(14.2) **Axiom, Pair equality:** $\langle b, c \rangle = \langle b', c' \rangle \equiv b = b' \wedge c = c'$

(14.2.1) **Ordered pair one-point rule:** Provided $\neg occurs(`x,y',`E,F')$, $(\star x, y \mid \langle x, y \rangle = \langle E, F \rangle : P) = P[x, y := E, F]$ **Homework**

> Sets: $\{2,3\} = \{3,2\}$ Ordered pairs: $\langle 2,3 \rangle \neq \langle 3,2 \rangle$

(14.3) **Axiom, Cross product:** $S \times T = \{b, c \mid b \in S \land c \in T : \langle b, c \rangle \}$

Example $S = \{a, b, c\}$ $T = \{4, 6\}$ $S \times T = \{\langle a, 4 \rangle, \langle a, 6 \rangle, \langle b, 4 \rangle, \langle b, 6 \rangle, \langle c, 4 \rangle, \langle c, 6 \rangle\}$ $\mathbb{R} \times \mathbb{R} \text{ is the set of all points in the plane.}$

(11.4) **Axiom, Extensionality:** $S = T \equiv (\forall x \mid : x \in S \equiv x \in T)$

(14.3.1) **Axiom, Ordered pair extensionality:** $U = V \equiv (\forall x, y \mid : \langle x, y \rangle \in U \equiv \langle x, y \rangle \in V)$

U and V are sets of ordered pairs.

Example

These two sets are equal.

$$U = \{ \langle 1, 3 \rangle, \langle 5, 0 \rangle, \langle 4, 2 \rangle \}$$
$$V = \{ \langle 4, 2 \rangle, \langle 1, 3 \rangle, \langle 5, 0 \rangle \}$$

RELATIONS AND FUNCTIONS

- (14.2) **Axiom, Pair equality:** $\langle b, c \rangle = \langle b', c' \rangle \equiv b = b' \wedge c = c'$
- (14.2.1) Ordered pair one-point rule: Provided $\neg occurs(`x, y', `E, F'),$ $(\star x, y \mid \langle x, y \rangle = \langle E, F \rangle : P) = P[x, y := E, F]$
- (14.3) Axiom, Cross product: $S \times T = \{b, c \mid b \in S \land c \in T : \langle b, c \rangle\}$
- (14.3.1) Axiom, Ordered pair extensionality:

 $U = V \equiv (\forall x, y \mid : \langle x, y \rangle \in U \equiv \langle x, y \rangle \in V)$

Theorems for cross product.

- (14.4) Membership: $\langle x, y \rangle \in S \times T \equiv x \in S \land y \in T$ Homework
- (14.5) $\langle x, y \rangle \in S \times T \equiv \langle y, x \rangle \in T \times S$ Homework
- (14.6) $S = \emptyset \Rightarrow S \times T = T \times S = \emptyset$
- (14.7) $S \times T = T \times S \equiv S = \emptyset \lor T = \emptyset \lor S = T$

Distributivity of \times **over** \cup : (14.8)(a) $S \times (T \cup U) = (S \times T) \cup (S \times U)$ (b) $(S \cup T) \times U = (S \times U) \cup (T \times U)$ (14.9)**Distributivity of** \times **over** \cap : (a) $S \times (T \cap U) = (S \times T) \cap (S \times U)$ (b) $(S \cap T) \times U = (S \times U) \cap (T \times U)$ **Distributivity of** \times over – : (14.10) $S \times (T - U) = (S \times T) - (S \times U)$ (14.11) Monotonicity: $T \subseteq U \Rightarrow S \times T \subseteq S \times U$ $(14.12) \quad S \subseteq U \land T \subseteq V \implies S \times T \subseteq U \times V$ $(14.13) \quad S \times T \subseteq S \times U \land S \neq \emptyset \implies T \subseteq U$ $(14.14) \quad (S \cap T) \times (U \cap V) = (S \times U) \cap (T \times V)$

(14.15) For finite S and T, $\#(S \times T) = \#S \cdot \#T$

Prove (14.8a) $S \times (T \cup U) = (S \times T) \cup (S \times U)$

Proof Let $\langle x, y \rangle$ be an arbitrary ordered pair and prove that $\langle x, y \rangle \in S \times (T \cup U) \equiv \langle x, y \rangle \in (S \times T) \cup (S \times U)$ $\langle x, y \rangle \in S \times (T \cup U)$ $= \langle (14.4) \rangle$ $x \in S \land y \in (T \cup U)$ $= \langle (11.20) \rangle$ $x \in S \land (y \in T \lor y \in U)$ = $\langle (3.46) \text{ Distributivity of } \land \text{ over } \lor \rangle$ $(x \in S \land y \in T) \lor (x \in S \land y \in U)$ $= \langle (14.4 \text{ twice}) \rangle$ $\langle x, y \rangle \in (S \times T) \lor \langle x, y \rangle \in (S \times U)$ $= \langle (11.20) \rangle$ $\langle x, y \rangle \in (S \times T) \cup (S \times U)$ //

Relations.

(14.15.1) **Definition, Binary relation:**

A binary relation over $B \times C$ is a subset of $B \times C$.

Example

 $S = \{0, 1, 2\}$ $S \times S = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \\\langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \\\langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$

The "less than" relation over $S \times S$ is a subset of the set $S \times S$ consisting of those ordered pairs $\langle x, y \rangle$ for which x < y is true. $\langle = \{ \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle \}$

(14.15.2) **Definition, Identity:** The identity relation i_B on B is $i_B = \{x: B \mid : \langle x, x \rangle\}$ (14.15.3) **Identity lemma:** $\langle x, y \rangle \in i_B \equiv x = y$ **Homework**

Example

 $B = \{a, b, c, d\}$

The identity relation over $B \times B$ is $i_B = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle \}$

Matrix representation

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(14.15.4) Notation: $\langle b, c \rangle \in \rho$ and $b \rho c$ are interchangeable notations. (14.15.5) Conjunctive meaning: $b \rho c \sigma d \equiv b \rho c \wedge c \sigma d$

(14.15.4) Example

If ρ is the less than relation < then $\langle 0,2 \rangle \in <$ and 0 < 2 are interchangeable notations.

