A Logical Approach to Discrete Math

(14.2)  Axiom, Pair equality: (b,c) = (b',c') = b=V Nc="
(14.2.1) Ordered pair one-point rule: Provided —occurs(‘x,y’,'E,F’),
(*xayl <X,y> — <E7F> P) :P[Xay L= EaF] Homework

Sets:  {2,3} =1{3,2}
Ordered pairs:  (2,3) # (3,2)
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(14.3)  Axiom, Cross product: SxT ={b,clbeSNceT:(b,c)}

Example

S={a,b,c}

T ={4,6}

SxT =1{{(a,4),(a,6),(b,4),(b,6),(c,4),(c,6)}

R x R 1s the set of all points in the plane.
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(114)  Axiom, Extensionality: S=T7 = (Vx|:xeS =xeT)

(14.3.1) Axiom, Ordered pair extensionality:
U=V = (Vx,yl: (x,y) eU = (x,y) € V)

U and V are sets of ordered pairs.

Example

These two sets are equal.
U= {<173>7 <570>7 <472>}
V = {<472>7 <173>7 <57O>}
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RELATIONS AND FUNCTIONS

(14.2)  Axiom, Pair equality: (b,c) = (V',¢') = b=V Nc=/"

(14.2.1) Ordered pair one-point rule: Provided —occurs(‘z,y’, ‘E, F’),
(xz,y | (x,y) = (E,F): P)=Plx,y :=FE, F]

(14.3)  Axiom, Cross product: S xT ={b,clbeSAceT:(bc)}

(14.3.1) Axiom, Ordered pair extensionality:

U=V = (Ve,yl: {(x,y) e U = (z,y) € V)

Theorems for cross product.

(14.4) Membership: (z,y) e SxT = xz€ SAyeT Homework
(14.5) (x,y) € SxT = (y,x) €T xS Homework

(146) S=0=8SxT=Tx S:@

(14.77) SxT=TxS§ = =0vT=0VvS=T
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(14.8)  Distributivity of x over U :

(@ Sx((TuU)=(SxT)u(SxU)

(b) (SUT)xU=(SxU)U(TxU)
(14.9)  Distributivity of x over N :

(@ Sx(I'NU)=(SxT)Nn(SxU)

b) (SNT)xU=(SxU)N(T xU)
(14.10) Distributivity of x over — :

SX(T-U)=(SxT)—(SxU)
(14.11) Monotonicity: 7T CU = SxT CSxU
(14.12) SCUANTCV = SxTCUxV
(1413) SxTCSxUANS#0) = TCU
(14.14) (SNT)x (UNV)=(SxU)N(T xV)
(14.15) Forfinite Sand T\, #(S xT) =#S - #T
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Prove (14.8a) Sx(TUU)=(SxT)U(SxU)

Proof
Let (x,y) be an arbitrary ordered pair and prove that
(x,y) €S (TUU) = {x,y) € (SXxT)U(SxU)
(x,y) € Sx (TUU)
= ((144))
xeSAye(TUU)
((11.20))
xeSAN(yeTVyeU)
= ((3.46) Distributivity of A over V)
(xeSAyeT)V(xeSAyeU)
= ((14 .4 twice))
(x,y) € (SXT)V{x,y) € (SxU)
= ((11.20))
x,y) € (SXxT)U(SxU) /I
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Relations.
(14.15.1) Definition, Binary relation:
A binary relation over B x C 1s a subset of B x C.

Example

S =1{0,1,2}

§x8=1{0,0),(0,1),(0,2),
(1,0), (1, 1),(1,2),
(2,0),(2,1),(2,2)}

The‘““less than” relation over S x S 1s a subset of the set S X S
consisting of those ordered pairs (x,y) for which x < y is true.

<= {<Ov 1>7 <072>7<172>}

Directed graph representation Matrix representation

(o)
Y\ |
()—=(2)

o O O

1 1
0 1#— (1,2)
0 0
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(14.15.2) Definition, Identity: The identity relation ig on B is iz = {x: B|: (x,x)}
(14.15.3) Identity lemma: (x,y)€ig = x=y Homework

Example

B={a,b,c,d}
The 1dentity relation over B X B 1s
Ip = {<a7a>7 <b7b>7 <C,C>, <d7d>}

Matrix representation

0 0
0 0
10
0 1

10
0 1
0 0
0 0
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(14.15.4) Notation: (b,c) € p and b p c are interchangeable notations.
(14.15.5) Conjunctive meaning: bpcod =bpc Ncod

(14.15.4) Example

If p 1s the less than relation < then
(0,2) € < and 0 < 2 are interchangeable notations.

(14.15.5) Example

If p 1s the less than relation < and o 1s the equals relation = then
b<c=d = b<cNc=d
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The domain Dom.p and range Ran.p of a relation p on B X C are defined by
(14.16) Definition, Domain: Dom.p ={b: B| (dcl:bp c)}
(14.17) Definition, Range: Ran.p ={c: C| (3bl:bp c)}

Example

B=1{2,3,4,5}

C=1{4,5,6,7}

Define the predecessor relation pred over B x C as
pred = {(3,4),(4,5),(5,6)}

B C

‘ Dom.pred = {3,4,5}
‘ Ran.pred = {4,5,6}
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The inverse p~' of a relation p on B x C is the relation defined by
(14.18) Definition, Inverse: (b,c) cp~! = (c,b) cp, forallb: B,c: C

Example

§={0,1,2}

The “less than™ relation over § X S 1s
<= {(0,1),(0,2),(1,2)}

The inverse of the “less than™ relation 1s

< '= {<170>7 <270>7 <27 1>}
which 1s the “greater than™ relation >.

