Proving implications with (3.82)

```
Suppose you know that a=b and b>c and c=d.

Because > and = are together transitive, you can prove that a>d like this. 

Proof a = \langle a=b \rangle \\ b > \langle b>c \rangle \\ c = \langle c=d \rangle
```

d //

Proving implications with (3.82)

(3.82) Transitivity:

(a)
$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

(b)
$$(p \equiv q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

(c)
$$(p \Rightarrow q) \land (q \equiv r) \Rightarrow (p \Rightarrow r)$$

Proving implications with (3.82)

Prove (4.2)
$$(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$$

Proof
 $p \lor r \Rightarrow q \lor r$
 $= \langle (3.57) \rangle$
 $p \lor r \lor q \lor r \equiv q \lor r$
 $= \langle (3.26) \rangle$
 $p \lor q \lor r \equiv q \lor r$
 $= \langle (3.27) \rangle$
 $(p \lor q \equiv q) \lor r$
 $= \langle (3.57) \rangle$
 $(p \Rightarrow q) \lor r$
 $\Leftarrow \langle (3.76a) \ p \Rightarrow p \lor q \rangle$
 $(p \Rightarrow q) \ //$

- (4.2) **Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) **Monotonicity of** \wedge : $(p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)$

Monotonicity is necessary in some proof steps.

Example

Suppose you have $p \wedge s$.

Then the following proof step is legal.

$$\Rightarrow \begin{array}{l} p \wedge s \\ \Rightarrow \langle (3.76a) \ p \Rightarrow p \vee q \ \text{and} \ (4.3) \ \text{Monotonicity of} \ \wedge \rangle \\ (p \vee q) \wedge s \end{array}$$

- (4.2) **Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) **Monotonicity of** \wedge : $(p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)$

Example

Suppose you have $p \lor (s \equiv r)$.

Then the following proof step is legal.

$$p \lor (s \equiv r)$$

 $\Rightarrow \langle (3.76a) \ p \Rightarrow p \lor q \text{ and } (4.2) \text{ Monotonicity of } \lor \rangle$ $(p \lor q) \lor (s \equiv r)$

- (4.2) **Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) **Monotonicity of** \wedge : $(p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)$

Using Monotonicity of \vee in a proof step.

$$p \lor r$$

$$\Rightarrow \langle \text{Why } p \Rightarrow q \text{ and } (4.2) \text{ Monotonicity of } \lor \rangle$$

$$q \lor r$$

Using Monotonicity of \wedge in a proof step.

$$p \wedge r$$

$$\Rightarrow \langle \text{Why } p \Rightarrow q \text{ and } (4.3) \text{ Monotonicity of } \wedge \rangle$$

$$q \wedge r$$

- (4.2) **Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) **Monotonicity of** \wedge : $(p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)$

Caution

 \equiv is **not** monotonic.

Suppose you have $p \equiv r \vee s$.

Then the following proof step is **not** legal.

$$p \equiv r \vee s$$

$$\Rightarrow \langle (3.76a) \ p \Rightarrow p \vee q \rangle$$

$$p \vee q \equiv r \vee s$$

- (4.2) **Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) **Monotonicity of** \wedge : $(p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)$

Caution

 \neg is **not** monotonic.

Suppose you have $\neg (p \land q)$.

Then the following proof step is **not** legal.

$$\neg (p \land q)$$

$$\Rightarrow \langle (3.76c) \ p \land q \Rightarrow p \lor q \rangle$$

$$\neg (p \lor q)$$

Proof techniques

Proof techniques

Metatheorem: A theorem about theorems.

Proof techniques: Technically, it is legal to use these proof techniques only after Chapter 4.

Reproofs: Because they make good exercises, we will illustrate the proof techniques by re-proving previous theorems. Strictly speaking, they are not legitimate proofs.

(4.4) **Deduction (assume conjuncts of antecedent):**

To prove $P_1 \wedge P_2 \Rightarrow Q$, assume P_1 and P_2 , and prove Q. You cannot use textual substitution in P_1 or P_2 .

```
Prove (p \land q) \Rightarrow (p \equiv q)

Proof: Deduction

p \equiv q

= \langle Assume\ conjunct\ p \rangle

true \equiv q

= \langle Assume\ conjunct\ q \rangle

true \equiv true

which is (3.5) Reflexivity //
```

(4.5) Case analysis: If E_{true}^z and E_{false}^z are theorems, then so is E_P^z .

(3.89) **Shannon:**
$$E_p^z \equiv (p \wedge E_{true}^z) \vee (\neg p \wedge E_{false}^z)$$

(3.89.1) $E_{true}^z \wedge E_{false}^z \Rightarrow E_p^z$

(4.5) Case analysis: If E_{true}^z and E_{false}^z are theorems, then so is E_P^z .

