
A Logical Approach to Discrete Math

THEOREMS FROM LADM 13

(p.28) DO : do B → S od
(p.29) Fundamental Invariance Theorem. (p.29) is (12.43)

Suppose
• {P∧B}S{P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B → S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B → S od {P∧¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B → S od {R},
it suffices to prove
(a) P is true before execution of the loop: {Q} initialization; {P},
(b) P is a loop invariant: {P∧B}S{P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P∧¬B ⇒ R.

(p.31) False guard: do f alse → S od = skip

Relations and Functions

(14.2) Axiom, Pair equality: 〈b,c〉= 〈b′,c′〉 ≡ b = b′ ∧ c = c′

(14.2.1) Ordered pair one-point rule: Provided ¬occurs(‘x,y’, ‘E,F’),
(!x,y 〈x,y〉= 〈E,F〉 : P) = P[x,y := E,F ]

(14.3) Axiom, Cross product: S×T = {b,c b ∈ S∧ c ∈ T : 〈b,c〉}
(14.3.1) Axiom, Ordered pair extensionality:

U =V ≡ (∀x,y : 〈x,y〉 ∈U ≡ 〈x,y〉 ∈V )

Theorems for cross product.
(14.4) Membership: 〈x,y〉 ∈ S×T ≡ x ∈ S∧ y ∈ T
(14.5) 〈x,y〉 ∈ S×T ≡ 〈y,x〉 ∈ T ×S
(14.6) S = /0 ⇒ S×T = T ×S = /0
(14.7) S×T = T ×S ≡ S = /0 ∨ T = /0 ∨ S = T
(14.8) Distributivity of × over ∪ :

(a) S× (T ∪U) = (S×T )∪ (S×U)

(b) (S∪T )×U = (S×U)∪ (T ×U)

(14.9) Distributivity of × over ∩ :
(a) S× (T ∩U) = (S×T )∩ (S×U)

(b) (S∩T )×U = (S×U)∩ (T ×U)

(14.10) Distributivity of × over − :
S× (T −U) = (S×T )− (S×U)

(14.11) Monotonicity: T ⊆U ⇒ S×T ⊆ S×U
(14.12) S ⊆U ∧T ⊆V ⇒ S×T ⊆U ×V

0 1 2 3
0

1

2

3

4

4

x

y

<2,3>

<3,2>

17

Division algorithm

P : b = q · c+ r∧0 ≤ r
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P

wp.(q,r := q+1,r− c).P
= 〈(p.18) and t.s.〉

b = (q+1) · c+ r− c∧0 ≤ r− c
= 〈Math〉

b = q · c+ r∧ c ≤ r
= 〈Assume conjuncts b = q · c+ r and r ≥ c〉

true //

Division algorithm

(c) Prove the loop terminates.

By Q : b ≥ 0∧ c > 0, c must be positive.
Regardless of the initial value of r, each time through the loop

it decreases by c, and c does not change.
Therefore, r must eventually equal be less than c, r ≥ c will be false,

and the loop will terminate.

Division algorithm

P : b = q · c+ r∧0 ≤ r
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

b = q · c+ r∧0 ≤ r < c
= 〈Assume conjunct b = q · c+ r〉

0 ≤ r < c
= 〈Conjunctive meaning〉

0 ≤ r∧ r < c
= 〈Assume conjunct 0 ≤ r〉

r < c
= 〈Assume conjunct ¬(r ≥ c) and math〉

true //

Sets: {2,3}= {3,2}
Ordered pairs: 〈2,3〉 (= 〈3,2〉

Homework
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Example
S = {a,b,c}
T = {4,6}
S×T = {〈a,4〉,〈a,6〉,〈b,4〉,〈b,6〉,〈c,4〉,〈c,6〉}
R×R is the set of all points in the plane.



A Logical Approach to Discrete Math

THEOREMS FROM LADM 13

(p.28) DO : do B → S od
(p.29) Fundamental Invariance Theorem. (p.29) is (12.43)

Suppose
• {P∧B}S{P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B → S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B → S od {P∧¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B → S od {R},
it suffices to prove
(a) P is true before execution of the loop: {Q} initialization; {P},
(b) P is a loop invariant: {P∧B}S{P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P∧¬B ⇒ R.

(p.31) False guard: do f alse → S od = skip

Relations and Functions

(14.2) Axiom, Pair equality: 〈b,c〉= 〈b′,c′〉 ≡ b = b′ ∧ c = c′

(14.2.1) Ordered pair one-point rule: Provided ¬occurs(‘x,y’, ‘E,F’),
(!x,y 〈x,y〉= 〈E,F〉 : P) = P[x,y := E,F ]

(14.3) Axiom, Cross product: S×T = {b,c b ∈ S∧ c ∈ T : 〈b,c〉}
(14.3.1) Axiom, Ordered pair extensionality:

U =V ≡ (∀x,y : 〈x,y〉 ∈U ≡ 〈x,y〉 ∈V )

Theorems for cross product.
(14.4) Membership: 〈x,y〉 ∈ S×T ≡ x ∈ S∧ y ∈ T
(14.5) 〈x,y〉 ∈ S×T ≡ 〈y,x〉 ∈ T ×S
(14.6) S = /0 ⇒ S×T = T ×S = /0
(14.7) S×T = T ×S ≡ S = /0 ∨ T = /0 ∨ S = T
(14.8) Distributivity of × over ∪ :

(a) S× (T ∪U) = (S×T )∪ (S×U)

(b) (S∪T )×U = (S×U)∪ (T ×U)

(14.9) Distributivity of × over ∩ :
(a) S× (T ∩U) = (S×T )∩ (S×U)

(b) (S∩T )×U = (S×U)∩ (T ×U)

(14.10) Distributivity of × over − :
S× (T −U) = (S×T )− (S×U)

(14.11) Monotonicity: T ⊆U ⇒ S×T ⊆ S×U
(14.12) S ⊆U ∧T ⊆V ⇒ S×T ⊆U ×V

18

Example
S = {a,b,c}
T = {4,6}
S×T = {〈a,4〉,〈a,6〉,〈b,4〉,〈b,6〉,〈c,4〉,〈c,6〉}
R×R is the set of all points in the plane.