< 1=x
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Operations on relations

Because p and o are sets, you can operate on them with U, N, ~, —.

Example

B=1{0,1,2}

< is {(0,1),(0,2),(1,2)}
— is {(0,0),(1,1),(2,2)}
<U= is {(0,0),(1,1),(2,2),(0,1),(0,2),(1,2)} whichis <.

~< s {(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)} whichis >.

N= 18 =.
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(14.19) Let p and o be relations.

(a) Dom(p~') =Ran.p Homework
(b) Ran(p~!) = Dom.p

(¢) If pisarelation on B X C, then p—
d) (p~")"! =p Homework

e) plo = P_l C 67! Homework

l'is arelation on C x B
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Let p be a relation on B x C and o be a relation on C X D. The product

of p and o, denoted by p o 7, is the relation on B x D defined by

(1420) Definition, Product: (b,d) € pooc = (3clceC:(b,c) € pN{c,d) € 0)
or, using the alternative notation by

(14.21) Definition, Product: b (poo)d = (Icl:bpcod)

B=1{2,3,4,5} pred={(3,4),(4,5),(5,6)} predoswap = {(3,7),(4,6),(5,5)}
C={4,5,6,7} swap=1{(4,7),(5,6),(6,5),(7,4)}
D=1{4,5,6,7}

B C D B D

=

Dom.pred = {3,4,5}  Dom.swap = {4,5,6,7} Dom.(pred o swap) = {3,4,5}
Ran.pred = {4,5,6}  Ran.swap = {4,5,6,7} Ran.(pred oswap) = {5,6,7}
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Theorems for relation product.
(14.22) Associativityof o: po(co0)=(poc)o6 Handout
(14.23) Distributivity of o over U :
(a) po(ocUB)=(poo)U(poB)Homework
(b) (cUB)op=(cop)U(Bop)
(14.24) Distributivity of o over N :
(@) po(cnB)C(poc)n(pob)
(b) (cNB)op C(cop)n(Bop)
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(14.25) Definition:
p’ =ip
p"tl=ptop forn>0
Example

B=1{0,1,2,3,4)

Bx B={{0,0),(0,1),...,(4,3), (4,4)}

<= {{0,1),(0,2),(0,3),{0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) }
< =<o<= {(0,2),(0,3),(0,4),(1,3),(1,4),(2,4)}

° ®( 0e °
° ® ] 1@ °
° 2 2 e °
° ® 3 3 e °
° ® /4 4 @ °
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(14.25) Definition:
O e
P =18

p"tl=ptop forn>0
Example

B=1{0,1,2,3,4)

0e ® ®( Oe ®(
1 ® ° (| 1@ ® |
e ° ) e )
3@ ° ®3 3 e ®3
4 @ ° ® 4 4 @ ® 4
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(14.25) Definition:
p’ =ip
p"tl=ptop forn>0

Example
B=1{0,1,2}
B x B=1{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2) }
< = {{0,0),(0,1),(0,2),(1,1),(1,2),(2,2)}
<o <= {(0,0),(0,1),(0,2), (1,1),(1,2),(2,2)}
= < Idempotent
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Table 14.1 Classes of relations p over set B

Name Property Alternative
(a) reflexive (Vbl:bpd) i Cp
(b) irreflexive (Vol: =(bpb)) ipNp=10
(c) symmetric (Vb,cl:bpc = cphb) P
(d) antisymmetric (Vb,cl:bpeAhcpb=b=c) pNp 1t Cigp
(e) asymmetric (Vb,cl:bpc= —(cpb)) pNp~ 1 =
(f) transitive (Vb,c,dl:bpechcpd=1Dbpd) p=(Uili>0:p")

Memorize
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Table 14.1 Classes of relations p over set B

Name Property Alternative
(a) reflexive (Vbl: b p b) ip Cp
(b) irreflexive (Vbl: =(bpb)) ipNp=70
(c) symmetric (Vb,cl:bpc = cphb) pt=p
(d) antisymmetric (Vb,cl:bpcAhcpb=b=c) pNp~1 Cig
(e) asymmetric (Vb,cl:bpc= —(cpbh)) pNp~ 1=
(f) transitive (Vb,c,dl:bpcAhcpd=bpd) p=(Uili>0:p")

Example

The > relation over %7

(a) b>b No, > is not reflexive

(b) —(b>b) Yes, > is irreflexive

(c) b>c=c>b No, > is not symmetric

(d) b>cANc>b = b=c Yes, > is antisymmetric because the antecedent is always false
() b>c = —(c>b) Yes, > is asymmetric

) b>cNc>d = b>d Yes, > 1stransitive
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Table 14.1 Classes of relations p over set B

Name Property Alternative
(a) reflexive (Vbl: b p b) ip Cp
(b) irreflexive (Vb]: —(b p b)) ipNp=1
(c) symmetric (Vb,cl:bpc = cphb) P
(d) antisymmetric (Vb,cl:bpcAhcpb=b=c) pNp~1 Cig
(e) asymmetric (Vb,cl:bpc= —(cpbh)) pNp~ 1=
(f) transitive (Vb,c,dl:bpcAhcpd=bpd) p=(Uili>0:p")

