A Logical Approach to Discrete Math

(14.2) Axiom, Pair equality: $\langle b, c\rangle=\left\langle b^{\prime}, c^{\prime}\right\rangle \equiv b=b^{\prime} \wedge c=c^{\prime}$
(14.2.1) Ordered pair one-point rule: Provided $\neg o c c u r s\left({ }^{\prime} x, y^{\prime},{ }^{‘} E, F\right.$ '), $(\star x, y \mid\langle x, y\rangle=\langle E, F\rangle: P)=P[x, y:=E, F] \quad$ Homework

Sets: $\quad\{2,3\}=\{3,2\}$
Ordered pairs: $\quad\langle 2,3\rangle \neq\langle 3,2\rangle$

A Logical Approach to Discrete Math

(14.3) Axiom, Cross product: $\quad S \times T=\{b, c \mid b \in S \wedge c \in T:\langle b, c\rangle\}$

$$
\begin{aligned}
& \text { Example } \\
& S=\{a, b, c\} \\
& T=\{4,6\} \\
& S \times T=\{\langle a, 4\rangle,\langle a, 6\rangle,\langle b, 4\rangle,\langle b, 6\rangle,\langle c, 4\rangle,\langle c, 6\rangle\}
\end{aligned}
$$

$\mathbb{R} \times \mathbb{R}$ is the set of all points in the plane.

A Logical Approach to Discrete Math

(11.4) Axiom, Extensionality: $\quad S=T \equiv(\forall x \mid: x \in S \equiv x \in T)$
(14.3.1) Axiom, Ordered pair extensionality:

$$
U=V \equiv(\forall x, y \mid:\langle x, y\rangle \in U \equiv\langle x, y\rangle \in V)
$$

U and V are sets of ordered pairs.
Example
These two sets are equal.

$$
\begin{aligned}
U & =\{\langle 1,3\rangle,\langle 5,0\rangle,\langle 4,2\rangle\} \\
V & =\{\langle 4,2\rangle,\langle 1,3\rangle,\langle 5,0\rangle\}
\end{aligned}
$$

A Logical Approach to Discrete Math

Relations and Functions

(14.2) Axiom, Pair equality: $\quad\langle b, c\rangle=\left\langle b^{\prime}, c^{\prime}\right\rangle \equiv b=b^{\prime} \wedge c=c^{\prime}$
(14.2.1) Ordered pair one-point rule: $\operatorname{Provided} \neg \operatorname{occurs}\left({ }^{‘} x, y^{\prime},{ }^{‘} E, F\right.$ '), $(\star x, y \mid\langle x, y\rangle=\langle E, F\rangle: P)=P[x, y:=E, F]$
(14.3) Axiom, Cross product: $\quad S \times T=\{b, c \mid b \in S \wedge c \in T:\langle b, c\rangle\}$
(14.3.1) Axiom, Ordered pair extensionality:

$$
U=V \equiv(\forall x, y \mid:\langle x, y\rangle \in U \equiv\langle x, y\rangle \in V)
$$

Theorems for cross product.
(14.4) Membership: $\langle x, y\rangle \in S \times T \equiv x \in S \wedge y \in T$ Homework
(14.5) $\langle x, y\rangle \in S \times T \equiv\langle y, x\rangle \in T \times S$ Homework
(14.6) $S=\emptyset \Rightarrow S \times T=T \times S=\emptyset$
(14.7) $S \times T=T \times S \equiv S=\emptyset \vee T=\emptyset \vee S=T$

A Logical Approach to Discrete Math

(14.8) \quad Distributivity of \times over \cup :
(a) $S \times(T \cup U)=(S \times T) \cup(S \times U)$
(b) $(S \cup T) \times U=(S \times U) \cup(T \times U)$
(14.9) Distributivity of \times over \cap :
(a) $S \times(T \cap U)=(S \times T) \cap(S \times U)$
(b) $(S \cap T) \times U=(S \times U) \cap(T \times U)$
(14.10) Distributivity of \times over - :

$$
S \times(T-U)=(S \times T)-(S \times U)
$$

(14.11) Monotonicity: $T \subseteq U \Rightarrow S \times T \subseteq S \times U$
(14.12) $S \subseteq U \wedge T \subseteq V \Rightarrow S \times T \subseteq U \times V$
(14.13) $S \times T \subseteq S \times U \wedge S \neq \emptyset \Rightarrow T \subseteq U$
(14.14) $\quad(S \cap T) \times(U \cap V)=(S \times U) \cap(T \times V)$
(14.15) For finite S and $T, \quad \#(S \times T)=\# S \cdot \# T$

A Logical Approach to Discrete Math

Prove (14.8a) $\quad S \times(T \cup U)=(S \times T) \cup(S \times U)$

Proof

Let $\langle x, y\rangle$ be an arbitrary ordered pair and prove that

$$
\langle x, y\rangle \in S \times(T \cup U) \equiv\langle x, y\rangle \in(S \times T) \cup(S \times U)
$$

$$
\langle x, y\rangle \in S \times(T \cup U)
$$

$$
=\langle(14.4)\rangle
$$

$$
x \in S \wedge y \in(T \cup U)
$$

$$
=\langle(11.20)\rangle
$$

$$
x \in S \wedge(y \in T \vee y \in U)
$$

$=\langle(3.46)$ Distributivity of \wedge over $\vee\rangle$ $(x \in S \wedge y \in T) \vee(x \in S \wedge y \in U)$
$=\langle(14.4$ twice $)\rangle$
$\langle x, y\rangle \in(S \times T) \vee\langle x, y\rangle \in(S \times U)$
$=\langle(11.20)\rangle$ $\langle x, y\rangle \in(S \times T) \cup(S \times U) \quad / /$

A Logical Approach to Discrete Math

Relations.

(14.15.1) Definition, Binary relation:

A binary relation over $B \times C$ is a subset of $B \times C$.
Example
$S=\{0,1,2\}$
$S \times S=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle$,

$$
\langle 1,0\rangle,\langle 1,1\rangle,\langle 1,2\rangle,
$$

$$
\langle 2,0\rangle,\langle 2,1\rangle,\langle 2,2\rangle\}
$$

The"less than" relation over $S \times S$ is a subset of the set $S \times S$ consisting of those ordered pairs $\langle x, y\rangle$ for which $x<y$ is true.

$$
<=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}
$$

Directed graph representation

Matrix representation

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad\langle 1,2\rangle
$$

A Logical Approach to Discrete Math

(14.15.2) Definition, Identity: The identity relation i_{B} on B is $i_{B}=\{x: B \mid:\langle x, x\rangle\}$
(14.15.3) Identity lemma: $\langle x, y\rangle \in i_{B} \equiv x=y$ Homework

Example
$B=\{a, b, c, d\}$
The identity relation over $B \times B$ is
$i_{B}=\{\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle d, d\rangle\}$
Matrix representation
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

A Logical Approach to Discrete Math

(14.15.4) Notation: $\langle b, c\rangle \in \rho$ and $b \rho c$ are interchangeable notations.
(14.15.5) Conjunctive meaning: $b \rho c \sigma d \equiv b \rho c \wedge c \sigma d$
(14.15.4) Example

