A Logical Approach to Discrete Math

Mathematical Induction

$$
\begin{array}{ll}
\text { P.n: } & \left(\sum i \mid 1 \leq i \leq n: 2 \cdot i-1\right)=n^{2} \\
P .1: 1=1^{2} & \text { true } \\
P .2: 1+3=2^{2} & \text { true } \\
P .3: 1+3+5=3^{2} & \text { true }
\end{array}
$$

How can you prove P.n is true for all $n \geq 1$, not just $1 \leq n \leq 3$?

A Logical Approach to Discrete Math

Idea: Suppose you could prove $P . n \Rightarrow P(n+1)$ in general.
Then you could use (3.77) Modus ponens $p \wedge(p \Rightarrow q) \Rightarrow q$ as follows:
First prove P.1.
Then,
$P .1 \wedge(P .1 \Rightarrow P .2) \Rightarrow P .2$
$P .2 \wedge(P .2 \Rightarrow P .3) \Rightarrow P .3$
$P .3 \wedge(P .3 \Rightarrow P .4) \Rightarrow P .4$

Conclusion: P. n is true for all $n \geq 1$.
Proving $P .1$ is called the base case.
Proving $P . n \Rightarrow P(n+1)$ by deduction is called the induction case.
The antecedent $P . n$, which you assume, is called the inductive hypothesis.

A Logical Approach to Discrete Math

$$
\begin{aligned}
& \text { Prove }(\Sigma i \mid 1 \leq i \leq n: 2 \cdot i-1)=n^{2} \\
& \text { Proof }
\end{aligned}
$$

Base case

$$
\begin{aligned}
& \left(\sum i \mid 1 \leq i \leq n: 2 \cdot i-1\right)=n^{2} \\
= & \langle\text { Base case, } n=1\rangle \\
& \left(\sum i \mid 1 \leq i \leq 1: 2 \cdot i-1\right)=1^{2} \\
= & \langle\text { Math }\rangle \\
& 2 \cdot 1-1=1 \\
= & \langle\text { Math }\rangle \\
& 1=1 \text { // }
\end{aligned}
$$

A Logical Approach to Discrete Math

Induction case
Prove $(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i-1)=(n+1)^{2}$
$\operatorname{assuming}(\Sigma i \mid 1 \leq i \leq n: 2 \cdot i-1)=n^{2}$
as the inductive hypothesis.
$(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i-1)$
$=\langle$ Split off last term \rangle

$$
(\Sigma i \mid 1 \leq i \leq n: 2 \cdot i-1)+2(n+1)-1
$$

$=\langle$ Inductive hypothesis \rangle

$$
n^{2}+2(n+1)-1
$$

$=\langle$ Math \rangle
$n^{2}+2 n+1$
$=\langle$ Math \rangle
$(n+1)^{2}$ //

A Logical Approach to Discrete Math

$\operatorname{Prove}\left(\Sigma i \mid 0 \leq i<n: 2^{i}\right)=2^{n}-1 \quad$ for $n \geq 0$
Proof
Base case

$$
\begin{aligned}
& \left(\Sigma i \mid 0 \leq i<n: 2^{i}\right)=2^{n}-1 \\
= & \langle\text { Base case }, n=0\rangle \\
& \left(\Sigma i \mid 0 \leq i<0: 2^{i}\right)=2^{0}-1 \\
= & \langle\text { Math }\rangle \\
& \left(\Sigma i \mid \text { false }: 2^{i}\right)=2^{0}-1 \\
= & \langle(8.13) \text { Empty range rule, and math }\rangle \\
& 0=0 \quad / /
\end{aligned}
$$

A Logical Approach to Discrete Math

Prove $\left(\Sigma i \mid 0 \leq i<n: 2^{i}\right)=2^{n}-1 \quad$ for $n \geq 0$
Induction case
Prove $\left(\Sigma i \mid 0 \leq i<n+1: 2^{i}\right)=2^{n+1}-1$
assuming $\left(\sum_{i} \mid 0 \leq i<n: 2^{i}\right)=2^{n}-1$
as the inductive hypothesis.

