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 FORMAL METHODS ARE mathe-
matically based approaches for speci-
fying, building, and reasoning about 
software. Despite 50 years of research 
and development, formal methods 
have had only limited impact in in-
dustry. While we have seen success 
in such domains as microprocessor 
design and aerospace (e.g., proofs 
of security properties for helicopter 
control systems1), we have not seen 
wide adoption of formal methods for 
large and complex systems, such as 
web services, industrial automation, 
or enterprise support software. 

One of the key difficulties when 
proving the security, safety, and 
robustness of these systems is the 
problem of finding system architec-
ture models necessary for analysis. 
Proving the system at its lowest level 
of detail is intractable, and, thus, we 
must reason at higher levels of ab-
straction. If written by hand, these 
models are expensive to build and 
hard to keep up to date with imple-
mentations. Another problem is 
that the size of the potential user 
community and the business value 
have typically not justified the cre-
ation of scalable and easy-to-use 

tools for the formal verification of 
those models.

With the cloud, much of this has 
changed. Descriptions of cloud ser-
vices provide accurate models of the 
system. That is to say, the appli-
cation program interfaces (APIs) of 
cloud services are computer-readable 
contracts that establish and govern 
how the system behaves. In many 
cases, these models are amenable to 
formal analysis at scale.2 Most im-
portantly, since those models are uti-
lized by a large user community, it is 
now economically feasible to build 
the tools needed to verify them.

The larger cloud providers are 
rapidly developing and applying for-
mal method tools. At Amazon Web 
Services (AWS), for example, we have 
used cloud models to construct large-
scale automated reasoning tools 
that can prove whether or not access 
controls meet governance rules and 
whether networks are properly 
secured. These tools are used mil-
lions of times daily and help AWS 
customers manage the security of 
their accounts.

This is the beginning of an era in 
which security, compliance, avail-
ability, durability, and safety proper-
ties can be proven about large-scale 
architectures. In this short column, 

we discuss the trend of constructing 
practical and scalable cloud-based 
formal methods and how they can 
easily be used by customers—some-
times with a single operation for one-
click formal methods.

The Classical Approach 
(Where Formal Verification 
Was Hard)
Figure 1 shows a simplified, three-
tier web application for uploading 
pictures developed in a traditional 
(noncloud) environment. The web tier 
has two REST resources:

• the Login API for users to au-
thenticate with the service

• the Upload API to upload new 
pictures to the website.

The app tier consists of four mi-
croservices that interact with each 
other through a standardized API. 
The Auth Service processes authori-
zation requests; the Session Service 
tracks stateful data relevant to the 
user’s current visit to the website; 
the Upload Service receives photos 
from the user and stores them for 
future retrieval; and the Thumbnail 
Service creates thumbnails for the 
photos in the data store. The data 
tier has three databases: Auth DB for 
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authorization credentials, User Ses-
sion DB for user sessions, and Photo 
Store for user photos and thumbnails 
on the website.

Imagine that we want to prove 
least-privilege access to resources 
for the system. Toward this goal, we 
would have to prove the following 
requirements:

1. Only the Auth Service shall ac-
cess the Auth DB.

2. The Auth Service shall not write 
to Auth DB. (For simplicity, we 
assume that users are added to 
the authentication database us-
ing an external mechanism.) 

3. Resources in the web tier shall 
not directly access databases in 
the data tier.

4. The Thumbnail Service shall 
access only the Photo Store (no 
other databases) and shall write 
only to the thumbnail portion of 
the Photo Store.

In a noncloud computing envi-
ronment, the problem is that the 

diversity of technologies compos-
ing the system makes it challenging 
to verify these end-to-end require-
ments. At the very least, we have 
to consider the following:

• Network controls: These are 
used to guard the compute nodes 
in each tier. Typically, controls 
are enforced through the use of 
hardware or software firewalls, 
which block packets from re-
stricted Internet Protocol (IP) 
addresses and/or port ranges.

• File system permissions: These 
are employed to control and del-
egate user access to local data.

• Database credentials: These 
are utilized to restrict access to 
a set of privileged users, e.g., 
developers.

• Cryptographic keys: These are 
used to protect user credentials 
in the databases.