If ρ is the less than relation $<$ then
$\langle 0,2\rangle \in<$ and $0<2$ are interchangeable notations.
(14.15.5) Example

If ρ is the less than relation $<$ and σ is the equals relation $=$ then $b<c=d \equiv b<c \wedge c=d$

A Logical Approach to Discrete Math

The domain Dom. ρ and range Ran. ρ of a relation ρ on $B \times C$ are defined by (14.16) Definition, Domain: Dom. $\rho=\{b: B \mid(\exists c \mid: b \rho c)\}$
(14.17) Definition, Range: Ran. $\rho=\{c: C \mid(\exists b \mid: b \rho c)\}$

Example

$$
\begin{aligned}
& B=\{2,3,4,5\} \\
& C=\{4,5,6,7\}
\end{aligned}
$$

Define the predecessor relation pred over $B \times C$ as

$$
\text { pred }=\{\langle 3,4\rangle,\langle 4,5\rangle,\langle 5,6\rangle\}
$$

$$
\begin{aligned}
& \text { Dom.pred }=\{3,4,5\} \\
& \text { Ran.pred }=\{4,5,6\}
\end{aligned}
$$

A Logical Approach to Discrete Math

The inverse ρ^{-1} of a relation ρ on $B \times C$ is the relation defined by
(14.18) Definition, Inverse: $\langle b, c\rangle \in \rho^{-1} \equiv\langle c, b\rangle \in \rho$, for all $b: B, c: C$

```
Example
\(S=\{0,1,2\}\)
The "less than" relation over \(S \times S\) is
\[
<=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}
\]
```

The inverse of the "less than" relation is

$$
<^{-1}=\{\langle 1,0\rangle,\langle 2,0\rangle,\langle 2,1\rangle\}
$$

which is the "greater than" relation $>$.

$$
<^{-1}=>
$$

A Logical Approach to Discrete Math

Operations on relations

Because ρ and σ are sets, you can operate on them with $\cup, \cap, \sim,-$.
Example
$B=\{0,1,2\}$
$<$ is $\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}$
$=$ is $\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle\}$
$<U=$ is $\quad\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\} \quad$ which is \leq.
$\sim<\quad$ is $\quad\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 1,1\rangle,\langle 2,0\rangle,\langle 2,1\rangle,\langle 2,2\rangle\} \quad$ which is \geq.
$\leq \cap=$ is $=$.
$\leq-=$ is $<$.

A Logical Approach to Discrete Math

(14.19) Let ρ and σ be relations.
(a) $\operatorname{Dom}\left(\rho^{-1}\right)=$ Ran. ρ Homework
(b) $\operatorname{Ran}\left(\rho^{-1}\right)=\operatorname{Dom} . \rho$
(c) If ρ is a relation on $B \times C$, then ρ^{-1} is a relation on $C \times B$
(d) $\left(\rho^{-1}\right)^{-1}=\rho$ Homework
(e) $\rho \subseteq \sigma \equiv \rho^{-1} \subseteq \sigma^{-1}$ Homework

A Logical Approach to Discrete Math

Let ρ be a relation on $B \times C$ and σ be a relation on $C \times D$. The product
of ρ and σ, denoted by $\rho \circ \sigma$, is the relation on $B \times D$ defined by
(14.20) Definition, Product: $\langle b, d\rangle \in \rho \circ \sigma \equiv(\exists c \mid c \in C:\langle b, c\rangle \in \rho \wedge\langle c, d\rangle \in \sigma)$
or, using the alternative notation by
(14.21) Definition, Product: $\quad b(\rho \circ \sigma) d \equiv(\exists c \mid: b \rho c \sigma d)$

$$
\begin{array}{lll}
B=\{2,3,4,5\} & \text { pred }=\{\langle 3,4\rangle,\langle 4,5\rangle,\langle 5,6\rangle\} & \text { pred } \circ \text { swap }=\{\langle 3,7\rangle,\langle 4,6\rangle,\langle 5,5\rangle\} \\
C=\{4,5,6,7\} & \text { swap }=\{\langle 4,7\rangle,\langle 5,6\rangle,\langle 6,5\rangle,\langle 7,4\rangle\} & \\
D=\{4,5,6,7\} &
\end{array}
$$

Dom.pred $=\{3,4,5\} \quad$ Dom.swap $=\{4,5,6,7\}$
Ran.pred $=\{4,5,6\} \quad$ Ran.swap $=\{4,5,6,7\}$

Dom. $($ pred \circ swap $)=\{3,4,5\}$
Ran. $($ pred \circ swap $)=\{5,6,7\}$

A Logical Approach to Discrete Math

Theorems for relation product.
(14.22) Associativity of $\circ: \quad \rho \circ(\sigma \circ \theta)=(\rho \circ \sigma) \circ \theta$ Handout
(14.23) Distributivity of \circ over \cup :
(a) $\rho \circ(\sigma \cup \theta)=(\rho \circ \sigma) \cup(\rho \circ \theta)$ Homework
(b) $(\sigma \cup \theta) \circ \rho=(\sigma \circ \rho) \cup(\theta \circ \rho)$
(14.24) Distributivity of \circ over \cap :
(a) $\rho \circ(\sigma \cap \theta) \subseteq(\rho \circ \sigma) \cap(\rho \circ \theta)$
(b) $(\sigma \cap \theta) \circ \rho \subseteq(\sigma \circ \rho) \cap(\theta \circ \rho)$

A Logical Approach to Discrete Math

$$
\begin{array}{ll}
\text { (14.25) } & \text { Definition: } \\
& \rho^{0}=i_{B} \\
& \rho^{n+1}=\rho^{n} \circ \rho \quad \text { for } n \geq 0
\end{array}
$$

Example

$$
\begin{aligned}
& B=\{0,1,2,3,4\} \\
& B \times B=\{\langle 0,0\rangle,\langle 0,1\rangle, \ldots,\langle 4,3\rangle,\langle 4,4\rangle\} \\
& <=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\langle 0,4\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,4\rangle\} \\
& <^{2}=<\circ<=\{\langle 0,2\rangle,\langle 0,3\rangle,\langle 0,4\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle\}
\end{aligned}
$$

A Logical Approach to Discrete Math

(14.25) Definition:

$$
\begin{aligned}
& \rho^{0}=i_{B} \\
& \rho^{n+1}=\rho^{n} \circ \rho \quad \text { for } n \geq 0
\end{aligned}
$$

Example

$$
\begin{aligned}
& B=\{0,1,2,3,4\} \\
& B \times B=\{\langle 0,0\rangle,\langle 0,1\rangle, \ldots,\langle 4,3\rangle,\langle 4,4\rangle\} \\
& <=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\langle 0,4\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,4\rangle\} \\
& <^{2}=<\circ<=\{\langle 0,2\rangle,\langle 0,3\rangle,\langle 0,4\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle\} \\
& <^{3}=<^{2} \circ<=\{\langle 0,3\rangle,\langle 0,4\rangle,\langle 1,4\rangle\}
\end{aligned}
$$

A Logical Approach to Discrete Math

(14.25) Definition:

$$
\begin{aligned}
& \rho^{0}=i_{B} \\
& \rho^{n+1}=\rho^{n} \circ \rho \quad \text { for } n \geq 0
\end{aligned}
$$