$$
\left(\Sigma i \mid 0 \leq i<n+1: 2^{i}\right)
$$

$=\langle$ Split off last term \rangle

$$
\left(\Sigma i \mid 0 \leq i<n: 2^{i}\right)+2^{n}
$$

$=\langle$ Inductive hypothesis〉
$2^{n}-1+2^{n}$
$=\langle$ Math \rangle
$2 \cdot 2^{n}-1$
$=\langle$ Math \rangle
$2^{n+1}-1$ //

A Logical Approach to Discrete Math

Prove $\left(\Sigma i \mid 0 \leq i<n: 3^{i}\right)=\left(3^{n}-1\right) / 2$ for $n \geq 0$
Proof
Base case
$\left(\Sigma i \mid 0 \leq i<n: 3^{i}\right)=\left(3^{n}-1\right) / 2$
$=\langle$ Base case, $n=0\rangle$

$$
\left(\Sigma i \mid 0 \leq i<0: 3^{i}\right)=\left(3^{0}-1\right) / 2
$$

$=\langle$ Math \rangle

$$
\left(\text { (i } \mid \text { false }: 3^{i}\right)=\left(3^{0}-1\right) / 2
$$

$=\langle(8.13)$ Empty range rule, and math \rangle
$0=0 \quad / /$

A Logical Approach to Discrete Math

$\operatorname{Prove}\left(\Sigma i \mid 0 \leq i<n: 3^{i}\right)=\left(3^{n}-1\right) / 2 \quad$ for $n \geq 0$
Induction case
$\operatorname{Prove}\left(\Sigma i \mid 0 \leq i<n+1: 3^{i}\right)=\left(3^{n+1}-1\right) / 2$
assuming $\left(\Sigma i \mid 0 \leq i<n: 3^{i}\right)=\left(3^{n}-1\right) / 2$
as the inductive hypothesis.
$\left(\Sigma i \mid 0 \leq i<n+1: 3^{i}\right)$
$=\langle$ Split off last term \rangle
$\left(\Sigma i \mid 0 \leq i<n: 3^{i}\right)+3^{n}$
$=\langle$ Inductive hypothesis \rangle
$\left(3^{n}-1\right) / 2+3^{n}$
$=\langle$ Math, common denominator \rangle
$\left(3^{n}-1+2 \cdot 3^{n}\right) / 2$
$=\langle$ Math \rangle
$\left(3 \cdot 3^{n}-1\right) / 2$
$=\langle$ Math \rangle
$\left(3^{n+1}-1\right) / 2 \quad / /$

A Logical Approach to Discrete Math

Prove $2 n+1<2^{n}$ for $n \geq 3$
Proof
Base case

$$
\begin{aligned}
& 2 n+1<2^{n} \\
= & \langle\text { Base case, } n=3\rangle \\
& 2 \cdot 3+1<2^{3} \\
= & \langle\text { Math }\rangle \\
& 7<8 \quad / /
\end{aligned}
$$

A Logical Approach to Discrete Math

Induction case
Prove $2(n+1)+1<2^{n+1}$
assuming $2 n+1<2^{n}$
as the inductive hypothesis.

$$
\begin{aligned}
& 2^{n+1} \\
= & \langle\text { Math }\rangle \\
& 2 \cdot 2^{n} \\
> & \langle\text { Inductive hypothesis }\rangle \\
= & 2 \cdot(2 n+1) \\
= & \langle\text { Math }\rangle \\
& 2(n+1)+1+2 n-1 \\
> & \langle 2 n-1 \text { is positive for } n \geq 3\rangle \\
& 2(n+1)+1 \quad / /
\end{aligned}
$$

A Logical Approach to Discrete Math

Example of a proof by induction. Consider a currency consisting of 2 -cent and 5 -cent coins. Show that any amount above 3 cents can be represented using these coins.

We write P.n in English as
$P . n:$ Some bag of 2-cent and 5-cent coins has the sum n.
Our task is to prove $(\forall n \mid 4 \leq n: P . n)$.