Example

The square relation over Z
square = {(0,0),(1,1),(2,4),(3,9),...}

(a) b squareb No, square is not reflexive. It does not have (2,2).
(b) —(bsquareb)  No, square is not irreflexive. It has (1,1).
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Table 14.1 Classes of relations p over set B

(f) transitive

Name Property Alternative
(a) reflexive (Vbl: b p b) ip Cp
(b) irreflexive (Vbl: =(bpb)) ipNp=70
(c) symmetric (Vb,cl:bpc = cphb) pt=p
(d) antisymmetric (Vo,cl:bpchcpb=0b=c) pNp~1 Cig
(e) asymmetric (Vb,cl:bpc= —(cpbh)) pNp~ 1=
(

Vb,c,dl:bpcAcpd=bpd)

Reflexive relations — A reflexive relation p is defined as (Vb |: b p b), or, alternatively as
ip C p. In terms of the matrix, the diagonal must contain all 1’s. Each underline entry _ in -
the matrix of the reflexive relation on the right represents either a one or a zero. =

Irreflexive relations — An irreflexive relation p is defined as (Vb |: —(b p b)) or, alterna-
tively, as i p = 0. In terms of the matrix, the diagonal must contain all 0’s. It is possible -
for a relation to be neither reflexive nor irreflexive. The first example 1s one such relation. ~
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Table 14.1 Classes of relations p over set B

Name Property Alternative
(a) reflexive (Vbl: b p b) ip Cp
(b) irreflexive (Vbl: =(b p b)) igNp=1{
(c) symmetric (Vb,cl:bpc = cphb) pt=p
(d) antisymmetric (Vo,cl:bpchcpb=0b=c) pNp~1 Cig
(e) asymmetric (Vb,cl:bpc= —(cpbh)) pNp~t =10
(

(f) transitive Vb,c,dl:bpcAcpd=bpd)

Symmetric relations — A symmetric relation p is defined as (Vb,cl: b p ¢ = ¢ p b) or,
= p. In terms of the matrix, it must be symmetric about the diagonal.
For example, in the matrix on the right the 1 in the first row, third column represents ordered
pair (w,y), and the 1 in the third row, first column represents ordered pair (y,w). The O in
the second row, third column represents the absence of (x,y), and the O in the third row,

alternatively, as p !

second column represents the absence of (y,x).

Antisymmetric relations — An antisymmetric relation p is defined as (Vb,cl: b p ¢ A
cp b= b=c) or, alternatively, as p N p~! C ig. In terms of the matrix, the diagonal
elements can be either O or 1. If b p b is true, then both the antecedent and consequent are
true, and so the implication is true. If b p b 1s false, then the antecedent 1s false, and so the
implication is true. For the off-diagonal elements, where b # ¢, you cannot have both b p ¢

and ¢ p b. However, you can have neither.

p=(Uili>0:p"

y_mp_mp_m|

S O O

S O

S O

O =

N

O =
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Table 14.1 Classes of relations p over set B

Name Property Alternative
(a) reflexive (Vbl: b p b) ip Cp
(b) irreflexive (Vbl: =(bpb)) ipNp=70
(c) symmetric (Vb,cl:bpec = cpb) pt=p
(d) antisymmetric (Vo,cl:bpchcpb=0b=c) pNp~1 Cig
(e) asymmetric (Vb,cl:bpc= —(cpbh)) pNp~t =10
(f) transitive (Vb,c,dl:bpcAhcpd=bpd) p=(Uili>0:p")

Asymmetric relations — An asymmetric relation p is defined as (Vb,cl: b p ¢ = —(c p b))

or, alternatively, as p N p !

elements must be 0.

= (). In terms of the matrix, the diagonal elements must be 0.
If b p b were true, then the antecedent would be true and the consequent would be false,
and so the implication would be false. For the off-diagonal elements, where b # c, if you
have b p ¢ you cannot have ¢ p b. Like an antisymmetric relation, you can have neither. An
asymmetric relation is an antisymmetric relation with the added restriction that the diagonal .

o O OO

OO O =

_—0 O =

SO O
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Prove Table 14.1(a) (Vbl:bpb) = ipCp

Proof
ip < p

= ((11.13) Axiom, Subset)
(Vb,c | (b,c) €ip:(b,c)€p)

= ((14.15.3) Identity lemma)
(Vb,clb=c:{(b,c) €p)

= ((8.20) Nesting, with R := true)
(Vbl: (WVelb=c:(b,c) €p))

= ((8.14) One-point rule and textual substitution)
(Vb | (b,D) € p)

= ((14.15.4) Notation)
(Vbl:bp b) 1/
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(14.30.1) Definition: Let p be a relation on a set. The reflexive closure of p is the
relation r(p) that satisfies:
(a) r(p) is reflexive;

(b) p Cr(p);
(c) If any relation o is reflexive and p C o,then r(p) C ©.