Example

$$
\begin{aligned}
& B=\{0,1,2\} \\
& B \times B=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,0\rangle,\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,0\rangle,\langle 2,1\rangle,\langle 2,2\rangle\} \\
& \leq=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,2\rangle\} \\
& \leq^{2}=\leq \circ \leq=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,2\rangle\} \\
& \leq \circ \leq=\leq \text { Idempotent }
\end{aligned}
$$

A Logical Approach to Discrete Math

Table 14.1 Classes of relations ρ over set B

	Name	Property
Alternative		
(a) reflexive	$(\forall b \mid: b \rho b)$	$i_{B} \subseteq \rho$
(b) irreflexive	$(\forall b \mid: \neg(b \rho b))$	$i_{B} \cap \rho=\emptyset$
(c) symmetric	$(\forall b, c \mid: b \rho c \equiv c \rho b)$	$\rho^{-1}=\rho$
(d) antisymmetric	$(\forall b, c \mid: b \rho c \wedge c \rho b \Rightarrow b=c)$	$\rho \cap \rho^{-1} \subseteq i_{B}$
(e) asymmetric	$(\forall b, c \mid: b \rho c \Rightarrow \neg(c \rho b))$	$\rho \cap \rho^{-1}=\emptyset$
(f) transitive	$(\forall b, c, d \mid: b \rho c \wedge c \rho d \Rightarrow b \rho d)$	$\rho=\left(\cup i \mid i>0: \rho^{i}\right)$

Memorize

A Logical Approach to Discrete Math

Table 14.1 Classes of relations ρ over set B

Name
(a) reflex
(b) irrefle
(c) symm
(d) antisy
(e) asymm
(f) transi
Example

The $>$ relation over \mathbb{Z}
(a) $b>b$

No, $>$ is not reflexive
(b) $\neg(b>b)$

Yes, $>$ is irreflexive
(c) $b>c \equiv c>b$

No, $>$ is not symmetric
(d) $b>c \wedge c>b \Rightarrow b=c \quad$ Yes, $>$ is antisymmetric because the antecedent is always false
(e) $b>c \Rightarrow \neg(c>b) \quad$ Yes, $>$ is asymmetric
(f) $b>c \wedge c>d \Rightarrow b>d \quad$ Yes, $>$ is transitive

A Logical Approach to Discrete Math

Table 14.1 Classes of relations ρ over set B

Name
(a) reflex
(b) irrefle
(c) symm
(d) antisy
(e) asym
(f) trans
Example

The square relation over \mathbb{Z}

$$
\text { square }=\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,4\rangle,\langle 3,9\rangle, \ldots\}
$$

(a) b square $b \quad$ No, square is not reflexive. It does not have $\langle 2,2\rangle$
(b) \neg (b square $b) \quad$ No, square is not irreflexive. It has $\langle 1,1\rangle$.

A Logical Approach to Discrete Math

Table 14.1 Classes of relations ρ over set B

Name	Property	Alternative		
(a) reflexive	$(\forall b \mid: b \rho b)$	$i_{B} \subseteq \rho$		
(b) irreflexive	$(\forall b \mid: \neg(b \rho b))$	$i_{B} \cap \rho=\emptyset$		
(c) symmetric	$(\forall b, c \mid: b \rho c \equiv c \rho b)$	$\rho^{-1}=\rho$		
(d) antisymmetric	$(\forall b, c \mid: b \rho c \wedge c \rho b \Rightarrow b=c)$	$\rho \cap \rho^{-1} \subseteq i_{B}$		
(e) asymmetric	$(\forall b, c \mid: b \rho c \Rightarrow \neg(c \rho b))$	$\rho \cap \rho^{-1}=\emptyset$		
(f) transitive	$(\forall b, c, d \\|: b \rho c \wedge c \rho d \Rightarrow b \rho d)$	$\rho=\left(\cup i \mid i>0: \rho^{i}\right)$		
Reflexive relations - A reflexive relation ρ is defined as $(\forall b \mid: b \rho b)$, or, alternatively as $i_{B} \subseteq \rho$. In terms of the matrix, the diagonal must contain all 1's. Each underline entry _ in the matrix of the reflexive relation on the right represents either a one or a zero.				
Irreflexive relations - An irreflexive relation ρ is defined as $(\forall b \mid: \neg(b \rho b))$ or, alternatively, as $i_{B} \cap \rho=\emptyset$. In terms of the matrix, the diagonal must contain all 0 's. It is possible for a relation to be neither reflexive nor irreflexive. The first example is one such relation.			$\left[\begin{array}{lllll}0 & - & - & - \\ - & 0 & - & - \\ - & - & 0 & - \\ - & - & - & 0\end{array}\right]$	

A Logical Approach to Discrete Math

Table 14.1 Classes of relations ρ over set B

Name
(a) reflexive
(b) irreflexive
(c) symmetric
(d) antisymmetric
(e) asymmetric
(f) transitive

Property

(a) reflexive
($\forall b \mid: b \rho b)$
$(\forall b \mid: \neg(b \rho b))$
$(\forall b, c \mid: b \rho c \equiv c \rho b)$
$(\forall b, c \mid: b \rho c \wedge c \rho b \Rightarrow b=c)$
$(\forall b, c \mid: b \rho c \Rightarrow \neg(c \rho b))$
$(\forall b, c, d \mid: b \rho c \wedge c \rho d \Rightarrow b \rho d)$

Alternative

$$
\begin{aligned}
& i_{B} \subseteq \rho \\
& i_{B} \cap \rho=\emptyset \\
& \rho^{-1}=\rho \\
& \rho \cap \rho^{-1} \subseteq i_{B} \\
& \rho \cap \rho^{-1}=\emptyset \\
& \rho=\left(\cup i \backslash i>0: \rho^{i}\right)
\end{aligned}
$$

Symmetric relations - A symmetric relation ρ is defined as $(\forall b, c \mid: b \rho c \equiv c \rho b)$ or, alternatively, as $\rho^{-1}=\rho$. In terms of the matrix, it must be symmetric about the diagonal. For example, in the matrix on the right the 1 in the first row, third column represents ordered pair $\langle w, y\rangle$, and the 1 in the third row, first column represents ordered pair $\langle y, w\rangle$. The 0 in the second row, third column represents the absence of $\langle x, y\rangle$, and the 0 in the third row,

$$
\left[\begin{array}{cccc}
- & 1 & 1 & 1 \\
1 & - & 0 & 0 \\
1 & 0 & & 0 \\
1 & 0 & 0 & -
\end{array}\right]
$$ second column represents the absence of $\langle y, x\rangle$.

Antisymmetric relations - An antisymmetric relation ρ is defined as $(\forall b, c \mid: b \rho c \wedge$ $c \rho b \Rightarrow b=c$) or, alternatively, as $\rho \cap \rho^{-1} \subseteq i_{B}$. In terms of the matrix, the diagonal elements can be either 0 or 1 . If $b \rho b$ is true, then both the antecedent and consequent are true, and so the implication is true. If $b \rho b$ is false, then the antecedent is false, and so the implication is true. For the off-diagonal elements, where $b \neq c$, you cannot have both $b \rho c$ and $c \rho b$. However, you can have neither.