(14.15.5) Example

If ρ is the less than relation < and σ is the equals relation = then $b < c = d \equiv b < c \land c = d$

The *domain Dom*. ρ and *range Ran*. ρ of a relation ρ on $B \times C$ are defined by

- (14.16) **Definition, Domain:** $Dom.\rho = \{b: B \mid (\exists c \mid : b \rho c)\}$
- (14.17) **Definition, Range:** $Ran.\rho = \{c: C \mid (\exists b \mid : b \rho c)\}$

Example $B = \{2,3,4,5\}$ $C = \{4,5,6,7\}$ Define the predecessor relation *pred* over $B \times C$ as $pred = \{\langle 3,4 \rangle, \langle 4,5 \rangle, \langle 5,6 \rangle\}$

 $Dom.pred = \{3,4,5\}$ $Ran.pred = \{4,5,6\}$

The *inverse* ρ^{-1} of a relation ρ on $B \times C$ is the relation defined by

(14.18) **Definition, Inverse:** $\langle b, c \rangle \in \rho^{-1} \equiv \langle c, b \rangle \in \rho$, for all b: B, c: C

Example

 $S = \{0, 1, 2\}$

The "less than" relation over $S \times S$ is

 $< = \{ \langle 0,1 \rangle, \langle 0,2 \rangle, \langle 1,2 \rangle \}$

The inverse of the "less than" relation is

 $<^{-1} = \{\langle 1,0\rangle,\langle 2,0\rangle,\langle 2,1\rangle\}$

which is the "greater than" relation >.

 $<^{-1} = >$

Operations on relations

Because ρ and σ are sets, you can operate on them with \cup , \cap , \sim , -.

Example

 $B = \{0, 1, 2\}$
is $\{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle\}$

= is
$$\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle\}$$

 $< \cup = \text{ is } \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle\} \text{ which is } \leq .$ $\sim < \text{ is } \{\langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\} \text{ which is } \geq .$ $\leq \cap = \text{ is } =.$

 $\leq -=$ is <.

(14.19) Let ρ and σ be relations. (a) $Dom(\rho^{-1}) = Ran.\rho$ Homework (b) $Ran(\rho^{-1}) = Dom.\rho$ (c) If ρ is a relation on $B \times C$, then ρ^{-1} is a relation on $C \times B$ (d) $(\rho^{-1})^{-1} = \rho$ Homework (e) $\rho \subseteq \sigma \equiv \rho^{-1} \subseteq \sigma^{-1}$ Homework

Let ρ be a relation on $B \times C$ and σ be a relation on $C \times D$. The *product*

of ρ and σ , denoted by $\rho \circ \sigma$, is the relation on $B \times D$ defined by

(14.20) **Definition, Product:** $\langle b, d \rangle \in \rho \circ \sigma \equiv (\exists c \mid c \in C : \langle b, c \rangle \in \rho \land \langle c, d \rangle \in \sigma)$ or, using the alternative notation by

(14.21) **Definition, Product:** $b(\rho \circ \sigma) d \equiv (\exists c \mid : b \rho c \sigma d)$

 $B = \{2,3,4,5\} \quad pred = \{\langle 3,4 \rangle, \langle 4,5 \rangle, \langle 5,6 \rangle\} \qquad pred \circ swap = \{\langle 3,7 \rangle, \langle 4,6 \rangle, \langle 5,5 \rangle\} \\ C = \{4,5,6,7\} \quad swap = \{\langle 4,7 \rangle, \langle 5,6 \rangle, \langle 6,5 \rangle, \langle 7,4 \rangle\} \\ D = \{4,5,6,7\} \qquad dent for all otherwise of the state of the state$

 $Ran.(pred \circ swap) = \{5, 6, 7\}$

Theorems for relation product.

- (14.22) Associativity of \circ : $\rho \circ (\sigma \circ \theta) = (\rho \circ \sigma) \circ \theta$ Handout
- (14.23) **Distributivity of** \circ **over** \cup :
 - (a) $\rho \circ (\sigma \cup \theta) = (\rho \circ \sigma) \cup (\rho \circ \theta)$ Homework (b) $(\sigma \cup \theta) \circ \rho = (\sigma \circ \rho) \cup (\theta \circ \rho)$
- (14.24) **Distributivity of** \circ **over** \cap :

(a)
$$\rho \circ (\sigma \cap \theta) \subseteq (\rho \circ \sigma) \cap (\rho \circ \theta)$$

(b) $(\sigma \cap \theta) \circ \rho \subseteq (\sigma \circ \rho) \cap (\theta \circ \rho)$

(14.25) **Definition:** $\rho^0 = i_B$ $\rho^{n+1} = \rho^n \circ \rho$ for $n \ge 0$

Example

$$B = \{0, 1, 2, 3, 4\}$$

$$B \times B = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \dots, \langle 4, 3 \rangle, \langle 4, 4 \rangle\}$$

$$< = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle\}$$

$$<^{2} = < \circ < = \{\langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 4 \rangle\}$$

(14.25) **Definition:** $\rho^0 = i_B$ $\rho^{n+1} = \rho^n \circ \rho$ for $n \ge 0$

Example

$$B = \{0, 1, 2, 3, 4\}$$

$$B \times B = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \dots, \langle 4, 3 \rangle, \langle 4, 4 \rangle\}$$

$$< = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle\}$$

$$<^{2} = < \circ < = \{\langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 4 \rangle\}$$

$$<^{3} = <^{2} \circ < = \{\langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 1, 4 \rangle\}$$

(14.25) **Definition:** $\rho^0 = i_B$ $\rho^{n+1} = \rho^n \circ \rho$ for $n \ge 0$

Example

 $B = \{0, 1, 2\}$ $B \times B = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$ $\leq = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle\}$ $\leq^{2} = \leq \circ \leq = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle\}$ $\leq \circ \leq = \leq \quad \text{Idempotent}$

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid : b \ \rho \ b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid : \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid : b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid : b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$\rho \cap \rho^{-1} \subseteq i_B$
(e)	asymmetric	$(\forall b, c \mid : b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}=\emptyset$
(f)	transitive	$(\forall b, c, d \mid : b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0: \rho^i)$