Example
B=10,1,2}

<=1{(0,1),(0,2),(1,2) }
By part (b), every ordered pair in < must also be in r(<).

r(<) = {(0,1),(0,2),(1,2),..}

By part (a), (<) must be reflexive.

r(<)=14(0,1),(0,2),(1,2),(0,0),(1,1),(2,2),...}
By part (c), there can be no other ordered pairs in r(<).

r(<)=1{(0,1),(0,2),(1,2),(0,0),(1,1),(2,2) }
The relation

o = {(0,1),(0,2),(1,2),(0,0),(1,1),(2,2) (1,0) }
also satisfies (a) and (b) because (a) o 1s reflexive, and (b) < C o©.

However, o cannot be the reflexive closure of <, because r(<) C ©.
To compute r(p ), add the fewest number of ordered pairs to p that will make it reflexive.
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(14.30.2) Definition: Let p be a relation on a set. The symmetric closure of p is the
relation s(p) that satisfies:
(a) s(p) is symmetric;

(b) p Cs(p);
(c) If any relation ¢ is symmetric and p C o, then s(p) C ©.

Example
B=1{0,1,2}

<= {<07 1>7 <072>7 <172>}
s(<) =1(0,1),(0,2),(1,2),(1,0),(2,0), (2, 1) }
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(14.30.3) Definition: Let p be a relation on a set. The transitive closure of p is the
relation p™ that satisfies:
(a) p™ is transitive;

(b) pCp™;
(c) If any relation o is transitive and p C o,then p*™ C ©.

(14.30.4) Definition: Let p be a relation on a set. The reflexive transitive closure of p
is the relation p* that is both the reflexive and the transitive closure of p.

Example

B=14{0,1,2,3}

pred ={(0,1),(1,2),(2,3)}

predt ={
(0,1),(1,2),(2,3),
(0,2),(1,3),
(0,3)}

pred™ = <

pred” = {
(0,1),(1,2),(2,3),(0,2),(1,3),(0,3),
(0,0)(1,1)(2,2) (3,3)}

pred® = <
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Exercise 14.32

puc |pno | p—oc | (BXB)—p
Reflexive Y N
Irreflexive Y
Symmetric
Antisymmetric
Transitive

Is reflexivity preserved under union?

It p 1s reflexive and o is reflexive, 1s p U o reflexive?
If p has (a,a),(b,b),...,and ¢ has {(a,a),(b,b),...,does p Uc have {(a,a),(b,b),..."?

Is reflexivity preserved under set difference?
It p 1s reflexive and o is reflexive, 1s p — o reflexive?

If p has (a,a),(b,b),...,and © has (a,a),(b,b),...,does p — c have (a,a),(b,b),...7

Is irreflexivity preserved under set difference?
It p is irreflexive and o 1s irreflexive, 1s p — o rreflexive?
If p and ¢ are both missing (a,a), (b,b),...,is p — o missing {(a,a),(b,b),...?
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Equivalence relations.

(14.33) Definition: A relation is an equivalence relation iff it is reflexive, symmetric,
and transitive

(14.34) Definition: Let p be an equivalence relation on B. Then [b],, the equivalence
class of b, 1s the subset of elements of B that are equivalent (under p) to b:
xelblp = xpb

(14.33) Example (14.34) Example
B:{0,1,2,3,4} 0 2{0,1,3}
P:{ :1::{17073}
<070>7<171>7<272>7<373>7<474>7 2 :{274}
<0, 1>, <1,0>, <O,3>, <3,0>, <O,4>, <4,0>, 3 = {3, 1,0}
<274>7 <472>} 4 — {472}
Partition
0]N[2] =0
0]U
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(11.76) Axiom, Partition: Set S partitions 7" if

(1) the sets in § are pairwise disjoint|and
(11) the union of the sets in S1s 7', that 1s, 1f

Vu,vluc SAvESAuv:iiunv=0A(UulucS:u)=T
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(11.76) Axiom, Partition: Set S partitions 7" if

(1) the sets in § are pairwise disjoint and
(11) the union of the sets in S 1s 71, that 1s, 1f

Vu,viue SAveSAuzv:unv=0AN(UuluecS:u)=T
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(11.76) Axiom, Partition: Set S partitions 7" if
(1) the sets in § are pairwise disjoint and
(11) the union of the sets in S1s 7', that 1s, 1f
Vu,vlue SAveSAuzv:unv=0A(UulueS:u)=T

Example
T: {a,b,c,d,e,f}
S: {a,c}.{b,e,f}.{d}}

S partitions 7.
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(11.76) Axiom, Partition: Set S partitions 7" if
(1) the sets in § are pairwise disjoint and
(11) the union of the sets in S1s 7', that 1s, 1f
Vu,vlue SAveSAuzv:unv=0A(UulueS:u)=T

Example
T: {a,b,c,d,e, f}

S {1a,c}ib.e,f},1d, e}
S does not partition 7 because {b,e, f} N{d,e} # 0.
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(11.76) Axiom, Partition: Set S partitions 7" if
(1) the sets in § are pairwise disjoint and
(11) the union of the sets in S1s 7', that 1s, 1f
Vu,vlue SAveSAuzv:unv=0A(UulueS:u)=T

Example
T: {a,b,c,d,e, [}
S: {{a,ct e, f1.{d}}

S does not partition 7 because {a,c}U{e, f} U{d} #T.
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(14.35) Let p be an equivalence relation on B, and let b, ¢ be members of B. The
following three predicates are equivalent:
(@A) bpc
(b) [b]N[c] # 0
(© [b]=]c]
Thatis, (bp c) = ([b]N]c] #0) = (|b] = [c])

Example

Using the previous example, the following are all equivalent:

(a) 1p3
(b) [1]N[3]#0
(© [1]=3]

because each one 1s true.