A Logical Approach to Discrete Math

Table 14.1 Classes of relations ρ over set B

Name	Property	Alternative
(a) reflexive	$(\forall b \mid: b \rho b)$	$i_{B} \subseteq \rho$
(b) irreflexive	$(\forall b \mid: \neg(b \rho b))$	$i_{B} \cap \rho=\emptyset$
(c) symmetric	$(\forall b, c \mid: b \rho c \equiv c \rho b)$	$\rho^{-1}=\rho$
(d) antisymmetric	$(\forall b, c \mid: b \rho c \wedge c \rho b \Rightarrow b=c)$	$\rho \cap \rho^{-1} \subseteq i_{B}$
(e) asymmetric	$(\forall b, c \mid: b \rho c \Rightarrow \neg(c \rho b))$	$\rho \cap \rho^{-1}=\emptyset$
(f) transitive	$(\forall b, c, d \mid: b \rho c \wedge c \rho d \Rightarrow b \rho d)$	$\rho=\left(\cup i \mid i>0: \rho^{i}\right)$

A Logical Approach to Discrete Math

Prove Table 14.1(a) $\quad(\forall b \mid: b \rho b) \equiv i_{B} \subseteq \rho$

```
Proof
    \(i_{B} \subseteq \rho\)
\(=\langle(11.13)\) Axiom, Subset \(\rangle\)
    \(\left(\forall b, c \mid\langle b, c\rangle \in i_{B}:\langle b, c\rangle \in \rho\right)\)
\(=\langle(14.15 .3)\) Identity lemma \(\rangle\)
    \((\forall b, c \mid b=c:\langle b, c\rangle \in \rho)\)
\(=\langle(8.20)\) Nesting, with \(R:=\) true \(\rangle\)
    \((\forall b \mid:(\forall c \mid b=c:\langle b, c\rangle \in \rho))\)
\(=\langle(8.14)\) One-point rule and textual substitution \(\rangle\)
    \((\forall b \mid\langle b, b\rangle \in \rho)\)
\(=\langle(14.15 .4)\) Notation \(\rangle\)
    \((\forall b \mid: b \rho b) \quad / /\)
```


A Logical Approach to Discrete Math

(14.30.1) Definition: Let ρ be a relation on a set. The reflexive closure of ρ is the relation $r(\rho)$ that satisfies:
(a) $r(\rho)$ is reflexive;
(b) $\rho \subseteq r(\rho)$;
(c) If any relation σ is reflexive and $\rho \subseteq \sigma$, then $r(\rho) \subseteq \sigma$.

Example
$B=\{0,1,2\}$
$<=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}$
By part (b), every ordered pair in $<$ must also be in $r(<)$.

$$
r(<)=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle, \ldots\}
$$

By part (a), $r(<)$ must be reflexive.

$$
r(<)=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle,\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle, \ldots\}
$$

By part (c), there can be no other ordered pairs in $r(<)$.

$$
r(<)=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle,\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle\}
$$

The relation

$$
\sigma=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle,\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle\langle 1,0\rangle\}
$$

also satisfies (a) and (b) because (a) σ is reflexive, and (b) $<\subseteq \sigma$.
However, σ cannot be the reflexive closure of $<$, because $r(<) \subseteq \sigma$.
To compute $r(\rho)$, add the fewest number of ordered pairs to ρ that will make it reflexive.

A Logical Approach to Discrete Math

(14.30.2) Definition: Let ρ be a relation on a set. The symmetric closure of ρ is the relation $s(\rho)$ that satisfies:
(a) $s(\rho)$ is symmetric;
(b) $\rho \subseteq s(\rho)$;
(c) If any relation σ is symmetric and $\rho \subseteq \sigma$, then $s(\rho) \subseteq \sigma$.

Example

$$
\begin{aligned}
& B=\{0,1,2\} \\
& <=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\} \\
& s(<)=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle,\langle 1,0\rangle,\langle 2,0\rangle,\langle 2,1\rangle\}
\end{aligned}
$$

A Logical Approach to Discrete Math

(14.30.3) Definition: Let ρ be a relation on a set. The transitive closure of ρ is the relation ρ^{+}that satisfies:
(a) ρ^{+}is transitive;
(b) $\rho \subseteq \rho^{+}$;
(c) If any relation σ is transitive and $\rho \subseteq \sigma$, then $\rho^{+} \subseteq \sigma$.
(14.30.4) Definition: Let ρ be a relation on a set. The reflexive transitive closure of ρ is the relation ρ^{*} that is both the reflexive and the transitive closure of ρ.

```
Example
\(B=\{0,1,2,3\}\)
pred \(=\{\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle\}\)
pred \(^{+}=\{\)
    \(\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle\),
        \(\langle 0,2\rangle,\langle 1,3\rangle\),
        \(\langle 0,3\rangle\}\)
pred \(^{+}=<\)
pred \(^{*}=\{\)
        \(\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle,\langle 0,2\rangle,\langle 1,3\rangle,\langle 0,3\rangle\),
        \(\langle 0,0\rangle\langle 1,1\rangle\langle 2,2\rangle\langle 3,3\rangle\}\)
pred \(^{*}=\leq\)
```


A Logical Approach to Discrete Math

Exercise 14.32

	$\rho \cup \sigma$	$\rho \cap \sigma$	$\rho-\sigma$	$(B \times B)-\rho$
Reflexive	Y		N	
Irreflexive			Y	
Symmetric				
Antisymmetric				
Transitive				

Is reflexivity preserved under union?
If ρ is reflexive and σ is reflexive, is $\rho \cup \sigma$ reflexive?
If ρ has $\langle a, a\rangle,\langle b, b\rangle, \ldots$, and σ has $\langle a, a\rangle,\langle b, b\rangle, \ldots$, does $\rho \cup \sigma$ have $\langle a, a\rangle,\langle b, b\rangle, \ldots$?
Is reflexivity preserved under set difference?
If ρ is reflexive and σ is reflexive, is $\rho-\sigma$ reflexive?
If ρ has $\langle a, a\rangle,\langle b, b\rangle, \ldots$, and σ has $\langle a, a\rangle,\langle b, b\rangle, \ldots$, does $\rho-\sigma$ have $\langle a, a\rangle,\langle b, b\rangle, \ldots$?
Is irreflexivity preserved under set difference?
If ρ is irreflexive and σ is irreflexive, is $\rho-\sigma$ irreflexive?
If ρ and σ are both missing $\langle a, a\rangle,\langle b, b\rangle, \ldots$, is $\rho-\sigma$ missing $\langle a, a\rangle,\langle b, b\rangle, \ldots$?

A Logical Approach to Discrete Math

Equivalence relations.