A Logical Approach to Discrete Math

Prove any amount more than 3 cents is possible using only 2 -cent and 5 -cent coins.

Base case
The base case is $\mathrm{n}=4$.

Must prove that you can make 4 cents using only 2-cent and 5-cent coins.

Use two 2-cent coins. //

A Logical Approach to Discrete Math

Induction case
Must prove
" $\mathrm{n}+\mathrm{I}$ cents is possible with 2 -cent and 5 -cent coins" assuming
"n cents is possible with 2 -cent and 5-cent coins" as the inductive hypothesis.

A Logical Approach to Discrete Math

Case I

You have n cents with at least one 5 -cent coin. Remove one 5 -cent coin and replace it with three 2 -cent coins. Now you have $\mathrm{n}+\mathrm{I}$ cents with only 2 -cent and 5 -cent coins.

Case 2

You have no five cent coins. If you have no 5 -cents coins, they must all be 2 -cent coins. Because the amount must be more than three cents, you must have at least two 2cent coins. Remove two 2 -cent coins and replace them with one 5 -cent coin. Now you have $\mathrm{n}+\mathrm{I}$ cents with only 2-cent and 5-cent coins. //

A Logical Approach to Discrete Math

(12.11) Definition, b to the power n :
$b^{0}=1$
$b^{n+1}=b \cdot b^{n} \quad$ for $n \geq 0$
(12.12) b to the power n :
$b^{0}=1$
$b^{n}=b \cdot b^{n-1} \quad$ for $n \geq 1$
(12.13) Definition, factorial:
$0!=1$
$n!=n \cdot(n-1)!$ for $n>0$

A Logical Approach to Discrete Math

Prove $n!=(\Pi i \mid 1 \leq i \leq n: i) \quad$ for $n \geq 0$
Proof
Base case

$$
\begin{aligned}
& n!=(\Pi i \mid 1 \leq i \leq n: i) \\
= & \langle\text { Base case }, n=0\rangle \\
& 0!=(\Pi i \mid 1 \leq i \leq 0: i) \\
= & \langle(12.13) \text { and math }\rangle \\
& 1=(\Pi i \mid \text { false }: i) \\
= & \langle(8.13) \text { Empty range rule }\rangle \\
& 1=1 \quad / /
\end{aligned}
$$

A Logical Approach to Discrete Math

Prove $n!=(\Pi i \mid 1 \leq i \leq n: i) \quad$ for $n \geq 0$
Induction case
Prove $(n+1)!=(\Pi i \mid 1 \leq i \leq n+1: i)$
assuming $n!=(\Pi i \mid 1 \leq i \leq n: i)$
as the inductive hypothesis.
$(\Pi i \| 1 \leq i \leq n+1: i)$
$=\langle$ Split off last term \rangle
$(\Pi i \mid 1 \leq i \leq n: i) \cdot(n+1)$
$=\langle$ Inductive hypothesis \rangle
$n!\cdot(n+1)$
$=\langle(12.13$ with $n:=n+1$, which is $(n+1)!=(n+1) \cdot n!\rangle$ $(n+1)$! //

A Logical Approach to Discrete Math

The Golden Ratio

The golden ratio is $\phi=A / B$ By definition

$$
\begin{aligned}
& \frac{A}{B}=\frac{A+B}{A} \\
& \frac{A}{B}=1+\frac{B}{A} \\
& \frac{A}{B}=1+\frac{1}{A / B} \\
& \phi=1+\frac{1}{\phi}
\end{aligned}
$$

A Logical Approach to Discrete Math

$$
\begin{aligned}
& \phi=1+\frac{1}{\phi} \\
& \phi^{2}=\phi+1 \\
& \phi^{2}-\phi-1=0 \\
& \phi=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)} \\
& \phi=\frac{1 \pm \sqrt{5}}{2} \\
& \phi=\frac{1+\sqrt{5}}{2} \quad \hat{\phi}=\frac{1-\sqrt{5}}{2}
\end{aligned}
$$