We also must reason about combi-
nations of these access control mech-
anisms. For example, requirement 4 

involves reasoning about network 
reachability, database access control, 
and, potentially, file system permis-
sions, depending on how the Photo 
Store is implemented. We are rea-
soning simultaneously about both 
low-level implementation details and 
higher-level architectural design.

To reason end to end, we must ei-
ther build new mechanisms and tools 
over a combined  semantic model 
or determine how to decompose prop-
erties such that results from existing 
tools can be soundly combined. Also, 
for any model we build, we must check 
that it matches the behavior of the de-
ployed system. Finally, maintaining 
and scaling the model as components 
are added or changed is a daunting 
and often-neglected task.

A New Approach (in the Cloud, 
Where Formal Verification 
Works Well)
Now consider the example from Fig-
ure 1 in the cloud. Cloud computing 
providers, such as AWS, give custom-
ers a comprehensive set of system 
services and features that are easy to 
plug in to each other. We will keep the 
same services in the app tier and use 
the provided database and storage fa-
cilities from AWS for the data tier. As 
we did before, imagine we are aim-
ing to prove least-privilege access to 
resources of the system. In the cloud 
context, the proof in this example boils 
down entirely to reasoning about poli-
cies. This is because AWS defines a 
policy language that allows customers 
to configure access control across all 
services and resources, including APIs, 
compute instances, databases, alarms, 
logs, and metrics. This policy language 
governs access to all of the components 
in Figure 1. A common language allows 
us to reason about all of the disparate 
components and soundly compose 
the results, with no additional effort. 
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FIGURE 1. The architecture of a three-tier web application.  
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Also, the cost of creating the analysis is 
amortized across all of the platform’s 
users, so we can invest in scalable and 
accurate analyses.

 Figure 2(a) shows a policy for the 
Thumbnail Service. In this example, 
we have implemented the Photo Store 
using Amazon Simple Storage Service 
(Amazon S3) and the Auth and User 
Sessions databases in Amazon Dy-
namoDB. The access control policy 
in Figure 2(a) determines the access 
rights for the Thumbnail Service. The 
first statement allows the service to 
read files from the photo directory. 
The second and third statements al-
low the Thumbnail Service to write to 
the thumbnail directory and invoke an 
external function to compress images.

 At AWS, we have developed the 
Zelkova tool3 to prove properties 
across examples like that in Figure 1. 
Zelkova encodes access control poli-
cies and properties into satisfiability 
modulo theories (SMT) logic. SMT 
is a language for checking proposi-
tional logic satisfiability extended 

with theories that allow reasoning 
about richer data, such as unbounded 
integers or real numbers. Zelkova 
uses the theories of strings, regular 
expressions, bit vectors, and integer 
comparisons. The SMT models gen-
erated by Zelkova can be analyzed 
by several efficient back-end tools.

Suppose we wish to verify require-
ment 4 of the policy in Figure 2(a). 
We write constraints representing 
violations of this requirement, as 
shown in Figure 2(b). Informally, the 
constraints state that any write re-
quest outside of the thumbnail direc-
tory of the Photo Store is a violation, 

as well as any read request outside of 
the thumbnail and photo directory or 
any access to a DynamoDB database 
(which contains the Auth and User 
Sessions databases).

In the example involving Fig-
ure 2(a) and (b), if there were no further 
Allow statements on Amazon S3 

resources, the tool would return a 
valid; it is not possible for the thumb-
nail account to read files from other 
locations in Amazon S3. Suppose, 
however, that the policy had an addi-
tional statement that allowed reading 
from the website-photo-store/back-
ups directory. In this case, the result 

{
"Statement": [
…
{
"Effect": "Allow",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::website-photo-store/photos/*"

},
{
"Effect": "Allow",
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::website-photo-store/thumbnails/*"

},
{
"Effect": "Allow",
"Action": "lambda:InvokeFunction",
"Resource":
"arn:aws:lambda:us-east-1:111122223333:function:CompressImage"

},
…

]
}

"Constraints": {
"Actions": [ "s3:PutObject" ],
"NotResources": [

"arn:aws:s3:::website-photo-store/thumbnails/*"
]

}

"Constraints": {
"Actions": [ "s3:GetObject" ],
"NotResources": [
"arn:aws:s3:::website-photo-store/thumbnails/*"
"arn:aws:s3:::website-photo-store/photos/*"

]
}

"Constraints": {
"Actions": [ "dynamodb:*" ]

}

{
"Principal": "arn:aws:iam::123456789012:role/Thumbnail",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::website-photo-store/backups/"

}

(a)

(b)

(c)

FIGURE 2. The policies and constraints in Zelkova: (a) a small portion of the access control policy for the Thumbnail Service from 

Figure 1, (b) three constraints representing violations of requirement 4, and (c) a representative violation report. 