(14.33) Definition: A relation is an equivalence relation iff it is reflexive, symmetric, and transitive
(14.34) Definition: Let ρ be an equivalence relation on B. Then $[b] \rho$, the equivalence class of b, is the subset of elements of B that are equivalent (under ρ) to b : $x \in[b]_{\rho} \equiv x \rho b$
(14.33) Example

$$
B=\{0,1,2,3,4\}
$$

$$
\rho=\{
$$

$$
\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,
$$

$$
\langle 0,1\rangle,\langle 1,0\rangle,\langle 0,3\rangle,\langle 3,0\rangle,\langle 0,4\rangle,\langle 4,0\rangle,
$$

$$
\langle 2,4\rangle,\langle 4,2\rangle\}
$$

(14.34) Example
$[0]=\{0,1,3\}$
$[1]=\{1,0,3\}$
$[2]=\{2,4\}$
$[3]=\{3,1,0\}$
$[4]=\{4,2\}$

Partition

$$
\begin{aligned}
& {[0] \cap[2]=\emptyset} \\
& {[0] \cup[2]=B} \\
& \{[0],[2]\} \text { is a partition of } B . \\
& \{\{0,1,3\},\{2,4\}\} \text { is a partition of } B .
\end{aligned}
$$

A Logical Approach to Discrete Math

(11.76) Axiom, Partition: \quad Set S partitions T if
(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T, that is, if

$$
(\forall u, v \mid u \in S \wedge v \in S \wedge u \neq v: u \cap v=\emptyset) \wedge(\cup u \mid u \in S: u)=T
$$

A Logical Approach to Discrete Math

(11.76) Axiom, Partition: \quad Set S partitions T if
(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T, that is, if

$$
(\forall u, v \mid u \in S \wedge v \in S \wedge u \neq v: u \cap v=\emptyset) \wedge(\cup u \mid u \in S: u)=T
$$

A Logical Approach to Discrete Math

(11.76) Axiom, Partition: \quad Set S partitions T if
(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T, that is, if
$(\forall u, v \mid u \in S \wedge v \in S \wedge u \neq v: u \cap v=\emptyset) \wedge(\cup u \mid u \in S: u)=T$

Example
$T:\{a, b, c, d, e, f\}$
$S:\{\{a, c\},\{b, e, f\},\{d\}\}$
S partitions T.

A Logical Approach to Discrete Math

(11.76) Axiom, Partition: \quad Set S partitions T if
(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T, that is, if

$$
(\forall u, v \mid u \in S \wedge v \in S \wedge u \neq v: u \cap v=\emptyset) \wedge(\cup u \mid u \in S: u)=T
$$

Example
$T:\{a, b, c, d, e, f\}$
$S:\{\{a, c\},\{b, e, f\},\{d, e\}\}$
S does not partition T because $\{b, e, f\} \cap\{d, e\} \neq \emptyset$.

A Logical Approach to Discrete Math

(11.76) Axiom, Partition: \quad Set S partitions T if
(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T, that is, if

$$
(\forall u, v \mid u \in S \wedge v \in S \wedge u \neq v: u \cap v=\emptyset) \wedge(\cup u \mid u \in S: u)=T
$$

Example

$T:\{a, b, c, d, e, f\}$
$S:\{\{a, c\},\{e, f\},\{d\}\}$
S does not partition T because $\{a, c\} \cup\{e, f\} \cup\{d\} \neq T$.

A Logical Approach to Discrete Math

(14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The following three predicates are equivalent:
(a) $b \rho c$
(b) $[b] \cap[c] \neq \emptyset$
(c) $[b]=[c]$

That is, $(b \rho c)=([b] \cap[c] \neq \emptyset)=([b]=[c])$
Example
Using the previous example, the following are all equivalent:
(a) $1 \rho 3$
(b) $[1] \cap[3] \neq \emptyset$
(c) $[1]=[3]$
because each one is true.
The following are all equivalent:
(a) $1 \rho 2$
(b) $[1] \cap[2] \neq \emptyset$
(c) $[1]=[2]$
because each one is false.

A Logical Approach to Discrete Math

(14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The following three predicates are equivalent:
(a) $b \rho c$
(b) $[b] \cap[c] \neq \emptyset$
(c) $[b]=[c]$

That is, $(b \rho c)=([b] \cap[c] \neq \emptyset)=([b]=[c])$

Prove (14.35)
To prove (14.35), first prove each of the following three sub-theorems:
(a) \Rightarrow (b)
(b) \Rightarrow (c)
(c) \Rightarrow (a)

Then by (3.82a) Transitivity, $((\mathrm{b}) \Rightarrow(\mathrm{c})) \wedge((\mathrm{c}) \Rightarrow(\mathrm{a})) \Rightarrow((\mathrm{b}) \Rightarrow(\mathrm{a}))$
Then by (3.80) Mutual implication, $((\mathrm{a}) \Rightarrow(\mathrm{b})) \wedge((\mathrm{b}) \Rightarrow(\mathrm{a})) \equiv((\mathrm{a}) \equiv(\mathrm{b}))$
And similarly for $(a) \equiv(c)$ and for $(b) \equiv(c)$

A Logical Approach to Discrete Math

Prove $(\mathrm{a}) \Rightarrow(\mathrm{b}), \quad$ which is $\quad b \rho c \Rightarrow[b] \cap[c] \neq \emptyset$

$$
\begin{aligned}
& \text { Proof } \\
& b \rho c \\
&=\quad\langle(3.39) \text { Identity of } \wedge\rangle \\
& \text { } \quad \begin{array}{l}
\text { rue } \wedge b \rho c \\
=
\end{array} \quad\langle\rho \text { is reflexive }\rangle \\
& b \rho b \wedge b \rho c \\
&=\langle(14.34) \text { Definition, twice }\rangle \\
& b \in[b] \wedge b \in[c] \\
&=\langle(11.21) \text { Axiom intersection }\rangle \\
& b \in[b] \cap[c] \\
& \Rightarrow \quad\langle\text { Lemma: } b \in A \Rightarrow A \neq \emptyset\rangle \\
& {[b] \cap[c] \neq \emptyset \quad / / }
\end{aligned}
$$

A Logical Approach to Discrete Math

Prove the lemma: $\quad b \in A \Rightarrow A \neq \emptyset$
Proof
Use (4.12) Proof by contrapositive.
Must prove $A=\emptyset \Rightarrow \neg(b \in A)$
Use (4.4) Deduction. Assume the antecedent.

$$
\begin{aligned}
& \neg(b \in A) \\
= & \langle\text { Assume antecedent } A=\emptyset\rangle \\
& \neg(b \in \emptyset) \\
= & \langle(11.4 .2)\rangle \\
& \neg \text { false } \\
= & \langle(3.13)\rangle \\
& \text { true } \quad / /
\end{aligned}
$$

A Logical Approach to Discrete Math

(14.35.1) Let ρ be an equivalence relation on B. The equivalence classes partition B.
(14.36) Let P be the set of sets of a partition of B. The following relation ρ on B is an equivalence relation:
$b \rho c \equiv(\exists p \mid p \in P: b \in p \wedge c \in p)$
(14.35.I)

Equivalence
relation

Partition

(14.36)

Partition

Equivalence relation

A Logical Approach to Discrete Math

(14.37) (a) Definition: A binary relation f on $B \times C$ is determinate iff $\left(\forall b, c, c^{\prime} \mid b f c \wedge b f c^{\prime}: c=c^{\prime}\right)$
(b) Definition: A binary relation is a function iff it is determinate.

$\rho=\{\langle a, 1\rangle,\langle a, 2\rangle,\langle b, 3\rangle,\langle d, 4\rangle\}$
ρ is a relation.
ρ is not a function.
Have $a \rho 1 \wedge a \rho 2$ but $1 \neq 2$.