The following are all equivalent:

a) 1p2
(b) [1]N[2]#0
©) [1]=[2]

because each one 1s false.
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(14.35) Let p be an equivalence relation on B, and let b, ¢ be members of B. The
following three predicates are equivalent:
(@A) bpc
(b) [b]N[c] # 0
(© [b]=]c]
Thatis, (bp c) = ([b]N]c] #0) = (|b] = [c])

Prove (14.35)

To prove (14.35), first prove each of the following three sub-theorems:
(a) = (b)
(b) = (¢)
(c) = (a)
Then by (3.82a) Transitivity, ((b) = (¢)) A ((¢) = (a)) = ((b) = (a))
Then by (3.80) Mutual implication, ((a) = (b)) A ((b) = (a)) = ((a) = (b))
And similarly for (a) = (¢) and for (b) = (¢)
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Prove (a) = (b), whichis bpc= |b|N|c|]#0

Proof
bpc

= ((3.39) Identity of A)
true N\bpc

= (p is reflexive)
bpb Nbpc

= ((14.34) Definition, twice)
be [b]ADb € |c]

= ((11.21) Axiom intersection)
b e [b]N|c]

= (Lemma: b€ A=A F#0)
blNlc] #£0 /
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Prove the lemma: bE€A=AF#0

Proof

Use (4.12) Proof by contrapositive.

Must prove A =0 = (b€ A)

Use (4.4) Deduction. Assume the antecedent.
—(beA)

= (Assume antecedent A = 0)
—(b € 0)

= ((11.4.2))
—false

= {(3.13))

true //
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(14.35.1) Let p be an equivalence relation on B. The equivalence classes partition B.
(14.36) Let P be the set of sets of a partition of B. The following relation p on B is an
equivalence relation:
bpc=3plpeP:bepicep)

(1435.)  auvaence Partition
(14.36) Partition Equivalence

relation
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(14.37) (a) Definition: A binary relation f on B X C is determinate iff
(Vb,e,d' |IbfcANDbfc:c=C)
(b) Definition: A binary relation is a function iff it is determinate.

Determinate (14.37)

B@ ©c

Determinate: f is a function

B% ©c

Not determinate: p is not a function

p=1{{a,1),{a,2),{b,3),{d,4)}
p 1s a relation.

p 1s not a function.
Have ap1 Aap2 but 1 # 2.
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(14.37) (a) Definition: A binary relation f on B X C is determinate iff
(Vb,e,d' |IbfcANDbfc:c=C)
(b) Definition: A binary relation is a function iff it is determinate.

Determinate (14.37)

B@ ©c

Determinate: f is a function

B% ©c

Not determinate: p is not a function

f={{a,1),(b,2),(c,2),(d,4)}
f 18 arelation.
f 18 a function.

f:B—C
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(14.37.1) Notation: f.b=c and b f ¢ are interchangeable notations.

Determinate (14.37)

B@ ©c

Determinate: f is a function

B% ©c

Not determinate: p is not a function

= {<Cl, 1>7 <b72>7 <672>7 <d74>}
f 1s a relation.
f 1s a function.

f:B—C

f.d=4 1sequivalentto d f 4
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(14.38) Definition:
Otherwise it is partial.

A function f on B X C 1s total it B= Dom. f.

We write f : B — C for the type of f if f is total and f : B~» C if f 1s partial.

B
=
f 1s total.
f:B—C
B

| b

f 1s partial.
f:B~C

Determinate (14.37)

B@ ©c

Determinate: f is a function

B% ©c

Not determinate: p is not a function

Total (14.38)

B@ @c

Total

B@ ®c

Not total (partial)
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(14.38.1) Total: A function f on B x C is total if, for an arbitrary element b: B,

(Je: Cl: f.b=c)

Homework
Determinate (14.37) Total (14.38)
Determinate: f is a function Total

B% ©c

Not determinate: p is not a function

B@ ®c

Not total (partial)




A Logical Approach to Discrete Math

(14.39) Definition, Composition: For functions f and g, feg = go f.

Determinate (14.37)

Determinate: f is a function

e
— @ 0

Not determinate: p is not a function

\1%
AN

Total (14.38)

B@ @c

Total

B@ ®c

Not total (partial)

3 (pred oswap) 7
3 (swapepred)7 by (14.39)
(swap e pred).3 =7 by (14.37.1)
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(14.40) Letg:B — Cand f : C — D be total functions.
Then the composition f e g of f and g 1s the total function defined by

(feg).b=f(gb)

Homework
Determinate (14.37) Total (14.38)
Determinate: f is a function Total

B% ©c

Not determinate: p is not a function

B@ ®c

Not total (partial)
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(14.41) Definitions: (a) Total function f : B — C is onto or surjective if Ran.f = C.
(b) Total function f is one-to-one or injective if

B C (Vb,b': B,c: Cl:bfc ANb fc=b=Db).
Determinate (14.37) Total (14.38)
:B—
. y ¢ Determinate: f is a function Total
f 1s total.
f 1s onto.
f 1s not one-to-one. B ¢ B ¢
Not determinate: p is not a function Not total (partial)
Onto (14 .41a) One-to-one (14.41b)
" X e f)
Onto One-to-one
f:B—C
: * B C
f is total. B @ :@ C
. ®  J
f 1s not onto.
Not onto Not one-to-one
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(14.41) Definitions: (a) Total function f : B — C is onto or surjective if Ran.f = C.
(b) Total function f is one-to-one or injective if
(Vb,b": B,c: Cl:bfc AND fc=b=0).