U and V are sets of ordered pairs.

Example
These two sets are equal.
U = {〈1,3〉,〈5,0〉,〈4,2〉}
V = {〈4,2〉,〈1,3〉,〈5,0〉}

THEOREMS FROM LADM 7

(9.20.2) (∃x : R)⇒ ((∀x R : P)⇒ (∃x R : P))
(9.21) Distributivity of ∧ over ∃ : Provided ¬occurs(‘x’, ‘P’),

P∧ (∃x R : Q)≡ (∃x R : P∧Q)

(9.22) Provided ¬occurs(‘x’, ‘P’), (∃x R : P)≡ P∧ (∃x : R)
(9.23) Distributivity of ∨ over ∃ : Provided ¬occurs(‘x’, ‘P’),

(∃x : R)⇒ ((∃x R : P∨Q)≡ P∨ (∃x R : Q))

(9.24) (∃x R : f alse)≡ f alse
(9.25) Range weakening/strengthening: (∃x R : P)⇒ (∃x Q∨R : P)
(9.26) Body weakening/strengthening: (∃x R : P)⇒ (∃x R : P∨Q)

(9.26.1) Body weakening/strengthening: (∃x R : P∧Q)⇒ (∃x R : P)
(9.27) Monotonicity of ∃ : (∀x R : Q ⇒ P)⇒ ((∃x R : Q)⇒ (∃x R : P))
(9.28) ∃-Introduction: P[x := E]⇒ (∃x : P)
(9.29) Interchange of quantification: Provided ¬occurs(‘y’, ‘R’) and ¬occurs(‘x’, ‘Q’),

(∃x R : (∀y Q : P))⇒ (∀y Q : (∃x R : P))
(9.30) Provided ¬occurs(‘x̂’, ‘Q’),

(∃x R : P)⇒ Q is a theorem iff (R∧P)[x := x̂]⇒ Q is a theorem.

A Theory of Sets

(11.2) Axiom, Enumeration: {e0,e1, . . . ,en−1}= {x x = e0 ∨ x = e1 ∨ · · ·∨ x = en−1 : x}
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R : E}≡ (∃x R : F = E)
(11.4) Axiom, Extensionality: S = T ≡ (∀x : x ∈ S ≡ x ∈ T )
(11.4.1) Axiom, Empty set: /0 = {x f alse : E}
(11.4.2) e ∈ /0 ≡ f alse
(11.4.3) Axiom, Universe: U = {x : x}, U: set(t) = {x: t : x}
(11.4.4) e ∈ U ≡ true, for e: t and U: set(t)
(11.5) S = {x x ∈ S : x}
(11.5.1) Axiom, Abbreviation: For x a single variable, {x R}= {x R : x}
(11.6) Provided ¬occurs(‘y’, ‘R’) and ¬occurs(‘y’, ‘E’),

{x R : E}= {y (∃x R : y = E)}
(11.7) x ∈ {x R} ≡ R

R is the characteristic predicate of the set.
(11.7.1) y ∈ {x R} ≡ R[x := y] for any expression y
(11.9) {x Q}= {x R} ≡ (∀x : Q ≡ R)
(11.10) {x Q}= {x R} is valid iff Q ≡ R is valid.
(11.11) Methods for proving set equality S = T :

(a) Use Leibniz directly.
(b) Use axiom Extensionality (11.4) and prove the (9.8) Lemma

v ∈ S ≡ v ∈ T for an arbitrary value v.
(c) Prove Q ≡ R and conclude {x Q}= {x R}.
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RELATIONS AND FUNCTIONS

(14.2) Axiom, Pair equality: �b, c⌫ = �b⇤, c⇤⌫ ⇧ b = b⇤ ✓ c = c⇤

(14.2.1) Ordered pair one-point rule: Provided ¬occurs(‘x, y’, ‘E,F ’),
(�x, y �x, y⌫ = �E,F ⌫ : P ) = P [x, y := E,F ]

(14.3) Axiom, Cross product: S ⇤ T = {b, c b ⌦ S ✓ c ⌦ T : �b, c⌫}
(14.3.1) Axiom, Ordered pair extensionality:

U = V ⇧ (�x, y : �x, y⌫ ⌦ U ⇧ �x, y⌫ ⌦ V )

Theorems for cross product.
(14.4) Membership: �x, y⌫ ⌦ S ⇤ T ⇧ x ⌦ S ✓ y ⌦ T

(14.5) �x, y⌫ ⌦ S ⇤ T ⇧ �y, x⌫ ⌦ T ⇤ S

(14.6) S = ✏  S ⇤ T = T ⇤ S = ✏
(14.7) S ⇤ T = T ⇤ S ⇧ S = ✏ ◆ T = ✏ ◆ S = T

(14.8) Distributivity of ⇤ over ⇣ :
(a) S ⇤ (T ⇣ U) = (S ⇤ T ) ⇣ (S ⇤ U)
(b) (S ⇣ T )⇤ U = (S ⇤ U) ⇣ (T ⇤ U)