Determinate (14.37)	
Determinate: f is a function	
Not determinate: ρ is not a function	

A Logical Approach to Discrete Math

(14.37) (a) Definition: A binary relation f on $B \times C$ is determinate iff $\left(\forall b, c, c^{\prime} \mid b f c \wedge b f c^{\prime}: c=c^{\prime}\right)$
(b) Definition: A binary relation is a function iff it is determinate.

$f=\{\langle a, 1\rangle,\langle b, 2\rangle,\langle c, 2\rangle,\langle d, 4\rangle\}$
f is a relation.
f is a function.
$f: B \rightarrow C$

Determinate (14.37)	
Determinate: f is a function	
Not determinate: ρ is not a function	

A Logical Approach to Discrete Math

(14.37.1) Notation: $f . b=c$ and $b f c$ are interchangeable notations.

$f=\{\langle a, 1\rangle,\langle b, 2\rangle,\langle c, 2\rangle,\langle d, 4\rangle\}$
f is a relation.
f is a function.
$f: B \rightarrow C$
$f . d=4$ is equivalent to $d f 4$

Determinate (14.37)	
Determinate: f is a function	
Not determinate: ρ is not a function	

A Logical Approach to Discrete Math

(14.38) Definition: A function f on $B \times C$ is total if $B=$ Dom. f.

Otherwise it is partial.
We write $f: B \rightarrow C$ for the type of f if f is total and $f: B \leadsto C$ if f is partial.

f is total.
$f: B \rightarrow C$

f is partial.
$f: B \sim C$

Determinate (14.37)	Total (14.38)
Determinate: f is a function	Total
Not determinate: ρ is not a function	Not total (partial)

A Logical Approach to Discrete Math

(14.38.1) Total: A function f on $B \times C$ is total if, for an arbitrary element $b: B$, $(\exists c: C \mid: f . b=c)$ Homework

Determinate (14.37)	Total (14.38)
Determinate: f is a function	Total
Not determinate: ρ is not a function	Not total (partial)

A Logical Approach to Discrete Math

(14.39) Definition, Composition: For functions f and $g, f \bullet g=g \circ f$.

A Logical Approach to Discrete Math

(14.40) Let $g: B \rightarrow C$ and $f: C \rightarrow D$ be total functions.

Then the composition $f \bullet g$ of f and g is the total function defined by $(f \bullet g) . b=f(g . b) \quad$ Homework

Determinate (14.37)	Total (14.38)
Determinate: f is a function	Total
Not determinate: ρ is not a function	Not total (partial)

A Logical Approach to Discrete Math

(14.41) Definitions: (a) Total function $f: B \rightarrow C$ is onto or surjective if Ran. $f=C$.
(b) Total function f is one-to-one or injective if $\left(\forall b, b^{\prime}: B, c: \mathrm{C} \mid: b f c \wedge b^{\prime} f c \equiv b=b^{\prime}\right)$.

A Logical Approach to Discrete Math

(14.41) Definitions: (a) Total function $f: B \rightarrow C$ is onto or surjective if Ran. $f=C$.
(b) Total function f is one-to-one or injective if $\left(\forall b, b^{\prime}: B, c: \mathrm{C} \mid: b f c \wedge b^{\prime} f c \equiv b=b^{\prime}\right)$.

$$
f: B \rightarrow C
$$

f is total.
f is onto.
f is one-to-one.

Determinate (14.37)	Total (14.38)
Determinate: f is a function	Total
Not determinate: ρ is not a function	Not total (partial)
Onto (14.41a)	One-to-one (14.41b)
Onto	One-to-one
Not onto	Not one-to-one

A Logical Approach to Discrete Math

(14.42) Let f be a total function, and let f^{-1} be its relational inverse.
(a) Then f^{-1} is a function, i.e. is determinate, iff f is one-to-one.
(b) And, f^{-1} is total iff f is onto.

(a)

f^{-1} is not determinate.

(b) f is not onto.

f^{-1} is not total.

A Logical Approach to Discrete Math

(14.43) Definitions: Let $f: B \rightarrow C$.
(a) A left inverse of f is a function $g: C \rightarrow B$ such that $g \bullet f=i_{B}$.
(b) A right inverse of f is a function $g: C \rightarrow B$ such that $f \bullet g=i_{C}$.
(c) Function g is an inverse of f if it is both a left inverse and a right inverse.

neg is a right inverse of abs.

A Logical Approach to Discrete Math

(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho\rangle$ is called a partially ordered set or poset.
We use the symbol \preceq for an arbitrary partial order, sometimes writing $c \succeq b$ instead of $b \preceq c$.

Equivalence relation:
 Reflexive
 Symmetric
 Transitive

Partial order: Reflexive Antisymmetric Transitive

A Logical Approach to Discrete Math

(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho\rangle$ is called a partially ordered set or poset.
We use the symbol \preceq for an arbitrary partial order, sometimes writing $c \succeq b$ instead of $b \preceq c$.

Example 1
$B:\{a, b, c\}$
$\mathcal{P} B=\{\{ \},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
$\langle\mathcal{P} B, \subseteq\rangle$ is a poset.
Reflexive: $D \subseteq D$
Antisymmetric: $\quad D \subseteq E \wedge E \subseteq D \Rightarrow D=E$
Transitive: $\quad D \subseteq E \wedge E \subseteq F \Rightarrow D \subseteq F$

A Logical Approach to Discrete Math

(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho\rangle$ is called a partially ordered set or poset.
We use the symbol \preceq for an arbitrary partial order, sometimes writing $c \succeq b$ instead of $b \preceq c$.

Example 2

$B:\{3,4,6,8,12,24\}$
$\langle B, \mid\rangle$ where \mid means "divides" is a poset.
Reflexive: $\quad b \mid b$
Antisymmetric: $\quad b|c \wedge c| b \Rightarrow b=c$
Transitive: $\quad b|c \wedge c| d \Rightarrow b \mid d$

A Logical Approach to Discrete Math

(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho\rangle$ is called a partially ordered set or poset.
We use the symbol \preceq for an arbitrary partial order, sometimes writing $c \succeq b$ instead of $b \preceq c$.

Hasse diagrams

- Each element in B is a dot.
- Elevation matters.
- If $b \preceq c$ there is a line up from b to c, but only if there is not another element d that is "between" b and c such that $b \preceq d \preceq c$.

A Logical Approach to Discrete Math

(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho\rangle$ is called a partially ordered set or poset.
We use the symbol \preceq for an arbitrary partial order, sometimes writing $c \succeq b$ instead of $b \preceq c$.