Determinate (14.37) Total (14.38)
Determinate: f is a function Total
Not determinate: p is not a function Not total (partial)
Onto (14 .41a) One-to-one (14.41b)
f:B—C
f 1s total. B @ é) C B ¢
f 1s onto.
. Onto One-to-one
f 1s one-to-one.
([
[  J
Not onto Not one-to-one
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(14.42) Let f be a total function, and let f~! be its relational inverse.

(a) Then ! is a function, i.e. is determinate, iff f is one-to-one.
(b) And, £~ is total iff f is onto.

() ()

f 1s not one-to-one. I'is not determinate.

G0 GC

f 1s not onto. I'is not total.
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(14.43) Definitions: Let f: B — C.
(a) A left inverse of f 1s a function g : C — B such that ge f = ip.
(b) A right inverse of f 1s a function g : C — B such that feg = ic.
(¢) Function g is an inverse of f if it is both a left inverse and a right inverse.

C B B C C C
2 @ ® ) 2 ® ® ) 2 @ ®?)
] ® o | ] ® o | ] ® o |
0e ®( 0e ®( 0e ®(

(| 1@

negoabs = ic
®.2 20 abseneg = ic

neg :C — B abs : B — C neg is a right inverse of abs.
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(14.47) Definition: A binary relation p on a set B is called a partial order on b if it 1s
reflexive, antisymmetric, and transitive. In this case, pair (B, p) is called a partially
ordered set or poset.

We use the symbol < for an arbitrary partial order, sometimes writing ¢ =~ b instead of b < c.

Equivalence relation: Partial order:
Reflexive Reflexive
Symmetric Antisymmetric

Transitive Transitive
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(14.47) Definition: A binary relation p on a set B is called a partial order on b if it 1s

reflexive, antisymmetric, and transitive. In this case, pair (B, p) is called a partially
ordered set or poset.

We use the symbol < for an arbitrary partial order, sometimes writing ¢ =~ b instead of b < c.

Example 1

B: {a,b,c}

PB={{}{a},{b},{ct{a,b} {a,c}{b,ct,{a,b,c}}
(PB,C) is a poset.

Reflexive: D C D

Antisymmetric: DCEANECD=D=E
Transitive: DCEANECF=DCF
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(14.47) Definition: A binary relation p on a set B is called a partial order on b if it 1s
reflexive, antisymmetric, and transitive. In this case, pair (B, p) is called a partially
ordered set or poset.

We use the symbol < for an arbitrary partial order, sometimes writing ¢ =~ b instead of b < c.

Example 2

B: {3,4,6,8,12,24}

(B, |) where | means “divides” is a poset.
Reflexive: b |b

Antisymmetric: b|cAc|b=b=c
Transitive: b|cAc|d=b|d
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(14.47) Definition: A binary relation p on a set B is called a partial order on b if it 1s

reflexive, antisymmetric, and transitive. In this case, pair (B, p) is called a partially
ordered set or poset.

We use the symbol < for an arbitrary partial order, sometimes writing ¢ =~ b instead of b < c.

Hasse diagrams

e Each element 1n B 1s a dot.
e Elevation matters.
e If » < c there is a line up from b to c,
but only if there 1s not another element d
that 1s “between” b and ¢ such that b < d < c.
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(14.47) Definition: A binary relation p on a set B is called a partial order on b if it 1s
reflexive, antisymmetric, and transitive. In this case, pair (B, p) is called a partially
ordered set or poset.

We use the symbol < for an arbitrary partial order, sometimes writing ¢ =~ b instead of b < c.

Example | Example 2

XX
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(14.47.1) Definition, Incomparable: incomp(b,c) = —(b <c)A—=(c 2 b)

Example 1

{a,b} and {a,c} are incomparable.

~({a,b} S {a;cp) A=(1a,¢; S 1a,b})

Example 2

6 and 8 are incomparable.
—(6|8)A—(8]6)
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(14.48) Definition: Relation < is a quasi order or strict partial order if < 1s transitive
and 1rreflexive

Example

The proper subset relation C 1s a quasi order.
Irreflexive: —(D C D)

Transitive: DCENECF=DCF
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(14.48) Definition: Relation < is a quasi order or strict partial order if < 1s transitive

and 1rreflexive

(14.47) <1s aRAT relation (partial order).

(14.48) < 1s alT relation (strict partial order).

We can prove that a IT relation 1s also antisymmetric.
Therefore, < 1s a IAT relation.

Summary

Equivalence relation = 1s RST.

Partial order < 1s RAT.
Strict partial order < is IAT.
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(14.48.1) Definition, Reflexive reduction: Given =<, its reflexive reduction < is computed
by eliminating all pairs (b,b) from <.

(14.48.2) Let < be the reflexive reduction of <. Then,
—(b=¢) = ¢ <bVincomp(b,c)

(14.49) (a) If p is a partial order over a set B, then p — ip 1s a quasi order.
(b) If p is a quasi order over a set B, then p Uip 1s a partial order.