Memorize

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid : b \ \rho \ b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid : \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid: b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid : b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$\rho \cap \rho^{-1} \subseteq i_B$
(e)	asymmetric	$(\forall b, c \mid : b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}=\emptyset$
(f)	transitive	$(\forall b, c, d \mid : b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0: \rho^i)$

Example

The > relation over $\mathbb Z$

- (a) b > b No, > is not reflexive
- (b) $\neg(b > b)$ Yes, > is irreflexive
- (c) $b > c \equiv c > b$ No, > is not symmetric
- (d) $b > c \land c > b \Rightarrow b = c$ Yes, > is antisymmetric because the antecedent is always false
- (e) $b > c \Rightarrow \neg(c > b)$ Yes, > is asymmetric
- (f) $b > c \land c > d \Rightarrow b > d$ Yes, > is transitive

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid : b \ \rho \ b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid : \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid : b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid : b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$\rho \cap \rho^{-1} \subseteq i_B$
(e)	asymmetric	$(\forall b, c \mid : b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}=\emptyset$
(f)	transitive	$(\forall b, c, d \mid : b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0: \rho^i)$

Example

The *square* relation over \mathbb{Z}

 $square = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 4 \rangle, \langle 3, 9 \rangle, \ldots \}$

(a)	b square b	No, square is not reflexive. It does not have $\langle 2, 2 \rangle$
(b)	$\neg(b \ square \ b)$	No, <i>square</i> is not irreflexive. It has $\langle 1, 1 \rangle$.

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid : b \ \rho \ b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid : \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid: b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid : b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$\rho \cap \rho^{-1} \subseteq i_B$
(e)	asymmetric	$(\forall b, c \mid : b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}=\emptyset$
(f)	transitive	$(\forall b, c, d \mid : b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0: \rho^i)$

 $\begin{bmatrix}
0 & - & - \\
- & 0 & - \\
- & - & 0 & - \\
- & - & 0 & - \\
\end{bmatrix}$

Reflexive relations – A reflexive relation ρ is defined as $(\forall b \mid : b \rho b)$, or, alternatively as $i_B \subseteq \rho$. In terms of the matrix, the diagonal must contain all 1's. Each underline entry _ in the matrix of the reflexive relation on the right represents either a one or a zero.

Irreflexive relations – An irreflexive relation ρ is defined as $(\forall b \mid : \neg(b \rho b))$ or, alternatively, as $i_B \cap \rho = \emptyset$. In terms of the matrix, the diagonal must contain all 0's. It is possible for a relation to be neither reflexive nor irreflexive. The first example is one such relation.

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid : b \ \rho \ b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid : \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid : b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid : b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$\rho \cap \rho^{-1} \subseteq i_B$
(e)	asymmetric	$(\forall b, c \mid : b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}=\emptyset$
(f)	transitive	$(\forall b, c, d \mid : b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0: \rho^i)$

Symmetric relations – A symmetric relation ρ is defined as $(\forall b, c \mid : b \rho c \equiv c \rho b)$ or, alternatively, as $\rho^{-1} = \rho$. In terms of the matrix, it must be symmetric about the diagonal. For example, in the matrix on the right the 1 in the first row, third column represents ordered pair $\langle w, y \rangle$, and the 1 in the third row, first column represents ordered pair $\langle y, w \rangle$. The 0 in the second row, third column represents the *absence* of $\langle x, y \rangle$, and the 0 in the third row, second column represents the *absence* of $\langle y, x \rangle$.

Antisymmetric relations – An antisymmetric relation ρ is defined as $(\forall b, c \mid : b \rho c \land c \rho b \Rightarrow b = c)$ or, alternatively, as $\rho \cap \rho^{-1} \subseteq i_B$. In terms of the matrix, the diagonal elements can be either 0 or 1. If $b \rho b$ is true, then both the antecedent and consequent are true, and so the implication is true. If $b \rho b$ is false, then the antecedent is false, and so the implication is true. For the off-diagonal elements, where $b \neq c$, you cannot have both $b \rho c$ and $c \rho b$. However, you can have neither.

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid : b \ \rho \ b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid : \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid : b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid : b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$\rho \cap \rho^{-1} \subseteq i_B$
(e)	asymmetric	$(\forall b, c \mid : b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}=\emptyset$
(f)	transitive	$(\forall b, c, d \mid : b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0: \rho^i)$

Asymmetric relations – An asymmetric relation ρ is defined as $(\forall b, c \mid : b \rho c \Rightarrow \neg (c \rho b))$ or, alternatively, as $\rho \cap \rho^{-1} = \emptyset$. In terms of the matrix, the diagonal elements must be 0. If $b \rho b$ were true, then the antecedent would be true and the consequent would be false, and so the implication would be false. For the off-diagonal elements, where $b \neq c$, if you have $b \rho c$ you cannot have $c \rho b$. Like an antisymmetric relation, you can have neither. An asymmetric relation is an antisymmetric relation with the added restriction that the diagonal elements must be 0.

-			ר
0	1	1	1
0	0	0	0
0	0	0	0
0	0	1	0
_			

Prove Table 14.1(a) $(\forall b \mid : b \rho b) \equiv i_B \subseteq \rho$

Proof $i_B \subseteq \rho$ $= \langle (11.13) \text{ Axiom, Subset} \rangle$ $(\forall b, c \mid \langle b, c \rangle \in i_B : \langle b, c \rangle \in \rho)$ $= \langle (14.15.3) \text{ Identity lemma} \rangle$ $(\forall b, c \mid b = c : \langle b, c \rangle \in \rho)$ = $\langle (8.20) \text{ Nesting, with } R := true \rangle$ $(\forall b \mid : (\forall c \mid b = c : \langle b, c \rangle \in \rho))$ = $\langle (8.14) \text{ One-point rule and textual substitution} \rangle$ $(\forall b \mid \langle b, b \rangle \in \rho)$ $= \langle (14.15.4) \text{ Notation} \rangle$

 $(\forall b \mid : b \rho b) //$

(14.30.1) **Definition:** Let ρ be a relation on a set. The *reflexive closure* of ρ is the relation $r(\rho)$ that satisfies:

- (a) $r(\rho)$ is reflexive;
- (b) $\rho \subseteq r(\rho);$
- (c) If any relation σ is reflexive and $\rho \subseteq \sigma$, then $r(\rho) \subseteq \sigma$.