We can now use automated 
reasoning to provide inexpensive and 
provable assurance to customers.
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would be an invalid, and Zelkova 
would report a violation involving the 
constraint shown in Figure 2(c).

It is possible to customize Zelkova 
for a variety of workflows. First, one 
may use the tool as a preventative 
control. These controls serve as gate-
keepers in an automated workflow, 
enforcing a set of checks that, if unsuc-
cessful, halt the workflow. As part of 
the pipeline, Zelkova controls ensure 
that only compliant access control pol-
icies are created and attached to pro-
duction resources. It is also possible to 
use Zelkova for detective (i.e., audit-
ing) and responsive (i.e., monitoring 
and alarming) controls. Such controls 
dynamically monitor, analyze, and re-
spond to events in the cloud, includ-
ing configuration changes, and can 
be equipped with Zelkova checks to 
detect policy compliance violations. 
In the case of a violation, several op-
tions are available. A notification email 
can be generated and sent to the user, 
or the system can revert to a known 
good state.

In practice, Zelkova is used millions 
of times a day by both internal and ex-
ternal customers, supporting preventa-
tive, detective, and reactive controls, 
and 99% of all Zelkova proofs com-
plete in 160 ms or lower. Zelkova is cur-
rently integrated within AWS services, 
including Amazon S3, AWS Config, 
AWS IoT Device Defender, Amazon 
Macie, AWS Trusted Advisor, and Am-
azon GuardDuty. External customers, 
ranging from the financial industry to 
compliance regulators, use Zelkova to 
ensure that their access control policies 
are compliant with corporate gover-
nance rules.

Opportunities for Formal Methods 
in a Cloud Environment
Formal methods in the cloud are used 
for more than just access control. 

Tiros,4 part of Amazon Inspector, 
uses the model provided by Amazon 
Elastic Compute Cloud (Amazon 
EC2) network configurations to per-
form proofs of network reachability 
without generating any network traf-
fic. For example, a customer may 
check whether there exists any pub-
lic IP address on the Internet that 
can access a local database server. 
Unlike packet-scanning approaches, 
Tiros will find any such access path 
and does not add load to the net-
work. Other examples where we 
will investigate the common cloud 
model to perform proofs include the 
Internet of Things (IoT) (AWS IoT 
Core), build and deploy (AWS Cod-
eStar), infrastructure as code (AWS 
CloudFormation), logging (AWS 
CloudTrail), monitoring (Amazon 
CloudWatch), and machine-learning 
frameworks (Amazon SageMaker).

One-Click Formal Methods—
Try It Out!
We have constructed the Zelkova 
and Tiros tools so that this technol-
ogy is available at the click of a but-
ton (or check of a checkbox).

• In Amazon S3 Block Public 
Access, when creating a stor-
age bucket, the creation page 
includes a checkbox to deny pub-
lic access to the bucket. If this 
option is selected, Zelkova will 
safeguard a policy, disallowing 
modifications that would allow 
public access.

• In Amazon Inspector, by en-
abling network reachability 
checks, Tiros will prove which 
servers are publicly accessible.

• In AWS Config, which assesses 
and audits resource configura-
tion, enabling certain managed 
rules will use Zelkova to ensure 

that common corporate gover-
nance policies are followed.

M ore generally, we can now 
use automated reasoning 
to provide inexpensive 

and provable assurance to customers. 
We expect that this trend of building 
practical and scalable formal methods 
in the cloud will lead to environments 
where security, compliance, availabil-
ity, durability, and safety properties 
can be proved about large-scale sys-
tems. For more information, check 
out our Amazon Provable Security 
webpage at https://aws.amazon.com/
security/provable-security. 
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