Reflexive reduction is the opposite of reflexive closure.

To compute the reflexive closure of a relation, you add ordered
pairs to make the relation reflexive.

To compute the reflexive reduction of a relation, you eliminate
ordered pairs to make the relation irreflexive.
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(14.50) Definition: A partial order < over B is called a fotal or linear order if
(Vb,cl:b<cVb>c),ie. iff <U=<"'=BxB.
In this case, the pair (B, <) is called a linearly ordered set or a chain.

Examples

* (N, <) is a total order.
({1,3,6,9,12},|) is not a total order.
1 ({1,3,6,12,24},]) is a total order.

Hasse diagram of a total order.
All pairs of elements are comparable.
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(14.51) Definitions: Let S be a nonempty subset of poset (U, =<).

(a) Element b of S 1s a minimal element of S if no element of S 1s smaller than b,
ie.ifbeSANclec<b:c¢Ss).

(b) Element b of S is the least element of Sifbe SA(VclceS:b=c).

(c) Element b is a lower bound of S if (Vclce S:b=<c).
(A lower bound of S need not be in S.)

(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound
and if every lower bound c satisfies ¢ < b.

Example
In (N, |) with § = {3,5,7,15,20} 15 20

3,5, 7 are minimal.

[ ) o
There is no least element. / \ /
)

For b to be least it must be related to every other element.

~Jo
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(14.51) Definitions: Let S be a nonempty subset of poset (U, =<).

(a) Element b of S is a minimal element of S if no element of § is smaller than b,
ie.ifbeSANclec<b:c¢Ss).

(b) Element b of S is the least element of Sifbe SA(VclceS:b=c).

(c) Element b is a lower bound of S if (Vclce S:b=<c).
(A lower bound of S need not be in S.)

(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound
and if every lower bound c satisfies ¢ < b.

Example 8
In (N, |) with § ={2,4,6,8}

2 is minimal and least. 4 \ /0 6
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(14.51) Definitions: Let S be a nonempty subset of poset (U, =<).

(a) Element b of S 1s a minimal element of S if no element of S 1s smaller than b,
ie.ifbeSANclec<b:c¢Ss).

(b) Element b of S is the least element of Sifbe SA(VclceS:b=c).

(c) Element b is a lower bound of S if (Vclce S:b=<c).
(A lower bound of S need not be in S.)

(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound
and if every lower bound c satisfies ¢ < b.

Example >
Inset B={a,b,c,d,e, f,g,h,i,j,k} with the relation
defined by the Hasse diagram and subset S = {i, j, k} he

the lower bounds of {i, j,k} are i, f,g,c,d,a.

The greatest lower bound is glb.S = i. € '\f' I 8
b d
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(14.51) Definitions: Let S be a nonempty subset of poset (U, =<).

(a) Element b of S 1s a minimal element of S if no element of S 1s smaller than b,
ie.ifbeSANclec<b:c¢Ss).

(b) Element b of S is the least element of Sifbe SA(VclceS:b=c).

(c) Element b is a lower bound of S if (Vclce S:b=<c).
(A lower bound of S need not be in S.)

(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound
and if every lower bound c satisfies ¢ < b.

Example

Inset B={a,b,c,d,e, f,g,h,i,j,k} with the relation
defined by the Hasse diagram and subset S = {i, j, k}
the lower bounds of {i, j,k} are i, f,g,c,d,a.

The greatest lower bound is glb.S = i.

The lower bound of S = {i, f, g} is only a.
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(14.52) Every finite nonempty subset S of poset (U, <) has a minimal element.

(14.53) Let B be a nonempty subset of poset (U, <).
(a) A least element of B is also a minimal element of B (but not necessarily
vice versa). Homework
(b) A least element of B 1is also a greatest lower bound of B (but not necessarily
vice versa).

(¢) A lower bound of B that belongs to B is also a least element of B.
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((14.54) Definitions: Let S be a nonempty subset of poset (U, <).

(a) Element b of S is a maximal element of S if no element of § is larger than b,
ie.ifbeSANclb<c:céd9).

(b) Element b of S is the greatest element of Sifbe SA(Vclce S:c=<Xb).

(c) Element b is an upper bound of S if (Vclc e S:c=<b).
(An upper bound of S need not be in S.)

(d) Element b is the least upper bound of S, written [ub.S, if b is an upper bound
and 1f every upper bound c satisfies b < c.
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Relational databases

Binary relation

Subset of ordered pairs from By X B

Trinary relation

Subset of ordered triples from By X By X B3

n-ary relation

Subset of ordered n-tuples from By X By X B3... X By,
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Relational database tables

Relation
MyRelation = {(apple, baseball, cat, John ), (banana, football, dog, Mary ) }

Table representation

MyRelation

apple  baseball cat John
banana football dog Mary

Table representation with field names

MyRelation
Fruit Toy Animal Person
apple  baseball cat John

banana football dog Mary
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LADM has three relational database examples in Chapter 14. Each database has a group of relations, represented
by tables, and each relation has a name. Below are the first two n-tuples in each relation in each database.

Example A. Two tables: PABM and MC.