Example

 $B = \{0, 1, 2\}$

$$<=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}$$

By part (b), every ordered pair in < must also be in r(<).

 $r(<) = \{ \langle 0,1\rangle, \langle 0,2\rangle, \langle 1,2\rangle, \ldots \}$

By part (a), r(<) must be reflexive.

 $r(<) = \{ \langle 0,1\rangle, \langle 0,2\rangle, \langle 1,2\rangle, \langle 0,0\rangle, \langle 1,1\rangle, \langle 2,2\rangle, \ldots \}$

By part (c), there can be no other ordered pairs in r(<).

 $r(<) = \{ \langle 0,1\rangle, \langle 0,2\rangle, \langle 1,2\rangle, \langle 0,0\rangle, \langle 1,1\rangle, \langle 2,2\rangle \}$

The relation

 $\boldsymbol{\sigma} = \{ \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle, \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \langle 1, 0 \rangle \}$

also satisfies (a) and (b) because (a) σ is reflexive, and (b) $\leq \sigma$.

However, σ cannot be the reflexive closure of <, because $r(<) \subseteq \sigma$.

To compute $r(\rho)$, add the fewest number of ordered pairs to ρ that will make it reflexive.

(14.30.2) **Definition:** Let ρ be a relation on a set. The *symmetric closure* of ρ is the relation $s(\rho)$ that satisfies:

- (a) $s(\rho)$ is symmetric;
- (b) $\rho \subseteq s(\rho);$
- (c) If any relation σ is symmetric and $\rho \subseteq \sigma$, then $s(\rho) \subseteq \sigma$.

Example

$$B = \{0, 1, 2\}$$

$$<= \{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle\}$$

$$s(<) = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle, \langle 1, 0 \rangle, \langle 2, 0 \rangle, \langle 2, 1 \rangle\}$$

(14.30.3) **Definition:** Let ρ be a relation on a set. The *transitive closure* of ρ is the relation ρ^+ that satisfies:

- (a) ρ^+ is transitive;
- (b) $\rho \subseteq \rho^+;$
- (c) If any relation σ is transitive and $\rho \subseteq \sigma$, then $\rho^+ \subseteq \sigma$.
- (14.30.4) **Definition:** Let ρ be a relation on a set. The *reflexive transitive closure* of ρ is the relation ρ^* that is both the reflexive and the transitive closure of ρ .

Example

$$B = \{0, 1, 2, 3\}$$

$$pred = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle\}$$

$$pred^{+} = \{$$

$$\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle,$$

$$\langle 0, 2 \rangle, \langle 1, 3 \rangle,$$

$$\langle 0, 3 \rangle\}$$

$$pred^{+} = <$$

$$pred^{+} = \{$$

$$\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 0, 2 \rangle, \langle 1, 3 \rangle, \langle 0, 3 \rangle,$$

$$\langle 0, 0 \rangle \langle 1, 1 \rangle \langle 2, 2 \rangle \langle 3, 3 \rangle\}$$

$$pred^{*} = \leq$$

Exercise 14.32

	$ ho \cup \sigma$	$ ho \cap \sigma$	$\rho - \sigma$	$(B \times B) - \rho$
Reflexive	Y		N	
Irreflexive			Y	
Symmetric				
Antisymmetric				
Transitive				

Is reflexivity preserved under union?

If ρ is reflexive and σ is reflexive, is $\rho \cup \sigma$ reflexive?

If ρ has $\langle a, a \rangle, \langle b, b \rangle, ...,$ and σ has $\langle a, a \rangle, \langle b, b \rangle, ...,$ does $\rho \cup \sigma$ have $\langle a, a \rangle, \langle b, b \rangle, ...?$

Is reflexivity preserved under set difference?

If ρ is reflexive and σ is reflexive, is $\rho - \sigma$ reflexive?

If ρ has $\langle a, a \rangle, \langle b, b \rangle, ...,$ and σ has $\langle a, a \rangle, \langle b, b \rangle, ...,$ does $\rho - \sigma$ have $\langle a, a \rangle, \langle b, b \rangle, ...?$

Is irreflexivity preserved under set difference? If ρ is irreflexive and σ is irreflexive, is $\rho - \sigma$ irreflexive? If ρ and σ are both missing $\langle a, a \rangle, \langle b, b \rangle, ...,$ is $\rho - \sigma$ missing $\langle a, a \rangle, \langle b, b \rangle, ...?$

Equivalence relations.

- (14.33) **Definition:** A relation is an *equivalence relation* iff it is reflexive, symmetric, and transitive
- (14.34) **Definition:** Let ρ be an equivalence relation on *B*. Then $[b]_{\rho}$, the *equivalence* class of *b*, is the subset of elements of *B* that are equivalent (under ρ) to *b*: $x \in [b]_{\rho} \equiv x \rho b$

(14.33) Example	(14.34) Example
$B = \{0, 1, 2, 3, 4\}$	$[0] = \{0, 1, 3\}$
$ ho=\{$	$[1] = \{1, 0, 3\}$
$\langle 0,0 angle, \langle 1,1 angle, \langle 2,2 angle, \langle 3,3 angle, \langle 4,4 angle,$	$[2] = \{2, 4\}$
$\langle 0,1 angle, \langle 1,0 angle, \langle 0,3 angle, \langle 3,0 angle, \langle 0,4 angle, \langle 4,0 angle,$	$[3] = \{3, 1, 0\}$
$\langle 2,4 angle,\langle 4,2 angle\}$	$[4] = \{4, 2\}$

Partition

 $[0] \cap [2] = \emptyset$ $[0] \cup [2] = B$ $\{[0], [2]\} \text{ is a partition of } B.$ $\{\{0, 1, 3\}, \{2, 4\}\} \text{ is a partition of } B.$

(11.76) Axiom, Partition: Set S partitions T if

(i) the sets in *S* are pairwise disjoint and

(ii) the union of the sets in S is T, that is, if

 $(\forall u, v \mid u \in S \land v \in S \land u \neq v : u \cap v = \emptyset) \land (\cup u \mid u \in S : u) = T$

(11.76) Axiom, Partition: Set S partitions T if

(i) the sets in *S* are pairwise disjoint and

(ii) the union of the sets in S is T, that is, if

 $(\forall u, v \mid u \in S \land v \in S \land u \neq v : u \cap v = \emptyset) \land (\cup u \mid u \in S : u) = T$

(11.76) Axiom, Partition: Set S partitions T if

- (i) the sets in *S* are pairwise disjoint and
- (ii) the union of the sets in S is T, that is, if

 $(\forall u, v \mid u \in S \land v \in S \land u \neq v : u \cap v = \emptyset) \land (\cup u \mid u \in S : u) = T$

Example

 $T: \{a, b, c, d, e, f\}$ S: { $\{a, c\}, \{b, e, f\}, \{d\}\}$ S partitions T.