(14.9) Distributivity of ⇤ over ⌘ :
(a) S ⇤ (T ⌘ U) = (S ⇤ T ) ⌘ (S ⇤ U)
(b) (S ⌘ T )⇤ U = (S ⇤ U) ⌘ (T ⇤ U)

(14.10) Distributivity of ⇤ over � :
S ⇤ (T � U) = (S ⇤ T )� (S ⇤ U)

(14.11) Monotonicity: T ⌃ U  S ⇤ T ⌃ S ⇤ U

(14.12) S ⌃ U ✓ T ⌃ V  S ⇤ T ⌃ U ⇤ V

(14.13) S ⇤ T ⌃ S ⇤ U ✓ S ↵= ✏  T ⌃ U

(14.14) (S ⌘ T )⇤ (U ⌘ V ) = (S ⇤ U) ⌘ (T ⇤ V )
(14.15) For finite S and T , #(S ⇤ T ) = #S · #T

Relations.
(14.15.1) Definition, Binary relation:

A binary relation over B ⇤ C is a subset of B ⇤ C.
(14.15.2) Definition, Identity: The identity relation iB on B is iB = {x: B : �x, x⌫}
(14.15.3) Identity lemma: �x, y⌫ ⌦ iB ⇧ x = y

(14.15.4) Notation: �b, c⌫ ⌦ ⇥ and b ⇥ c are interchangeable notations.
(14.15.5) Conjunctive meaning: b ⇥ c ⇤ d ⇧ b ⇥ c ✓ c ⇤ d

The domain Dom.⇥ and range Ran.⇥ of a relation ⇥ on B ⇤ C are defined by
(14.16) Definition, Domain: Dom.⇥ = {b: B (�c : b ⇥ c)}
(14.17) Definition, Range: Ran.⇥ = {c: C (�b : b ⇥ c)}

The inverse ⇥�1 of a relation ⇥ on B ⇤ C is the relation defined by
(14.18) Definition, Inverse: �b, c⌫ ⌦ ⇥�1 ⇧ �c, b⌫ ⌦ ⇥, for all b: B, c: C

Homework
Homework
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Example
S = {a,b,c}
T = {4,6}
S×T = {〈a,4〉,〈a,6〉,〈b,4〉,〈b,6〉,〈c,4〉,〈c,6〉}
R×R is the set of all points in the plane.

U and V are sets of ordered pairs.

Example
These two sets are equal.
U = {〈1,3〉,〈5,0〉,〈4,2〉}
V = {〈4,2〉,〈1,3〉,〈5,0〉}

Prove (14.8a) S× (T ∪U) = (S×T )∪ (S×U)

Proof
Let 〈x,y〉 be an arbitrary ordered pair and prove that
〈x,y〉 ∈ S× (T ∪U) ≡ 〈x,y〉 ∈ (S×T )∪ (S×U)

〈x,y〉 ∈ S× (T ∪U)

= 〈(14.4)〉
x ∈ S∧ y ∈ (T ∪U)

= 〈(11.20)〉
x ∈ S∧ (y ∈ T ∨ y ∈U)

= 〈(3.46) Distributivity of ∧ over ∨〉
(x ∈ S∧ y ∈ T )∨ (x ∈ S∧ y ∈U)

= 〈(14.4 twice)〉
〈x,y〉 ∈ (S×T )∨〈x,y〉 ∈ (S×U)

= 〈(11.20)〉
〈x,y〉 ∈ (S×T )∪ (S×U) //
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Example

S = {0,1,2}

S×S = {〈0,0〉,〈0,1〉,〈0,2〉,
〈1,0〉,〈1,1〉,〈1,2〉,
〈2,0〉,〈2,1〉,〈2,2〉}

The“less than” relation over S×S is a subset of the set S×S
consisting of those ordered pairs 〈x,y〉 for which x < y is true.
<= {〈0,1〉,〈0,2〉,〈1,2〉}

Directed graph representation

Matrix representation



0 1 1
0 0 1
0 0 0





Example

B = {a,b,c,d}
The identity relation over B×B is
iB = {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉}
Matrix representation




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





(14.15.4) Example

If ρ is the less than relation < then
〈0,2〉 ∈< and 0 < 2 are interchangeable notations.

(14.15.5) Example

If ρ is the less than relation < and σ is the equals relation = then
b < c = d ≡ b < c∧ c = d

Example

B = {2,3,4,5}
C = {4,5,6,7}
Define the predecessor relation pred over B×C as

14 J. STANLEY WARFORD

(14.13) S×T ⊆ S×U ∧S $= /0 ⇒ T ⊆U
(14.14) (S∩T )× (U ∩V ) = (S×U)∩ (T ×V )

(14.15) For finite S and T , #(S×T ) = #S ·#T

Relations.
(14.15.1) Definition, Binary relation:

A binary relation over B×C is a subset of B×C.
(14.15.2) Definition, Identity: The identity relation iB on B is iB = {x: B : 〈x,x〉}
(14.15.3) Identity lemma: 〈x,y〉 ∈ iB ≡ x = y
(14.15.4) Notation: 〈b,c〉 ∈ ρ and b ρ c are interchangeable notations.
(14.15.5) Conjunctive meaning: b ρ c σ d ≡ b ρ c ∧ c σ d

The domain Dom.ρ and range Ran.ρ of a relation ρ on B×C are defined by
(14.16) Definition, Domain: Dom.ρ = {b: B (∃c : b ρ c)}
(14.17) Definition, Range: Ran.ρ = {c: C (∃b : b ρ c)}