PABM

Title Month | Day | Year | Theater Perfs
My Fair Lady 3 15 | 1956 | Mark Hellinger 2717
Man of La Mancha 11 22 | 1965 | ANTA Wash. Sq. | 2329

MC

Title Book Lyrics | Music
My Fair Lady Lerner Lerner | Loewe
Man of La Mancha | Wasserman | Darion | Leigh
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e

TABLE 14.2. POPULAR AMERICAN BROADWAY MusicALS (PABM)
Opening
Title Month Day Year Theater Perfs
My Fair Lady 3 15 1956 Mark Hellinger 2717
Man of La Mancha 11 22 1965 ANTA Wash. Sq. 2329
Oklahoma! 3 31 1943 St. James 2248
Hair 4 29 1968 Biltmore 1750
The King and I 3 29 1951 St. James 1246
Guys and Dolls 11 24 1950 Forty-Sixth St. 1200
Cabaret 11 20 1966 Broadhurst 1166
Damn Yankees 5 5 1955 Forty-Sixth St. 1019
Camelot 12 3 1960 Majestic 878
West Side Story 9 26 1957 Winter Garden 132

TABLE 14.3. MusiCAL CREATORS (MC)
Title Book Lyrics Music
My Fair Lady Lerner Lerner Loewe
Man of La Mancha Wasserman Darion Leigh
Oklahoma! Hammerstein Hammerstein + Rodgers
Hair Ragni & Rado Ragni & Rado MacDermot
The King and I Hammerstein Hammerstein . Rodgers
Guys and Dolls Swerling & Burrows Loesser Loesser
Cabaret Masteroff Ebb Kander
Damn Yankees Abbott & Wallop  Adler & Ross Adler & Ross
Camelot Lerner Lerner Loewe
West Side Story Laurents Sondheim Bernstein
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PABM = Title x Month x Day x Year x Theater x Perfs

Title is the set of titles for Broadway shows;
Month is the set 1..12 corresponding to the months of the year;

Day is the set 1..31 corresponding to the days of the months;

Year is the set Z* of positive integers;
Theater is the set of theaters in and around Broadway, NYC;

Perfs is the set Z™ of positive integers.

PABM (Title, Month, Day, Year, Theater, Perfs)
MC(Title, Book, Lyrics, Music)
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Example B. One table: ALL.

ALL

Title Month | Day | Year | Theater Perfs | Book Lyrics | Music
My Fair Lady 3 15 | 1956 | Mark Hellinger 2717 | Lerner Lerner | Loewe
Man of La Mancha 11 22 | 1965 | ANTA Wash. Sq. | 2329 | Wasserman | Darion | Leigh

ALL(Title, Month, Day, Year, Theater, Perfs, Book, Lyrics,

Music)
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Example C. Six tables

: Where, When, Author, Run, Lyricist, and Composer.

Where

Title Theater

My Fair Lady Mark Hellinger
Man of La Mancha | ANTA Wash. Sq.
Author

Title Book

My Fair Lady Lerner

Man of La Mancha | Wasserman
Lyricist

Title Lyrics

My Fair Lady Lerner

Man of La Mancha | Darion

When

Title Month | Day | Year
My Fair Lady 3 15 | 1956
Man of La Mancha 11 22 | 1965
Run

Title Perfs

My Fair Lady 2717

Man of La Mancha | 2329

Composer

Title Music

My Fair Lady Loewe

Man of La Mancha | Leigh
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Where( Title, Theater)

When( Title, Month, Day, Year)
Author( Title, Book)

Run(Title, Perfs)

Lyricist( Title, Lyrics)
Composer( Title, Music)
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(14.56.1) Definition, select: For Relation R and predicate F', which may contain names
of fieldsof R, o(R,F)={tlt€RAF}

(14.56.2) Definition, project: For Ai,...,A,, a subset of the names of the fields of
relation R, 7#(R,Ay,...,Ap)={tlt E€R:{t.A|,t.As,....t.Ap)}

(14.56.3) Definition, natural join: For Relations R1 and R2, R1 > R2 has all the attributes
that R1 and R2 have, but if an attribute appears in both, then it appears only once in

the result; further, only those tuples that agree on this common attribute are included.

Select

o selects rows from R that satisty F'.
Example: Use database A to list all the 6-tuples that opened on Forty-Sixth St.
o (PABM, Theater = Forty-Sixth St.)

Project

7 selects fields (attributes) from R as listed.

Example: Use database A to list only the titles of the musicals that opened
on Forty-Sixth St.

(o (PABM, Theater = Forty-Sixth St.), Title)
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(14.56.1) Definition, select: For Relation R and predicate F', which may contain names
of fieldsof R, o(R,F)={tlt€RAF}

(14.56.2) Definition, project: For Ai,...,A,, a subset of the names of the fields of
relation R, 7#(R,Ay,...,Ap)={tlt E€R:{t.A|,t.As,....t.Ap)}

(14.56.3) Definition, natural join: For Relations R1 and R2, R1 > R2 has all the attributes
that R1 and R2 have, but if an attribute appears in both, then it appears only once in
the result; further, only those tuples that agree on this common attribute are included.

Join

> 18 a binary 1nfix operator.
Example: Use database C to list the theater where each book was performed.
Author <1 Where has three columns: Title, Book, Theater.
To list just the Book and Theater

w(Author <t Where, Book, Theater)

Example: Use database A to list who wrote the lyrics for the show
that had 2717 performances.
7(o(PABM <t MC, Perfs = 2717), Lyrics)