(11.76) Axiom, Partition: Set S partitions T if

(i) the sets in *S* are pairwise disjoint and

(ii) the union of the sets in S is T, that is, if

 $(\forall u, v \mid u \in S \land v \in S \land u \neq v : u \cap v = \emptyset) \land (\cup u \mid u \in S : u) = T$

Example

 $T: \{a, b, c, d, e, f\}$ $S: \{\{a, c\}, \{b, e, f\}, \{d, e\}\}$ $S \text{ does not partition } T \text{ because } \{b, e, f\} \cap \{d, e\} \neq \emptyset.$

(11.76) Axiom, Partition: Set S partitions T if

(i) the sets in *S* are pairwise disjoint and

(ii) the union of the sets in S is T, that is, if

 $(\forall u, v \mid u \in S \land v \in S \land u \neq v : u \cap v = \emptyset) \land (\cup u \mid u \in S : u) = T$

Example

 $T: \{a, b, c, d, e, f\}$ S: {{a,c}, {e, f}, {d}}

S does not partition T because $\{a,c\} \cup \{e,f\} \cup \{d\} \neq T$.

- (14.35) Let ρ be an equivalence relation on *B*, and let *b*, *c* be members of *B*. The following three predicates are equivalent:
 - (a) $b \rho c$
 - (b) $[b] \cap [c] \neq \emptyset$
 - (c) [b] = [c]
 - That is, $(b \rho c) = ([b] \cap [c] \neq \emptyset) = ([b] = [c])$

Example

Using the previous example, the following are all equivalent:

- (a) 1*p*3
- (b) $[1] \cap [3] \neq \emptyset$
- (c) [1] = [3]

because each one is true.

The following are all equivalent:

- (a) 1*p*2
- (b) $[1] \cap [2] \neq \emptyset$
- (c) [1] = [2]

because each one is *false*.
- (14.35) Let ρ be an equivalence relation on *B*, and let *b*, *c* be members of *B*. The following three predicates are equivalent:
 - (a) $b \rho c$ (b) $[b] \cap [c] \neq \emptyset$ (c) [b] = [c]That is, $(b \rho c) = ([b] \cap [c] \neq \emptyset) = ([b] = [c])$

Prove (14.35)

To prove (14.35), first prove each of the following three sub-theorems:

$$(a) \Rightarrow (b)$$
$$(b) \Rightarrow (c)$$
$$(c) \Rightarrow (a)$$

Then by (3.82a) Transitivity, $((b) \Rightarrow (c)) \land ((c) \Rightarrow (a)) \Rightarrow ((b) \Rightarrow (a))$ Then by (3.80) Mutual implication, $((a) \Rightarrow (b)) \land ((b) \Rightarrow (a)) \equiv ((a) \equiv (b))$ And similarly for $(a) \equiv (c)$ and for $(b) \equiv (c)$

Prove (a) \Rightarrow (b), which is $b\rho c \Rightarrow [b] \cap [c] \neq \emptyset$

Proof

bρc

- $= \langle (3.39) \text{ Identity of } \land \rangle$ *true* $\land b\rho c$
- $= \langle \rho \text{ is reflexive} \rangle \\ b\rho b \wedge b\rho c$
- $= \langle (14.34) \text{ Definition, twice} \rangle$ $b \in [b] \land b \in [c]$
- $= \langle (11.21) \text{ Axiom intersection} \rangle$ $b \in [b] \cap [c]$
- $\Rightarrow \quad \langle \text{Lemma: } b \in A \Rightarrow A \neq \emptyset \rangle$ $[b] \cap [c] \neq \emptyset \quad //$

Prove the lemma: $b \in A \Rightarrow A \neq \emptyset$

Proof Use (4.12) Proof by contrapositive. Must prove $A = \emptyset \Rightarrow \neg (b \in A)$ Use (4.4) Deduction. Assume the antecedent. $\neg(b \in A)$ = $\langle \text{Assume antecedent } A = \emptyset \rangle$ $\neg(b \in \emptyset)$ = $\langle (11.4.2) \rangle$ $\neg false$ $= \langle (3.13) \rangle$ true //

(14.35.1) Let ρ be an equivalence relation on *B*. The equivalence classes partition *B*.

(14.36) Let *P* be the set of sets of a partition of *B*. The following relation ρ on *B* is an equivalence relation:

 $b \rho c \equiv (\exists p \mid p \in P : b \in p \land c \in p)$

- (14.37) (a) **Definition:** A binary relation f on $B \times C$ is *determinate* iff $(\forall b, c, c' \mid b f c \land b f c' : c = c')$
 - (b) **Definition:** A binary relation is a *function* iff it is determinate.

 $\rho = \{ \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 3 \rangle, \langle d, 4 \rangle \}$ $\rho \text{ is a relation.}$

 ρ is <u>not</u> a function. Have $a\rho 1 \wedge a\rho 2$ but $1 \neq 2$.

- (14.37) (a) **Definition:** A binary relation f on $B \times C$ is *determinate* iff $(\forall b, c, c' \mid b f c \land b f c' : c = c')$
 - (b) **Definition:** A binary relation is a *function* iff it is determinate.

 $f = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle, \langle d, 4 \rangle \}$ f is a relation. f is a function. $f : B \to C$

(14.37.1) Notation: $f \cdot b = c$ and $b \cdot f \cdot c$ are interchangeable notations.

 $f: B \to C$

f. d = 4 is equivalent to d f 4

(14.38) **Definition:** A function f on $B \times C$ is *total* if B = Dom.f.

Otherwise it is *partial*.

We write $f: B \to C$ for the type of f if f is total and $f: B \rightsquigarrow C$ if f is partial.