The inverse ρ−1 of a relation ρ on B×C is the relation defined by
(14.18) Definition, Inverse: 〈b,c〉 ∈ ρ−1 ≡ 〈c,b〉 ∈ ρ , for all b: B, c: C
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S = {0,1,2}

S×S = {〈0,0〉,〈0,1〉,〈0,2〉,
〈1,0〉,〈1,1〉,〈1,2〉,
〈2,0〉,〈2,1〉,〈2,2〉}

The“less than” relation over S×S is a subset of the set S×S
consisting of those ordered pairs 〈x,y〉 for which x < y is true.
<= {〈0,1〉,〈0,2〉,〈1,2〉}
Directed graph representation

Array representation



0 1 1
0 0 1
0 0 0
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B = {a,b,c,d}
The identity relation over B×B is
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(14.15.4) Example

If ρ is the less than relation < then
〈0,2〉 ∈< and 0 < 2 are interchangeable notations.

(14.15.5) Example

If ρ is the less than relation < and σ is the equals relation = then
b < c = d ≡ b < c∧ c = d

Example

B = {2,3,4,5}
C = {4,5,6,7}
Define the predecessor relation pred over B×C as
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Dom.pred = {3,4,5}
Ran.pred = {4,5,6}
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Dom.pred = {3,4,5}
Ran.pred = {4,5,6}

Example

S = {0,1,2}
The “less than” relation over S×S is

<= {〈0,1〉,〈0,2〉,〈1,2〉}
The inverse of the “less than” relation is

<−1 = {〈1,0〉,〈2,0〉,〈2,1〉}
which is the “greater than” relation >.

<−1 =>
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Operations on relations
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Example

B = {2,3,4,5}
C = {4,5,6,7}
Define the predecessor relation pred over B×C as

pred = {〈3,4〉,〈4,5〉,〈5,6〉}
Dom.pred = {3,4,5}
Ran.pred = {4,5,6}

Example

S = {0,1,2}
The “less than” relation over S×S is

<= {〈0,1〉,〈0,2〉,〈1,2〉}
The inverse of the “less than” relation is

<−1 = {〈1,0〉,〈2,0〉,〈2,1〉}
which is the “greater than” relation >.

<−1 =>

Because ρ and σ are sets, you can operate on them with ∪, ∩, ∼, −.

Example

B = {0,1,2}
< is {〈0,1〉,〈0,2〉,〈1,2〉}
= is {〈0,0〉,〈1,1〉,〈2,2〉}
< ∪= is {〈0,0〉,〈1,1〉,〈2,2〉,〈0,1〉,〈0,2〉,〈1,2〉} which is ≤.

∼< is {〈0,0〉,〈1,0〉,〈1,1〉,〈2,0〉,〈2,1〉,〈2,2〉} which is ≥.

≤ ∩= is =.

≤−= is <.

B = {2,3,4,5} pred = {〈3,4〉,〈4,5〉,〈5,6〉} pred ◦ swap = {〈3,7〉,〈4,6〉,〈5,5〉}
C = {4,5,6,7} swap = {〈4,7〉,〈5,6〉,〈6,5〉,〈7,4〉}
D = {4,5,6,7}
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(c) If ρ is a relation on B×C, then ρ−1 is a relation on C×B
(d) (ρ−1)−1 = ρ
(e) ρ ⊆ σ ≡ ρ−1 ⊆ σ−1

Let ρ be a relation on B×C and σ be a relation on C×D. The product
of ρ and σ , denoted by ρ ◦σ , is the relation on B×D defined by
(14.20) Definition, Product: 〈b,d〉 ∈ ρ ◦σ ≡ (∃c c ∈C : 〈b,c〉 ∈ ρ ∧〈c,d〉 ∈ σ)

or, using the alternative notation by
(14.21) Definition, Product: b (ρ ◦σ) d ≡ (∃c : b ρ c σ d)

Theorems for relation product.
(14.22) Associativity of ◦ : ρ ◦ (σ ◦θ) = (ρ ◦σ)◦θ
(14.23) Distributivity of ◦ over ∪ :

(a) ρ ◦ (σ ∪θ) = (ρ ◦σ)∪ (ρ ◦θ)
(b) (σ ∪θ)◦ρ = (σ ◦ρ)∪ (θ ◦ρ)

(14.24) Distributivity of ◦ over ∩ :
(a) ρ ◦ (σ ∩θ)⊆ (ρ ◦σ)∩ (ρ ◦θ)
(b) (σ ∩θ)◦ρ ⊆ (σ ◦ρ)∩ (θ ◦ρ)
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Example

B = {2,3,4,5}
C = {4,5,6,7}
Define the predecessor relation pred over B×C as

pred = {〈3,4〉,〈4,5〉,〈5,6〉}
Dom.pred = {3,4,5}
Ran.pred = {4,5,6}

Example

S = {0,1,2}
The “less than” relation over S×S is

<= {〈0,1〉,〈0,2〉,〈1,2〉}
The inverse of the “less than” relation is

<−1 = {〈1,0〉,〈2,0〉,〈2,1〉}
which is the “greater than” relation >.

<−1 =>

Because ρ and σ are sets, you can operate on them with ∪, ∩, ∼, −.

Example

B = {0,1,2}
< is {〈0,1〉,〈0,2〉,〈1,2〉}
= is {〈0,0〉,〈1,1〉,〈2,2〉}
< ∪= is {〈0,0〉,〈1,1〉,〈2,2〉,〈0,1〉,〈0,2〉,〈1,2〉} which is ≤.

∼< is {〈0,0〉,〈1,0〉,〈2,0〉,〈1,0〉,〈1,1〉,〈2,1〉} which is ≥.