Re-prove (3.80) Mutual implication:
$$(p \Rightarrow q) \land (q \Rightarrow p) \equiv (p \equiv q)$$

Proof: Case analysis on p
Case 1. $(true \Rightarrow q) \land (q \Rightarrow true) \equiv (true \equiv q)$
Case 2. $(false \Rightarrow q) \land (q \Rightarrow false) \equiv (false \equiv q)$

$$Case 1 \ proof: \\ (true \Rightarrow q) \land (q \Rightarrow true)$$

$$= \langle (3.73) \rangle \\ q \land (q \Rightarrow true)$$

$$= \langle (3.72) \rangle \\ q \land true$$

$$= \langle (3.39) \rangle \\ q$$

$$= \langle (3.3) \rangle \\ true \equiv q //$$

(4.5) Case analysis: If E_{true}^z and E_{false}^z are theorems, then so is E_P^z .

Re-prove (3.80) Mutual implication:
$$(p \Rightarrow q) \land (q \Rightarrow p) \equiv (p \equiv q)$$

Proof: Case analysis on p
Case 1. $(true \Rightarrow q) \land (q \Rightarrow true) \equiv (true \equiv q)$
Case 2. $(false \Rightarrow q) \land (q \Rightarrow false) \equiv (false \equiv q)$

$$Case 2 \ proof: \qquad (false \Rightarrow q) \land (q \Rightarrow false)$$

$$= \langle (3.75) \rangle \qquad true \land (q \Rightarrow false)$$

$$= \langle (3.39) \rangle \qquad q \Rightarrow false$$

$$= \langle (3.74) \rangle \qquad \neg q$$

$$= \langle (3.15) \rangle \qquad false \equiv q //$$

(3.89) **Shannon:**
$$E_p^z \equiv (p \wedge E_{true}^z) \vee (\neg p \wedge E_{false}^z)$$

(3.89.1) $E_{true}^z \wedge E_{false}^z \Rightarrow E_p^z$
Prove (3.89.1) $E_{true}^z \wedge E_{false}^z \Rightarrow E_p^z$
 $Proof:$ Deduction E_p^z
 $= \langle (3.89 \text{ Shannon}) \rangle$
 $(p \wedge E_{true}^z) \vee (\neg p \wedge E_{false}^z)$
 $= \langle \text{Assume conjunct } E_{true}^z \rangle$
 $(p \wedge true) \vee (\neg p \wedge E_{false}^z)$
 $= \langle (3.39) \rangle$
 $p \vee (\neg p \wedge E_{false}^z)$
 $= \langle (3.39) \rangle$
 $p \vee (\neg p \wedge true)$
 $= \langle (3.39) \rangle$
 $p \vee \neg p$
 $= \langle (3.28) \text{ Excluded middle} \rangle$
 $true //$

(4.9) **Proof by contradiction:** To prove P, prove $\neg P \Rightarrow false$. (4.9.1) **Proof by contradiction:** To prove P, prove $\neg P \equiv false$.

$$(3.74.1) \quad \neg p \Rightarrow false \equiv p$$

(4.9) **Proof by contradiction:** To prove P, prove $\neg P \Rightarrow false$. (4.9.1) **Proof by contradiction:** To prove P, prove $\neg P \equiv false$.

Re-prove (3.15)
$$\neg p \equiv p \equiv false$$

Proof: Contradiction
$$\neg(\neg p \equiv p \equiv false)$$

$$= \langle (3.9) \rangle$$

$$\neg \neg p \equiv p \equiv false$$

$$= \langle (3.12) \rangle$$

$$p \equiv p \equiv false$$

$$= \langle (3.3) \rangle$$

$$true \equiv false$$

$$= \langle (3.3) \rangle$$

$$false //$$

(4.12) **Proof by contrapositive:** To prove $P \Rightarrow Q$, prove $\neg Q \Rightarrow \neg P$.

(3.61) **Contrapositive:** $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$

(4.12) **Proof by contrapositive:** To prove $P \Rightarrow Q$, prove $\neg Q \Rightarrow \neg P$.

Re-prove (3.76b)
$$p \land q \Rightarrow p$$

Proof: Contrapositive $\neg p \Rightarrow \neg (p \land q)$
 $\neg (p \land q)$
= $\langle (3.47a) \text{ De Morgan} \rangle$
 $\neg p \lor \neg q$
 $\Leftarrow \langle (3.76a) \rangle$
 $\neg p //$