Example I

Example 2

A Logical Approach to Discrete Math

(14.47.1) Definition, Incomparable: $\quad \operatorname{incomp}(b, c) \equiv \neg(b \preceq c) \wedge \neg(c \preceq b)$

$$
\begin{aligned}
& \frac{\text { Example } 1}{\{a, b\} \text { and }\{a, c\} \text { are incomparable. }} \\
& \neg(\{a, b\} \subseteq\{a, c\}) \wedge \neg(\{a, c\} \subseteq\{a, b\})
\end{aligned}
$$

Example 2
6 and 8 are incomparable.
$\neg(6 \mid 8) \wedge \neg(8 \mid 6)$

A Logical Approach to Discrete Math

(14.48) Definition: Relation \prec is a quasi order or strict partial order if \prec is transitive and irreflexive

Example
The proper subset relation \subset is a quasi order.
Irreflexive: $\quad \neg(D \subset D)$
Transitive: $\quad D \subset E \wedge E \subset F \Rightarrow D \subset F$

A Logical Approach to Discrete Math

(14.48) Definition: Relation \prec is a quasi order or strict partial order if \prec is transitive and irreflexive
(14.47) \preceq is a RAT relation (partial order).
(14.48) \prec is a IT relation (strict partial order).

We can prove that a IT relation is also antisymmetric.
Therefore, \prec is a IAT relation.
Summary
Equivalence relation $=$ is RST .
Partial order \preceq is RAT.
Strict partial order \prec is IAT.

A Logical Approach to Discrete Math

(14.48.1) Definition, Reflexive reduction: Given \preceq, its reflexive reduction \prec is computed by eliminating all pairs $\langle b, b\rangle$ from \preceq.
(14.48.2) Let \prec be the reflexive reduction of \preceq. Then, $\neg(b \preceq c) \equiv c \prec b \vee \operatorname{incomp}(b, c)$
(14.49) (a) If ρ is a partial order over a set B, then $\rho-i_{B}$ is a quasi order.
(b) If ρ is a quasi order over a set B, then $\rho \cup i_{B}$ is a partial order.

Reflexive reduction is the opposite of reflexive closure.
To compute the reflexive closure of a relation, you add ordered pairs to make the relation reflexive.

To compute the reflexive reduction of a relation, you eliminate ordered pairs to make the relation irreflexive.

A Logical Approach to Discrete Math

(14.50) Definition: A partial order \preceq over B is called a total or linear order if $(\forall b, c \mid: b \preceq c \vee b \succeq c)$, i.e. iff $\preceq \cup \preceq^{-1}=B \times B$. In this case, the pair $\langle B, \preceq\rangle$ is called a linearly ordered set or a chain.

Hasse diagram of a total order. All pairs of elements are comparable.

Examples
$\langle\mathbb{N}, \leq\rangle$ is a total order.
$\langle\{1,3,6,9,12\}, \mid\rangle$ is not a total order. $\langle\{1,3,6,12,24\}, \mid\rangle$ is a total order.

A Logical Approach to Discrete Math

(14.51) Definitions: Let S be a nonempty subset of poset $\langle U, \preceq\rangle$.
(a) Element b of S is a minimal element of S if no element of S is smaller than b, i.e. if $b \in S \wedge(\forall c \mid c \prec b: c \notin S)$.
(b) Element b of S is the least element of S if $b \in S \wedge(\forall c \mid c \in S: b \preceq c)$.
(c) Element b is a lower bound of S if $(\forall c \mid c \in S: b \preceq c)$.
(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written $g l b . S$ if b is a lower bound and if every lower bound c satisfies $c \preceq b$.

Example
In $\langle\mathbb{N}, \mid\rangle$ with $S=\{3,5,7,15,20\}$
3,5,7 are minimal.
There is no least element.
For b to be least it must be related to every other element.

A Logical Approach to Discrete Math

(14.51) Definitions: Let S be a nonempty subset of poset $\langle U, \preceq\rangle$.
(a) Element b of S is a minimal element of S if no element of S is smaller than b, i.e. if $b \in S \wedge(\forall c \mid c \prec b: c \notin S)$.
(b) Element b of S is the least element of S if $b \in S \wedge(\forall c \mid c \in S: b \preceq c)$.
(c) Element b is a lower bound of S if $(\forall c \mid c \in S: b \preceq c)$.
(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written $g l b . S$ if b is a lower bound and if every lower bound c satisfies $c \preceq b$.

Example
In $\langle\mathbb{N}, \mid\rangle$ with $S=\{2,4,6,8\}$
2 is minimal and least.

A Logical Approach to Discrete Math

(14.51) Definitions: Let S be a nonempty subset of poset $\langle U, \preceq\rangle$.
(a) Element b of S is a minimal element of S if no element of S is smaller than b, i.e. if $b \in S \wedge(\forall c \mid c \prec b: c \notin S)$.
(b) Element b of S is the least element of S if $b \in S \wedge(\forall c \mid c \in S: b \preceq c)$.
(c) Element b is a lower bound of S if $(\forall c \mid c \in S: b \preceq c)$.
(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written $g l b . S$ if b is a lower bound and if every lower bound c satisfies $c \preceq b$.

Example

In set $B=\{a, b, c, d, e, f, g, h, i, j, k\}$ with the relation defined by the Hasse diagram and subset $S=\{i, j, k\}$ the lower bounds of $\{i, j, k\}$ are i, f, g, c, d, a. The greatest lower bound is $g l b . S=i$.

A Logical Approach to Discrete Math

(14.51) Definitions: Let S be a nonempty subset of poset $\langle U, \preceq\rangle$.
(a) Element b of S is a minimal element of S if no element of S is smaller than b, i.e. if $b \in S \wedge(\forall c \mid c \prec b: c \notin S)$.
(b) Element b of S is the least element of S if $b \in S \wedge(\forall c \mid c \in S: b \preceq c)$.
(c) Element b is a lower bound of S if $(\forall c \mid c \in S: b \preceq c)$.
(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written $g l b . S$ if b is a lower bound and if every lower bound c satisfies $c \preceq b$.

Example

In set $B=\{a, b, c, d, e, f, g, h, i, j, k\}$ with the relation defined by the Hasse diagram and subset $S=\{i, j, k\}$ the lower bounds of $\{i, j, k\}$ are i, f, g, c, d, a. The greatest lower bound is $g l b \cdot S=i$. The lower bound of $S=\{i, f, g\}$ is only a.

A Logical Approach to Discrete Math

(14.52) Every finite nonempty subset S of poset $\langle U, \preceq\rangle$ has a minimal element.
(14.53) Let B be a nonempty subset of poset $\langle U, \preceq\rangle$.
(a) A least element of B is also a minimal element of B (but not necessarily vice versa). Homework
(b) A least element of B is also a greatest lower bound of B (but not necessarily vice versa).
(c) A lower bound of B that belongs to B is also a least element of B.

A Logical Approach to Discrete Math

((14.54) Definitions: Let S be a nonempty subset of poset $\langle U, \preceq\rangle$.
(a) Element b of S is a maximal element of S if no element of S is larger than b, i.e. if $b \in S \wedge(\forall c \mid b \prec c: c \notin S)$.
(b) Element b of S is the greatest element of S if $b \in S \wedge(\forall c \mid c \in S: c \preceq b)$.
(c) Element b is an upper bound of S if $(\forall c \mid c \in S: c \preceq b)$.
(An upper bound of S need not be in S.)
(d) Element b is the least upper bound of S, written lub.S, if b is an upper bound and if every upper bound c satisfies $b \preceq c$.