≤ ∩= is =.

≤−= is <.

B = {2,3,4,5} pred = {〈3,4〉,〈4,5〉,〈5,6〉} pred ◦ swap = {〈3,7〉,〈4,6〉,〈5,5〉}
C = {4,5,6,7} swap = {〈4,7〉,〈5,6〉,〈6,5〉,〈7,4〉}
D = {4,5,6,7}
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(14.13) S×T ⊆ S×U ∧S $= /0 ⇒ T ⊆U
(14.14) (S∩T )× (U ∩V ) = (S×U)∩ (T ×V )

(14.15) For finite S and T , #(S×T ) = #S ·#T

Relations.
(14.15.1) Definition, Binary relation:

A binary relation over B×C is a subset of B×C.
(14.15.2) Definition, Identity: The identity relation iB on B is iB = {x: B : 〈x,x〉}
(14.15.3) Identity lemma: 〈x,y〉 ∈ iB ≡ x = y
(14.15.4) Notation: 〈b,c〉 ∈ ρ and b ρ c are interchangeable notations.
(14.15.5) Conjunctive meaning: b ρ c σ d ≡ b ρ c ∧ c σ d

The domain Dom.ρ and range Ran.ρ of a relation ρ on B×C are defined by
(14.16) Definition, Domain: Dom.ρ = {b: B (∃c : b ρ c)}
(14.17) Definition, Range: Ran.ρ = {c: C (∃b : b ρ c)}

The inverse ρ−1 of a relation ρ on B×C is the relation defined by
(14.18) Definition, Inverse: 〈b,c〉 ∈ ρ−1 ≡ 〈c,b〉 ∈ ρ , for all b: B, c: C
(14.19) Let ρ and σ be relations.

(a) Dom(ρ−1) = Ran.ρ
(b) Ran(ρ−1) = Dom.ρ
(c) If ρ is a relation on B×C, then ρ−1 is a relation on C×B
(d) (ρ−1)−1 = ρ
(e) ρ ⊆ σ ≡ ρ−1 ⊆ σ−1

Let ρ be a relation on B×C and σ be a relation on C×D. The product
of ρ and σ , denoted by ρ ◦σ , is the relation defined by
(14.20) Definition, Product: 〈b,d〉 ∈ ρ ◦σ ≡ (∃c c ∈C : 〈b,c〉 ∈ ρ ∧〈c,d〉 ∈ σ)

or, using the alternative notation by
(14.21) Definition, Product: b (ρ ◦σ) d ≡ (∃c : b ρ c σ d)

Theorems for relation product.
(14.22) Associativity of ◦ : ρ ◦ (σ ◦θ) = (ρ ◦σ)◦θ
(14.23) Distributivity of ◦ over ∪ :

(a) ρ ◦ (σ ∪θ) = (ρ ◦σ)∪ (ρ ◦θ)
(b) (σ ∪θ)◦ρ = (σ ◦ρ)∪ (θ ◦ρ)

(14.24) Distributivity of ◦ over ∩ :
(a) ρ ◦ (σ ∩θ)⊆ (ρ ◦σ)∩ (ρ ◦θ)
(b) (σ ∩θ)◦ρ ⊆ (σ ◦ρ)∩ (θ ◦ρ)

Homework

Handout
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Theorems for powers of a relation.
(14.25) Definition:

ρ0 = iB
ρn+1 = ρn ◦ρ for n ≥ 0

(14.26) ρm ◦ρn = ρm+n for m ≥ 0,n ≥ 0
(14.27) (ρm)n = ρm·n for m ≥ 0,n ≥ 0
(14.28) For ρ a relation on finite set B of n elements,

(∃i, j 0 ≤ i < j ≤ 2n2 : ρ i = ρ j)

(14.29) Let ρ be a relation on a finite set B. Suppose ρ i = ρ j and 0 ≤ i < j. Then
(a) ρ i+k = ρ j+k for k ≥ 0
(b) ρ i = ρ i+p·( j−i) for p ≥ 0

Table 14.1 Classes of relations ρ over set B
Name Property Alternative

(a) reflexive (∀b : b ρ b) iB ⊆ ρ
(b) irreflexive (∀b : ¬(b ρ b)) iB ∩ρ = /0
(c) symmetric (∀b,c : b ρ c ≡ c ρ b) ρ−1 = ρ
(d) antisymmetric (∀b,c : b ρ c∧ c ρ b ⇒ b = c) ρ ∩ρ−1 ⊆ iB
(e) asymmetric (∀b,c : b ρ c ⇒ ¬(c ρ b)) ρ ∩ρ−1 = /0
(f) transitive (∀b,c,d : b ρ c∧ c ρ d ⇒ b ρ d) ρ = (∪i i > 0 : ρ i)

(14.30.1) Definition: Let ρ be a relation on a set. The reflexive closure of ρ is the
relation r(ρ) that satisfies:
(a) r(ρ) is reflexive;
(b) ρ ⊆ r(ρ);
(c) If any relation σ is reflexive and ρ ⊆ σ , then r(ρ)⊆ σ .

(14.30.2) Definition: Let ρ be a relation on a set. The symmetric closure of ρ is the
relation s(ρ) that satisfies:
(a) s(ρ) is symmetric;
(b) ρ ⊆ s(ρ);
(c) If any relation σ is symmetric and ρ ⊆ σ , then s(ρ)⊆ σ .

(14.30.3) Definition: Let ρ be a relation on a set. The transitive closure of ρ is the
relation ρ+ that satisfies:
(a) ρ+ is transitive;
(b) ρ ⊆ ρ+;
(c) If any relation σ is transitive and ρ ⊆ σ , then ρ+ ⊆ σ .