A Logical Approach to Discrete Math

The Fibonacci sequence

$$
\begin{array}{ccccccc}
0 & \mathrm{I} & \mathrm{I} & 2 & 3 & 5 & 8 \\
\mathrm{~F}_{0} & \mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3} & \mathrm{~F}_{4} & \mathrm{~F}_{5} & \mathrm{~F}_{6}
\end{array}
$$

A Logical Approach to Discrete Math

(12.14) Definition, Fibonacci:

$$
\begin{aligned}
& F_{0}=0, \quad F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } n>1
\end{aligned}
$$

(12.14.1) Definition, Golden Ratio: $\quad \phi=(1+\sqrt{5}) / 2 \approx 1.618 \quad \hat{\phi}=(1-\sqrt{5}) / 2 \approx-0.618$
(12.15) $\phi^{2}=\phi+1$ and $\hat{\phi}^{2}=\hat{\phi}+1$
(12.16) $\quad F_{n} \leq \phi^{n-1}$ for $n \geq 1$
(12.16.1) $\phi^{n-2} \leq F_{n} \quad$ for $n \geq 1$
(12.17) $\quad F_{n+m}=F_{m} \cdot F_{n+1}+F_{m-1} \cdot F_{n} \quad$ for $n \geq 0$ and $m \geq 1$

A Logical Approach to Discrete Math

To prove Fibonacci theorems there are two base cases and two inductive hypotheses.

A Logical Approach to Discrete Math

Prove (12.16) $\quad F_{n} \leq \phi^{n-1} \quad$ for $n \geq 1$
Proof

First base case
$\begin{aligned} & F_{n} \leq \phi^{n-1} \\ &=\langle\text { Base case, } n=1\rangle \\ &= F_{1} \leq \phi^{1-1} \\ &=\langle(12.14)\rangle \\ & 1 \leq \phi^{1-1} \\ &=\langle\text { Math }\rangle \\ & 1 \leq 1 \quad / /\end{aligned}$

Second base case

$$
\begin{aligned}
& F_{n} \leq \phi^{n-1} \\
= & \langle\text { Base case }, n=2\rangle \\
& F_{2} \leq \phi^{2-1} \\
= & \langle(12.14) \text { and math }\rangle \\
& 1+0 \leq \phi \\
= & \langle(12.14 .1) \text { and math }\rangle \\
& 1 \leq 1.618 \text { // }
\end{aligned}
$$

A Logical Approach to Discrete Math

Prove (12.16) $\quad F_{n} \leq \phi^{n-1} \quad$ for $n \geq 1$

Induction case

Prove $F_{n+1} \leq \phi^{(n+1)-1}$
assuming $F_{n} \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$
as the inductive hypotheses.

$$
\begin{aligned}
& F_{n+1} \\
= & \langle(12.14) \text { with } n:=n+1\rangle \\
& F_{n}+F_{n-1} \\
\leq & \langle\text { Inductive hypotheses }\rangle \\
& \phi^{n-1}+\phi^{n-2} \\
= & \left\langle\text { Math, factor out } \phi^{n-2}\right\rangle \\
= & \phi^{n-2}(\phi+1) \\
= & \langle(12.15)\rangle \\
= & \phi^{n-2} \cdot \phi^{2} \\
= & \langle\text { Math }\rangle \\
& \phi^{(n+1)-1}
\end{aligned}
$$

A Logical Approach to Discrete Math

Inductively defined binary trees.
(12.30) Definition, Binary Tree:
\emptyset is a binary tree, called the empty tree.
(d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.
\varnothing

A Logical Approach to Discrete Math

Inductively defined binary trees.
(12.30) Definition, Binary Tree:
\emptyset is a binary tree, called the empty tree.
(d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.
(5)
$(5, \varnothing, \varnothing)$

A Logical Approach to Discrete Math

Inductively defined binary trees.
(12.30) Definition, Binary Tree:
\emptyset is a binary tree, called the empty tree.
(d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.
(5)
$(5, \varnothing,(3, \varnothing, \varnothing))$

A Logical Approach to Discrete Math

Inductively defined binary trees.
(12.30) Definition, Binary Tree:
\emptyset is a binary tree, called the empty tree.
(d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.