(14.38.1) **Total:** A function f on $B \times C$ is total if, for an arbitrary element b: B, $(\exists c: C \mid : f.b = c)$ Homework

(14.39) **Definition, Composition:** For functions f and g, $f \bullet g = g \circ f$.

(14.40) Let $g: B \to C$ and $f: C \to D$ be total functions.

Then the composition $f \bullet g$ of f and g is the total function defined by

 $(f \bullet g).b = f(g.b)$ Homework

(14.41) **Definitions:**

f is not one-to-one.

(14.41) **Definitions:**

 $f: B \to C$ f is total. f is onto. f is one-to-one.

- (14.42) Let f be a total function, and let f^{-1} be its relational inverse.
 - (a) Then f^{-1} is a function, i.e. is determinate, iff f is one-to-one.
 - (b) And, f^{-1} is total iff f is onto.

(14.43) **Definitions:** Let $f : B \to C$.

- (a) A *left inverse* of *f* is a function $g : C \to B$ such that $g \bullet f = i_B$.
- (b) A *right inverse* of *f* is a function $g: C \to B$ such that $f \bullet g = i_C$.
- (c) Function g is an *inverse* of f if it is both a left inverse and a right inverse.

(14.47) **Definition:** A binary relation ρ on a set *B* is called a *partial order on b* if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho \rangle$ is called a *partially ordered set* or *poset*.

We use the symbol \leq for an arbitrary partial order, sometimes writing $c \geq b$ instead of $b \leq c$.

Equivalence relation: <u>Reflexive</u> <u>Symmetric</u> <u>Transitive</u>

Partial order: <u>Reflexive</u> <u>Antisymmetric</u> <u>Transitive</u>

(14.47) **Definition:** A binary relation ρ on a set *B* is called a *partial order on b* if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho \rangle$ is called a *partially ordered set* or *poset*.

We use the symbol \leq for an arbitrary partial order, sometimes writing $c \geq b$ instead of $b \leq c$.

 $\frac{\text{Example 1}}{B: \{a, b, c\}}$ $\mathcal{P}B = \{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ $\langle \mathcal{P}B, \subseteq \rangle \text{ is a poset.}$ Reflexive: $D \subseteq D$ Antisymmetric: $D \subseteq E \land E \subseteq D \Rightarrow D = E$ Transitive: $D \subseteq E \land E \subseteq F \Rightarrow D \subseteq F$

(14.47) **Definition:** A binary relation ρ on a set *B* is called a *partial order on b* if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho \rangle$ is called a *partially ordered set* or *poset*.

We use the symbol \leq for an arbitrary partial order, sometimes writing $c \geq b$ instead of $b \leq c$.

 $\frac{\text{Example 2}}{B: \{3,4,6,8,12,24\}}$ $\langle B, | \rangle$ where | means "divides" is a poset. Reflexive: b | bAntisymmetric: $b | c \wedge c | b \Rightarrow b = c$ Transitive: $b | c \wedge c | d \Rightarrow b | d$

(14.47) **Definition:** A binary relation ρ on a set *B* is called a *partial order on b* if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho \rangle$ is called a *partially ordered set* or *poset*.

We use the symbol \leq for an arbitrary partial order, sometimes writing $c \geq b$ instead of $b \leq c$.

Hasse diagrams

- Each element in *B* is a dot.
- Elevation matters.
- If b ≤ c there is a line up from b to c, but only if there is not another element d that is "between" b and c such that b ≤ d ≤ c.

(14.47) **Definition:** A binary relation ρ on a set *B* is called a *partial order on b* if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho \rangle$ is called a *partially ordered set* or *poset*.

We use the symbol \leq for an arbitrary partial order, sometimes writing $c \geq b$ instead of $b \leq c$.

Example I

Example 2

(14.47.1) **Definition, Incomparable:** incomp $(b,c) \equiv \neg(b \leq c) \land \neg(c \leq b)$

 $\frac{\text{Example 1}}{\{a,b\} \text{ and } \{a,c\} \text{ are incomparable.}}$ $\neg(\{a,b\} \subseteq \{a,c\}) \land \neg(\{a,c\} \subseteq \{a,b\})$

Example 2 $\overline{6}$ and 8 are incomparable. $\neg(6 \mid 8) \land \neg(8 \mid 6)$

(14.48) **Definition:** Relation \prec is a *quasi order* or *strict partial order* if \prec is transitive and irreflexive

Example

The proper subset relation \subset is a quasi order. Irreflexive: $\neg(D \subset D)$ Transitive: $D \subset E \land E \subset F \Rightarrow D \subset F$

(14.48) **Definition:** Relation \prec is a *quasi order* or *strict partial order* if \prec is transitive and irreflexive

(14.47) \leq is a RAT relation (partial order). (14.48) \prec is a IT relation (strict partial order). We can prove that a IT relation is also antisymmetric. Therefore, \prec is a IAT relation.

Summary

Equivalence relation = is RST.

Partial order \leq is RAT.

Strict partial order \prec is IAT.

- (14.48.1) **Definition, Reflexive reduction:** Given \leq , its *reflexive reduction* \prec is computed by eliminating all pairs $\langle b, b \rangle$ from \leq .
- (14.48.2) Let \prec be the reflexive reduction of \leq . Then,

 $\neg(b \leq c) \equiv c \prec b \lor \operatorname{incomp}(b, c)$

- (14.49) (a) If ρ is a partial order over a set *B*, then ρi_B is a quasi order.
 - (b) If ρ is a quasi order over a set *B*, then $\rho \cup i_B$ is a partial order.

Reflexive reduction is the opposite of reflexive closure.

To compute the reflexive closure of a relation, you add ordered pairs to make the relation reflexive.

To compute the reflexive reduction of a relation, you eliminate ordered pairs to make the relation irreflexive.

(14.50) **Definition:** A partial order \leq over *B* is called a *total* or *linear* order if $(\forall b, c \mid : b \leq c \lor b \geq c)$, i.e. iff $\leq \cup \leq^{-1} = B \times B$. In this case, the pair $\langle B, \leq \rangle$ is called a *linearly ordered set* or a *chain*.