(14.30.4) Definition: Let ρ be a relation on a set. The reflexive transitive closure of ρ
is the relation ρ∗ that is both the reflexive and the transitive closure of ρ .

21

Example

B = {0,1,2,3,4}
B×B = {〈0,0〉,〈0,1〉, ...,〈4,3〉,〈4,4〉}
<= {〈0,1〉,〈0,2〉,〈0,3〉,〈0,4〉,〈1,2〉,〈1,3〉,〈1,4〉,〈2,3〉,〈2,4〉,〈3,4〉}
<2 =< ◦<= {〈0,2〉,〈0,3〉,〈0,4〉,〈1,3〉,〈1,4〉,〈2,4〉}
<3 =<2 ◦<= {〈0,3〉,〈0,4〉,〈1,4〉}
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Example

B = {0,1,2}
B×B = {〈0,0〉,〈0,1〉,〈0,2〉,〈1,0〉,〈1,1〉,〈1,2〉,〈2,0〉,〈2,1〉,〈2,2〉}
≤= {〈0,0〉,〈0,1〉,〈0,2〉,〈1,1〉,〈1,2〉,〈2,2〉}
≤2 =≤ ◦ ≤= {〈0,0〉,〈0,1〉,〈0,2〉,〈1,1〉,〈1,2〉,〈2,2〉}
≤ ◦ ≤=≤ Idempotent
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(14.19) Let ⇥ and ⇤ be relations.
(a) Dom(⇥�1) = Ran.⇥

(b) Ran(⇥�1) = Dom.⇥

(c) If ⇥ is a relation on B � C, then ⇥�1 is a relation on C �B

(d) (⇥�1)�1 = ⇥

(e) ⇥ ⌅ ⇤ ⇤ ⇥�1 ⌅ ⇤�1

Let ⇥ be a relation on B � C and ⇤ be a relation on C �D. The product
of ⇥ and ⇤, denoted by ⇥ ⇥ ⇤, is the relation defined by
(14.20) Definition, Product: ⌘b, d✓ � ⇥ ⇥ ⇤ ⇤ (↵c c � C : ⌘b, c✓ � ⇥ ⇣ ⌘c, d✓ � ⇤)
or, using the alternative notation by
(14.21) Definition, Product: b (⇥ ⇥ ⇤) d ⇤ (↵c : b ⇥ c ⇤ d)

Theorems for relation product.
(14.22) Associativity of ⇥ : ⇥ ⇥ (⇤ ⇥ �) = (⇥ ⇥ ⇤) ⇥ �

(14.23) Distributivity of ⇥ over � :
⇥ ⇥ (⇤ � �) = ⇥ ⇥ ⇤ � ⇥ ⇥ �

(⇤ � �) ⇥ ⇥ = ⇤ ⇥ ⇥ � � ⇥ ⇥

(14.24) Distributivity of ⇥ over ✏ :
⇥ ⇥ (⇤ ✏ �) = ⇥ ⇥ ⇤ ✏ ⇥ ⇥ �

(⇤ ✏ �) ⇥ ⇥ = ⇤ ⇥ ⇥ ✏ � ⇥ ⇥

Theorems for powers of a relation.
(14.25) Definition:

⇥0 = iB
⇥n+1 = ⇥n ⇥ ⇥ for n ⌃ 0

(14.26) ⇥m ⇥ ⇥n = ⇥m+n for m ⌃ 0, n ⌃ 0
(14.27) (⇥m)n = ⇥m·n for m ⌃ 0, n ⌃ 0
(14.28) For ⇥ a relation on finite set B of n elements,

(↵i, j 0 ⇧ i < j ⇧ 2n2
: ⇥i = ⇥j)

(14.29) Let ⇥ be a relation on a finite set B. Suppose ⇥i = ⇥j and 0 ⇧ i < j. Then
(a) ⇥i+k = ⇥j+k for k ⌃ 0
(b) ⇥i = ⇥i+p·(j�i) for p ⌃ 0

Table 14.1 Classes of relations ⇥ over set B

Name Property Alternative

(a) reflexive (⌦b : b ⇥ b) iB ⌅ ⇥

(b) irreflexive (⌦b : ¬(b ⇥ b)) iB ✏ ⇥ = �
(c) symmetric (⌦b, c : b ⇥ c ⇤ c ⇥ b) ⇥�1 = ⇥

(d) antisymmetric (⌦b, c : b ⇥ c ⇣ c ⇥ b ⌥ b = c) ⇥ ✏ ⇥�1 ⌅ iB
(e) asymmetric (⌦b, c : b ⇥ c ⌥ ¬(c ⇥ b)) ⇥ ✏ ⇥�1 = �
(f) transitive (⌦b, c, d : b ⇥ c ⇣ c ⇥ d ⌥ b ⇥ d) ⇥ = (�i i > 0 : ⇥i)

Memorize
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(14.20) Definition, Product: ⌘b, d✓ � ⇥ ⇥ ⇤ ⇤ (↵c c � C : ⌘b, c✓ � ⇥ ⇣ ⌘c, d✓ � ⇤)
or, using the alternative notation by
(14.21) Definition, Product: b (⇥ ⇥ ⇤) d ⇤ (↵c : b ⇥ c ⇤ d)

Theorems for relation product.
(14.22) Associativity of ⇥ : ⇥ ⇥ (⇤ ⇥ �) = (⇥ ⇥ ⇤) ⇥ �

(14.23) Distributivity of ⇥ over � :
⇥ ⇥ (⇤ � �) = ⇥ ⇥ ⇤ � ⇥ ⇥ �

(⇤ � �) ⇥ ⇥ = ⇤ ⇥ ⇥ � � ⇥ ⇥

(14.24) Distributivity of ⇥ over ✏ :
⇥ ⇥ (⇤ ✏ �) = ⇥ ⇥ ⇤ ✏ ⇥ ⇥ �

(⇤ ✏ �) ⇥ ⇥ = ⇤ ⇥ ⇥ ✏ � ⇥ ⇥

Theorems for powers of a relation.
(14.25) Definition:

⇥0 = iB
⇥n+1 = ⇥n ⇥ ⇥ for n ⌃ 0

(14.26) ⇥m ⇥ ⇥n = ⇥m+n for m ⌃ 0, n ⌃ 0
(14.27) (⇥m)n = ⇥m·n for m ⌃ 0, n ⌃ 0
(14.28) For ⇥ a relation on finite set B of n elements,

(↵i, j 0 ⇧ i < j ⇧ 2n2
: ⇥i = ⇥j)

(14.29) Let ⇥ be a relation on a finite set B. Suppose ⇥i = ⇥j and 0 ⇧ i < j. Then
(a) ⇥i+k = ⇥j+k for k ⌃ 0
(b) ⇥i = ⇥i+p·(j�i) for p ⌃ 0

Table 14.1 Classes of relations ⇥ over set B

Name Property Alternative

(a) reflexive (⌦b : b ⇥ b) iB ⌅ ⇥
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(e) asymmetric (⌦b, c : b ⇥ c ⌥ ¬(c ⇥ b)) ⇥ ✏ ⇥�1 = �
(f) transitive (⌦b, c, d : b ⇥ c ⇣ c ⇥ d ⌥ b ⇥ d) ⇥ = (�i i > 0 : ⇥i)
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Example

B = {0,1,2,3,4}
B×B = {〈0,0〉,〈0,1〉, ...,〈4,3〉,〈4,4〉}
<= {〈0,1〉,〈0,2〉,〈0,3〉,〈0,4〉,〈1,2〉,〈1,3〉,〈1,4〉,〈2,3〉,〈2,4〉,〈3,4〉}
<2 =< ◦<= {〈0,2〉,〈0,3〉,〈0,4〉,〈1,3〉,〈1,4〉,〈2,4〉}
<3 =<2 ◦<= {〈0,3〉,〈0,4〉,〈1,4〉}

< < <2 < <3

Example

B = {0,1,2}
B×B = {〈0,0〉,〈0,1〉,〈0,2〉,〈1,0〉,〈1,1〉,〈1,2〉,〈2,0〉,〈2,1〉,〈2,2〉}
≤= {〈0,0〉,〈0,1〉,〈0,2〉,〈1,1〉,〈1,2〉,〈2,2〉}
≤2 =≤ ◦ ≤= {〈0,0〉,〈0,1〉,〈0,2〉,〈1,1〉,〈1,2〉,〈2,2〉}
≤ ◦ ≤=≤ Idempotent

Example

The > relation over Z

(a) b > b No, > is not reflexive
(b) ¬(b > b) Yes, > is irreflexive
(c) b > c ≡ c > b No, > is not symmetric
(d) b > c∧ c > b ⇒ b = c Yes, > is antisymmetric because the antecedent is always false
(e) b > c ⇒ ¬(c > b) Yes, > is asymmetric
(f) b > c∧ c > d ⇒ b > d Yes, > is transitive

Example

The square relation over Z
square = {〈0,0〉,〈1,1〉,〈2,4〉,〈3,9〉, ...}

(a) b square b No, square is not reflexive. It does not have 〈2,2〉.
(b) ¬(b square b) No, square is not irreflexive. It has 〈1,1〉.
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Visualizing relations Math 221, Discrete Structures

A relation over B×B is a subset of the ordered pairs in B×B. If B is a set of n elements then one way to visualize
a relation is with an n×n matrix of 1’s and 0’s, where a 1 in row i column j indicates that ordered pair 〈i, j〉 is in
the subset, and a 0 indicates that the ordered pair is not in the subset.

For example, suppose B = {w,x,y,z}, and ρ is the relation defined as {〈w,w〉, 〈x,x〉, 〈w,x〉,
〈z,y〉}. The matrix on the right is the matrix representation of relation ρ . From top to
bottom, the rows are for elements w, x, y, and z. Similarly, from left to right, the columns
are for elements w, x, y, and z. The 1 in the first row and first column represents the ordered
pair 〈w,w〉. The 1 in the fourth row and third column represents the ordered pair 〈z,y〉.





1 1 0 0
0 1 0 0
0 0 0 0
0 0 1 0





The inverse relation – The inverse relation ρ−1 on B is defined as 〈b,c〉 ∈ ρ−1 ≡ 〈c,b〉 ∈
ρ , for all b: B. In terms of the matrix, the ρ−1 matrix is the mirror image about the
diagonal of the ρ matrix. The matrix on the right is for the relation that is the inverse of the
relation above. Ordered pair 〈x,w〉 is in this relation because ordered pair 〈w,x〉 is in the
original relation.





1 0 0 0
1 1 0 0
0 0 0 1
0 0 0 0





The identity relation – The identity relation iB on B is defined as iB = {x: B : 〈x,x〉}.
In terms of the matrix, the diagonal must contain all 1’s, and all off-diagonal entries must
contain 0’s.





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





Reflexive relations – A reflexive relation ρ is defined as (∀b : b ρ b), or, alternatively as
iB ⊆ ρ . In terms of the matrix, the diagonal must contain all 1’s. Each underline entry _ in
the matrix of the reflexive relation on the right represents either a one or a zero.