(5, (I2, Ø, Ø), (3, (4, Ø, Ø), Ø))

A Logical Approach to Discrete Math

(12.31) Definition, Number of Nodes:
$\# \emptyset=0$
$\#(d, l, r)=1+\# l+\# r$
(12.32) Definition, Height:
height. $\emptyset=0$
height. $(d, l, r)=1+\max ($ height.l, height.r)
(12.32.1) Definition, Leaf: A leaf is a node with no children (i.e. two empty subtrees).
(12.32.2) Definition, Internal node: An internal node is a node that is not a leaf.
(12.32.3) Definition, Complete: A binary tree is complete if every node has either 0 or 2 children.

A Logical Approach to Discrete Math

(12.31) Definition, Number of Nodes:
$\# \emptyset=0$
$\#(d, l, r)=1+\# l+\# r$
(12.32) Definition, Height:
height. $\emptyset=0$
height. $(d, l, r)=1+\max ($ height.l, height.r)
(12.32.1) Definition, Leaf: A leaf is a node with no children (i.e. two empty subtrees).
(12.32.2) Definition, Internal node: An internal node is a node that is not a leaf.
(12.32.3) Definition, Complete: A binary tree is complete if every node has either 0 or 2 children.
$(5, \varnothing,(3, \varnothing, \varnothing))$

A Logical Approach to Discrete Math

(12.31) Definition, Number of Nodes:
$\# \emptyset=0$
$\#(d, l, r)=1+\# l+\# r$
(12.32) Definition, Height:
height. $\emptyset=0$
height. $(d, l, r)=1+\max ($ height.l, height.r)
(12.32.1) Definition, Leaf: A leaf is a node with no children (i.e. two empty subtrees).
(12.32.2) Definition, Internal node: An internal node is a node that is not a leaf.
(12.32.3) Definition, Complete: A binary tree is complete if every node has either 0 or 2 children.

$(5,(12, \varnothing, \varnothing),(3,(4, \varnothing, \varnothing), \varnothing))$

A Logical Approach to Discrete Math

(12.33) The maximum number of nodes in a tree with height n is $2^{n}-1$ for $n \geq 0$.
(12.34) The minimum number of nodes in a tree with height n is n for $n \geq 0$.
(12.35) (a) The maximum number of leaves in a tree with height n is 2^{n-1} for $n>0$.
(b) The maximum number of internal nodes is $2^{n-1}-1 \quad$ for $n>0$.
(12.36) (a) The minimum number of leaves in a tree with height n is 1 for $n>0$.
(b) The minimum number of internal nodes is $n-1$ for $n>0$.
(12.37) Every nonempy complete tree has an odd number of nodes.

A Logical Approach to Discrete Math

Prove (12.33) the maximum number of nodes in a tree of height n is $2^{\mathrm{n}-\mathrm{I}}$.

Base case
(a) The empty tree has zero nodes.
(b) $20-1=0$
//

A Logical Approach to Discrete Math

Prove (12.33) the maximum number of nodes in a tree of height n is $2^{\mathrm{n}-1}$.

Induction case
Must prove "the maximum number of nodes in a tree of height $n+1$ is $2^{n+1}-1$ "
assuming
"the maximum number of nodes in a tree of height n is 2^{n-l} " as the inductive hypothesis.

Proof: A tree height $n+1$ with the maximum number of nodes must have two children of height n, each with the maximum number of nodes.

A Logical Approach to Discrete Math

By the inductive hypothesis

I has 2^{n}-I nodes
and r has $2^{n}-1$ nodes.
So, including the root node, the total is

$$
\begin{aligned}
& \text { I+ (\# in I) + (\# in r) } \\
& =\quad \text { <lnd.hyp.> } \\
& \text { I+ 2n-I + } 2^{n-} \text { I } \\
& =\quad<\text { Math }> \\
& 1+2 \times 2^{n}-2 \\
& =\quad<\text { Math }> \\
& 2^{n+1}-1 /
\end{aligned}
$$

