$, unless not $q$
Same as, If $q$ then $p, q \Rightarrow p$
For example,
"I will take another course, unless I do not pass this one."
means
"If I pass this course, then I'll take another."

## A Logical Approach to Discrete Math

English expression 11. $p ; q$
Same as, $p$ and $q, p \wedge q$

English expression 12. $p, q$
Same as, $p$ and $q, p \wedge q$

English expression 13. $p$, but $q$
Same as, $p$ and $q, p \wedge q$
For example, "I can do that, but so can you."
means
"I can do that, and you can do that."