Hasse diagram of a total order. All pairs of elements are comparable. $\begin{aligned} & \frac{\text{Examples}}{\langle \mathbb{N}, \leq \rangle \text{ is a total order.}} \\ & \langle \{1, 3, 6, 9, 12\}, | \rangle \text{ is not a total order.} \\ & \langle \{1, 3, 6, 12, 24\}, | \rangle \text{ is a total order.} \end{aligned}$

(14.51) **Definitions:** Let *S* be a nonempty subset of poset $\langle U, \preceq \rangle$.

- (a) Element *b* of *S* is a *minimal element of S* if no element of *S* is smaller than *b*, i.e. if $b \in S \land (\forall c \mid c \prec b : c \notin S)$.
- (b) Element *b* of *S* is the *least element of S* if $b \in S \land (\forall c \mid c \in S : b \leq c)$.
- (c) Element *b* is a *lower bound of S* if $(\forall c \mid c \in S : b \leq c)$. (A lower bound of *S* need not be in *S*.)
- (d) Element *b* is the *greatest lower bound of S*, written *glb*.*S* if *b* is a lower bound and if every lower bound *c* satisfies $c \leq b$.

Example

In $(\mathbb{N}, |)$ with $S = \{3, 5, 7, 15, 20\}$

3, 5, 7 are minimal.

There is no least element.

For *b* to be least it must be related to every other element.

- (14.51) **Definitions:** Let *S* be a nonempty subset of poset $\langle U, \preceq \rangle$.
 - (a) Element *b* of *S* is a *minimal element of S* if no element of *S* is smaller than *b*, i.e. if $b \in S \land (\forall c \mid c \prec b : c \notin S)$.
 - (b) Element *b* of *S* is the *least element of S* if $b \in S \land (\forall c \mid c \in S : b \leq c)$.
 - (c) Element *b* is a *lower bound of S* if $(\forall c \mid c \in S : b \leq c)$. (A lower bound of *S* need not be in *S*.)
 - (d) Element *b* is the *greatest lower bound of S*, written *glb*.*S* if *b* is a lower bound and if every lower bound *c* satisfies $c \leq b$.

 $\frac{\text{Example}}{\ln \langle \mathbb{N}, | \rangle} \text{ with } S = \{2, 4, 6, 8\}$ 2 is minimal and least.

(14.51) **Definitions:** Let *S* be a nonempty subset of poset $\langle U, \preceq \rangle$.

- (a) Element *b* of *S* is a *minimal element of S* if no element of *S* is smaller than *b*, i.e. if $b \in S \land (\forall c \mid c \prec b : c \notin S)$.
- (b) Element *b* of *S* is the *least element of S* if $b \in S \land (\forall c \mid c \in S : b \leq c)$.
- (c) Element *b* is a *lower bound of S* if $(\forall c \mid c \in S : b \leq c)$. (A lower bound of *S* need not be in *S*.)
- (d) Element *b* is the *greatest lower bound of S*, written *glb*.*S* if *b* is a lower bound and if every lower bound *c* satisfies $c \leq b$.

Example

In set $B = \{a, b, c, d, e, f, g, h, i, j, k\}$ with the relation defined by the Hasse diagram and subset $S = \{i, j, k\}$ the lower bounds of $\{i, j, k\}$ are i, f, g, c, d, a. The greatest lower bound is glb.S = i.

(14.51) **Definitions:** Let *S* be a nonempty subset of poset $\langle U, \preceq \rangle$.

- (a) Element *b* of *S* is a *minimal element of S* if no element of *S* is smaller than *b*, i.e. if $b \in S \land (\forall c \mid c \prec b : c \notin S)$.
- (b) Element *b* of *S* is the *least element of S* if $b \in S \land (\forall c \mid c \in S : b \leq c)$.
- (c) Element *b* is a *lower bound of S* if $(\forall c \mid c \in S : b \leq c)$. (A lower bound of *S* need not be in *S*.)
- (d) Element *b* is the *greatest lower bound of S*, written *glb*.*S* if *b* is a lower bound and if every lower bound *c* satisfies $c \leq b$.

Example

In set $B = \{a, b, c, d, e, f, g, h, i, j, k\}$ with the relation defined by the Hasse diagram and subset $S = \{i, j, k\}$ the lower bounds of $\{i, j, k\}$ are i, f, g, c, d, a. The greatest lower bound is glb.S = i. The lower bound of $S = \{i, f, g\}$ is only a.

- (14.52) Every finite nonempty subset S of poset $\langle U, \preceq \rangle$ has a minimal element.
- (14.53) Let *B* be a nonempty subset of poset $\langle U, \preceq \rangle$.
 - (a) A least element of *B* is also a minimal element of *B* (but not necessarily vice versa). Homework
 - (b) A least element of *B* is also a greatest lower bound of *B* (but not necessarily vice versa).
 - (c) A lower bound of B that belongs to B is also a least element of B.

((14.54) **Definitions:** Let *S* be a nonempty subset of poset $\langle U, \preceq \rangle$.

- (a) Element *b* of *S* is a *maximal element of S* if no element of *S* is larger than *b*, i.e. if $b \in S \land (\forall c \mid b \prec c : c \notin S)$.
- (b) Element *b* of *S* is the greatest element of *S* if $b \in S \land (\forall c \mid c \in S : c \preceq b)$.
- (c) Element *b* is an *upper bound of S* if $(\forall c \mid c \in S : c \leq b)$. (An upper bound of *S* need not be in *S*.)
- (d) Element *b* is the *least upper bound of S*, written *lub.S*, if *b* is an upper bound and if every upper bound *c* satisfies $b \leq c$.

Relational databases

Binary relationSubset of ordered pairs from $B_1 \times B_2$ Trinary relationSubset of ordered triples from $B_1 \times B_2 \times B_3$ *n*-ary relation

Subset of ordered *n*-tuples from $B_1 \times B_2 \times B_3 \dots \times B_n$

Relational database tables

Relation

 $MyRelation = \{ \langle apple, baseball, cat, John \rangle, \langle banana, football, dog, Mary \rangle \}$

Table representation

MyRelation

apple	baseball	cat	John
banana	football	dog	Mary

Table representation with field names

MyRelation

Fruit	Тоу	Animal	Person
apple	baseball	cat	John
banana	football	dog	Mary

LADM has three relational database examples in Chapter 14. Each database has a group of relations, represented by tables, and each relation has a name. Below are the first two *n*-tuples in each relation in each database.