A Logical Approach to Discrete Math

Relational databases

Binary relation
Subset of ordered pairs from $B_{1} \times B_{2}$
Trinary relation
Subset of ordered triples from $B_{1} \times B_{2} \times B_{3}$
n-ary relation
Subset of ordered n-tuples from $B_{1} \times B_{2} \times B_{3} \ldots \times B_{n}$

A Logical Approach to Discrete Math

Relational database tables

Relation
MyRelation $=\{\langle$ apple, baseball, cat, John \rangle,\langle banana, football, dog, Mary $\rangle\}$
Table representation
MyRelation
apple baseball cat John
banana football dog Mary

Table representation with field names
MyRelation

Fruit	Toy	Animal	Person
apple	baseball	cat	John
banana	football	dog	Mary

A Logical Approach to Discrete Math

LADM has three relational database examples in Chapter 14. Each database has a group of relations, represented by tables, and each relation has a name. Below are the first two n-tuples in each relation in each database.

Example A. Two tables: PABM and MC.

PABM					
Title	Month	Day	Year	Theater	Perfs
My Fair Lady	3	15	1956	Mark Hellinger	2717
Man of La Mancha	11	22	1965	ANTA Wash. Sq.	2329

MC	Book	Lyrics	Music		
Title	Lerner	Lerner	Loewe		
My Fair Lady	Man of La Mancha	Wasserman	Darion	Leigh	Man
:---					

A Logical Approach to Discrete Math

table 14.2. Popular American Broadway Musicals (PABM)

	Opening				
Title	Month Day Year	Theater	Perfs		
My Fair Lady	3	15	1956	Mark Hellinger	2717
Man of La Mancha	11	22	1965	ANTA Wash. Sq.	2329
Oklahoma!	3	31	1943	St. James	2248
Hair	4	29	1968	Biltmore	1750
The King and I	3	29	1951	St. James	1246
Guys and Dolls	11	24	1950	Forty-Sixth St.	1200
Cabaret	11	20	1966	Broadhurst	1166
Damn Yankees	5	5	1955	Forty-Sixth St.	1019
Camelot	12	3	1960	Majestic	878
West Side Story	9	26	1957	Winter Garden	732

table 14.3. Musical Creators ($M C$)

Title	Book	Lyrics	Music
My Fair Lady	Lerner	Lerner	Loewe
Man of La Mancha	Wasserman	Darion	Leigh
Oklahoma!	Hammerstein	Hammerstein. Rodgers	
Hair	Ragni \& Rado	Ragni \& Rado	MacDermot
The King and I	Hammerstein	Hammerstein. Rodgers	
Guys and Dolls	Swerling \& Burrows	Loesser	Loesser
Cabaret	Masteroff	Ebb	Kander
Damn Yankees	Abbott \& Wallop	Adler \& Ross	Adler \& Ross
Camelot	Lerner	Lerner	Loewe
West Side Story	Laurents	Sondheim	Bernstein

A Logical Approach to Discrete Math

PABM $=$ Title \times Month \times Day \times Year \times Theater \times Perfs

Title is the set of titles for Broadway shows;
Month is the set $1 . .12$ corresponding to the months of the year;
Day is the set $1 . .31$ corresponding to the days of the months;
Year is the set \mathbb{Z}^{+}of positive integers;
Theater is the set of theaters in and around Broadway, NYC;
Perfs is the set \mathbb{Z}^{+}of positive integers.

PABM (Title, Month, Day, Year, Theater, Perfs)
MC(Title, Book, Lyrics, Music)

A Logical Approach to Discrete Math

Example B. One table: ALL.

ALL								
Title	Month	Day	Year	Theater	Perfs	Book	Lyrics	Music
My Fair Lady	3	15	1956	Mark Hellinger	2717	Lerner	Lerner	Loewe
Man of La Mancha	11	22	1965	ANTA Wash. Sq.	2329	Wasserman	Darion	Leigh

ALL(Title, Month, Day, Year, Theater, Perfs, Book, Lyrics, Music) .

A Logical Approach to Discrete Math

Example C. Six tables: Where, When, Author, Run, Lyricist, and Composer.

Where	Theater
Title	Mark Hellinger
My Fair Lady	Man of La Mancha

When	Month	Day	Year
Title	3	15	1956
My Fair Lady	11	22	1965
Man of La Mancha	11		

Author	Book		
Title	Lerner		
My Fair Lady	Man of La Mancha	Wasserman	Wa
:---			

Run	Perfs
Title	2717
My Fair Lady	2329
Man of La Mancha	2329

Lyricist	
Title	Lyrics
My Fair Lady	Lerner
Man of La Mancha	Darion

Composer	
Title	Music
My Fair Lady	Loewe
Man of La Mancha	Leigh

A Logical Approach to Discrete Math

Where(Title, Theater)
When(Title, Month, Day, Year)
Author(Title, Book)
Run(Title, Perfs)
Lyricist(Title, Lyrics)
Composer(Title, Music)

A Logical Approach to Discrete Math

(14.56.1) Definition, select: For Relation R and predicate F, which may contain names of fields of $R, \quad \sigma(R, F)=\{t \mid t \in R \wedge F\}$
(14.56.2) Definition, project: For A_{1}, \ldots, A_{m} a subset of the names of the fields of relation $R, \quad \pi\left(R, A_{1}, \ldots, A_{m}\right)=\left\{t \mid t \in R:\left\langle t . A_{1}, t . A_{2}, \ldots, t . A_{m}\right\rangle\right\}$
(14.56.3) Definition, natural join: For Relations $R 1$ and $R 2, R 1 \bowtie R 2$ has all the attributes that $R 1$ and $R 2$ have, but if an attribute appears in both, then it appears only once in the result; further, only those tuples that agree on this common attribute are included.

Select

σ selects rows from R that satisfy F.
Example: Use database A to list all the 6-tuples that opened on Forty-Sixth St.
$\sigma($ PABM, Theater $=$ Forty-Sixth St. $)$

Project

π selects fields (attributes) from R as listed.
Example: Use database A to list only the titles of the musicals that opened on Forty-Sixth St.
$\pi(\underline{\sigma(\text { PABM }, \text { Theater }=\text { Forty-Sixth St. }), \text { Title }) ~}$

A Logical Approach to Discrete Math

(14.56.1) Definition, select: For Relation R and predicate F, which may contain names of fields of $R, \quad \sigma(R, F)=\{t \mid t \in R \wedge F\}$
(14.56.2) Definition, project: For A_{1}, \ldots, A_{m} a subset of the names of the fields of relation $R, \quad \pi\left(R, A_{1}, \ldots, A_{m}\right)=\left\{t \mid t \in R:\left\langle t . A_{1}, t . A_{2}, \ldots, t . A_{m}\right\rangle\right\}$
(14.56.3) Definition, natural join: For Relations $R 1$ and $R 2, R 1 \bowtie R 2$ has all the attributes that $R 1$ and $R 2$ have, but if an attribute appears in both, then it appears only once in the result; further, only those tuples that agree on this common attribute are included.

Join
\bowtie is a binary infix operator.
Example: Use database C to list the theater where each book was performed.
Author \bowtie Where has three columns: Title, Book, Theater.
To list just the Book and Theater
π (Author \bowtie Where, Book, Theater)
Example: Use database A to list who wrote the lyrics for the show
that had 2717 performances.
$\pi(\sigma($ PABM $\bowtie \mathrm{MC}$, Perfs $=2717)$, Lyrics $)$