Example A. Two tables: PABM and MC.

PABM

Title	Month	Day	Year	Theater	Perfs
My Fair Lady	3	15	1956	Mark Hellinger	2717
Man of La Mancha	11	22	1965	ANTA Wash. Sq.	2329

MC

Title	Book	Lyrics	Music
My Fair Lady	Lerner	Lerner	Loewe
Man of La Mancha	Wasserman	Darion	Leigh

	0	peni	ng		
Title	Month	Day	Year	Theater	Perfs
My Fair Lady	3	15	1956	Mark Hellinger	2717
Man of La Mancha	11	22	1965	ANTA Wash. Sq.	2329
Oklahoma!	3	31	1943	St. James	2248
Hair	4	29	1968	Biltmore	1750
The King and I	3	29	1951	St. James	1246
Guys and Dolls	11	24	1950	Forty-Sixth St.	1200
Cabaret	11	20	1966	Broadhurst	1166
Damn Yankees	5	5	1955	Forty-Sixth St.	1019
Camelot	12	3	1960	Majestic	878
West Side Story	9	26	1957	Winter Garden	732

-		Contraction of the state of the second s	And a second second				
	TABLE 14.3. MUSICAL CREATORS (MC)						
	Title	Book	Lyrics	Music			
	My Fair Lady	Lerner	Lerner	Loewe			
	Man of La Mancha	Wasserman	Darion	Leigh			
	Oklahoma!	Hammerstein	Hammerstein	Rodgers			
	Hair	Ragni & Rado	Ragni & Rado	MacDermot			
	The King and I	Hammerstein	Hammerstein .	Rodgers			
	Guys and Dolls	Swerling & Burrows	Loesser	Loesser			
	Cabaret	Masteroff	Ebb	Kander			
	Damn Yankees	Abbott & Wallop	Adler & Ross	Adler & Ross			
	Camelot	Lerner	Lerner	Loewe			
	West Side Story	Laurents	Sondheim	Bernstein			

 $PABM = Title \times Month \times Day \times Year \times Theater \times Perfs$

Title is the set of titles for Broadway shows; Month is the set 1..12 corresponding to the months of the year; Day is the set 1..31 corresponding to the days of the months; Year is the set \mathbb{Z}^+ of positive integers; Theater is the set of theaters in and around Broadway, NYC; Perfs is the set \mathbb{Z}^+ of positive integers.

PABM(Title, Month, Day, Year, Theater, Perfs) MC(Title, Book, Lyrics, Music)
Example B. One table: ALL.

ALL

Title	Month	Day	Year	Theater	Perfs	Book	Lyrics	Music
My Fair Lady	3 11	15	1956	Mark Hellinger	2717	Lerner	Lerner	Loewe
Man of La Mancha		22	1965	ANTA Wash. Sq.	2329	Wasserman	Darion	Leigh

ALL(Title, Month, Day, Year, Theater, Perfs, Book, Lyrics, Music) .

Example C. Six tables: Where, When, Author, Run, Lyricist, and Composer.

Where	
Title	Theater
My Fair Lady Man of La Mancha	Mark Hellinger ANTA Wash. Sq.

When	
------	--

Title	Month	Day	Year
My Fair Lady	3	15	1956
Man of La Mancha	11	22	1965

Title	Book
My Fair Lady	Lerner
Man of La Mancha	Wasserman

Run	
Title	Perfs
My Fair Lady Man of La Mancha	2717 2329

Lyricist	
Title	Lyrics
My Fair I adv	I erner

My Fair Lady	Lerner
Man of La Mancha	Darion

Composer

Title	Music
My Fair Lady	Loewe
Man of La Mancha	Leigh

Where(Title, Theater)
When(Title, Month, Day, Year)
Author(Title, Book)
Run(Title, Perfs)
Lyricist(Title, Lyrics)
Composer(Title, Music) .

- (14.56.1) **Definition, select:** For Relation *R* and predicate *F*, which may contain names of fields of *R*, $\sigma(R,F) = \{t \mid t \in R \land F\}$
- (14.56.2) **Definition, project:** For A_1, \ldots, A_m a subset of the names of the fields of relation R, $\pi(R, A_1, \ldots, A_m) = \{t \mid t \in R : \langle t.A_1, t.A_2, \ldots, t.A_m \rangle \}$
- (14.56.3) **Definition, natural join:** For Relations R1 and R2, $R1 \bowtie R2$ has all the attributes that R1 and R2 have, but if an attribute appears in both, then it appears only once in the result; further, only those tuples that agree on this common attribute are included.

Select

 σ selects rows from *R* that satisfy *F*.

Example: Use database A to list all the 6-tuples that opened on Forty-Sixth St. σ (PABM, Theater = Forty-Sixth St.)

Project

 π selects fields (attributes) from R as listed.

Example: Use database A to list only the titles of the musicals that opened on Forty-Sixth St.

 $\pi(\sigma(\text{PABM}, \text{Theater} = \text{Forty-Sixth St.}), \text{Title})$

- (14.56.1) **Definition, select:** For Relation *R* and predicate *F*, which may contain names of fields of *R*, $\sigma(R,F) = \{t \mid t \in R \land F\}$
- (14.56.2) **Definition, project:** For A_1, \ldots, A_m a subset of the names of the fields of relation R, $\pi(R, A_1, \ldots, A_m) = \{t \mid t \in R : \langle t.A_1, t.A_2, \ldots, t.A_m \rangle \}$
- (14.56.3) **Definition, natural join:** For Relations R1 and R2, $R1 \bowtie R2$ has all the attributes that R1 and R2 have, but if an attribute appears in both, then it appears only once in the result; further, only those tuples that agree on this common attribute are included.

Join

 \bowtie is a binary infix operator.

Example: Use database C to list the theater where each book was performed. Author \bowtie Where has three columns: Title, Book, Theater.

To list just the Book and Theater

 π (Author \bowtie Where, Book, Theater)

Example: Use database A to list who wrote the lyrics for the show that had 2717 performances.

 $\pi(\sigma(\text{PABM} \bowtie \text{MC}, \text{Perfs} = 2717), \text{Lyrics})$