1 _ _ _
_ 1 _ _
_ _ 1 _
_ _ _ 1





Irreflexive relations – An irreflexive relation ρ is defined as (∀b : ¬(b ρ b)) or, alterna-
tively, as iB∩ρ = /0. In terms of the matrix, the diagonal must contain all 0’s. It is possible
for a relation to be neither reflexive nor irreflexive. The first example is one such relation.





0 _ _ _
_ 0 _ _
_ _ 0 _
_ _ _ 0





Symmetric relations – A symmetric relation ρ is defined as (∀b,c : b ρ c ≡ c ρ b) or,
alternatively, as ρ−1 = ρ . In terms of the matrix, it must be symmetric about the diagonal.
For example, in the matrix on the right the 1 in the first row, third column represents ordered
pair 〈w,y〉, and the 1 in the third row, first column represents ordered pair 〈y,w〉. The 0 in
the second row, third column represents the absence of 〈x,y〉, and the 0 in the third row,
second column represents the absence of 〈y,x〉.





_ 1 1 1
1 _ 0 0
1 0 _ 0
1 0 0 _





Antisymmetric relations – An antisymmetric relation ρ is defined as (∀b,c : b ρ c ∧
c ρ b ⇒ b = c) or, alternatively, as ρ ∩ ρ−1 ⊆ iB. In terms of the matrix, the diagonal
elements can be either 0 or 1. If b ρ b is true, then both the antecedent and consequent are
true, and so the implication is true. If b ρ b is false, then the antecedent is false, and so the
implication is true. For the off-diagonal elements, where b ,= c, you cannot have both b ρ c
and c ρ b. However, you can have neither.





_ 1 1 1
0 _ 0 0
0 0 _ 0
0 0 1 _
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(e) ⇥ ⌅ ⇤ ⇤ ⇥�1 ⌅ ⇤�1

Let ⇥ be a relation on B � C and ⇤ be a relation on C �D. The product
of ⇥ and ⇤, denoted by ⇥ ⇥ ⇤, is the relation defined by
(14.20) Definition, Product: ⌘b, d✓ � ⇥ ⇥ ⇤ ⇤ (↵c c � C : ⌘b, c✓ � ⇥ ⇣ ⌘c, d✓ � ⇤)
or, using the alternative notation by
(14.21) Definition, Product: b (⇥ ⇥ ⇤) d ⇤ (↵c : b ⇥ c ⇤ d)

Theorems for relation product.
(14.22) Associativity of ⇥ : ⇥ ⇥ (⇤ ⇥ �) = (⇥ ⇥ ⇤) ⇥ �

(14.23) Distributivity of ⇥ over � :
⇥ ⇥ (⇤ � �) = ⇥ ⇥ ⇤ � ⇥ ⇥ �

(⇤ � �) ⇥ ⇥ = ⇤ ⇥ ⇥ � � ⇥ ⇥

(14.24) Distributivity of ⇥ over ✏ :
⇥ ⇥ (⇤ ✏ �) = ⇥ ⇥ ⇤ ✏ ⇥ ⇥ �

(⇤ ✏ �) ⇥ ⇥ = ⇤ ⇥ ⇥ ✏ � ⇥ ⇥

Theorems for powers of a relation.
(14.25) Definition:

⇥0 = iB
⇥n+1 = ⇥n ⇥ ⇥ for n ⌃ 0

(14.26) ⇥m ⇥ ⇥n = ⇥m+n for m ⌃ 0, n ⌃ 0
(14.27) (⇥m)n = ⇥m·n for m ⌃ 0, n ⌃ 0
(14.28) For ⇥ a relation on finite set B of n elements,

(↵i, j 0 ⇧ i < j ⇧ 2n2
: ⇥i = ⇥j)

(14.29) Let ⇥ be a relation on a finite set B. Suppose ⇥i = ⇥j and 0 ⇧ i < j. Then
(a) ⇥i+k = ⇥j+k for k ⌃ 0
(b) ⇥i = ⇥i+p·(j�i) for p ⌃ 0

Table 14.1 Classes of relations ⇥ over set B

Name Property Alternative

(a) reflexive (⌦b : b ⇥ b) iB ⌅ ⇥

(b) irreflexive (⌦b : ¬(b ⇥ b)) iB ✏ ⇥ = �
(c) symmetric (⌦b, c : b ⇥ c ⇤ c ⇥ b) ⇥�1 = ⇥

(d) antisymmetric (⌦b, c : b ⇥ c ⇣ c ⇥ b ⌥ b = c) ⇥ ✏ ⇥�1 ⌅ iB
(e) asymmetric (⌦b, c : b ⇥ c ⌥ ¬(c ⇥ b)) ⇥ ✏ ⇥�1 = �
(f) transitive (⌦b, c, d : b ⇥ c ⇣ c ⇥ d ⌥ b ⇥ d) ⇥ = (�i i > 0 : ⇥i)

Visualizing relations Math 221, Discrete Structures

Asymmetric relations – An asymmetric relation ρ is defined as (∀b,c : b ρ c ⇒ ¬(c ρ b))
or, alternatively, as ρ ∩ρ−1 = /0. In terms of the matrix, the diagonal elements must be 0.
If b ρ b were true, then the antecedent would be true and the consequent would be false,
and so the implication would be false. For the off-diagonal elements, where b %= c, if you
have b ρ c you cannot have c ρ b. Like an antisymmetric relation, you can have neither. An
asymmetric relation is an antisymmetric relation with the added restriction that the diagonal
elements must be 0.





0 1 1 1
0 0 0 0
0 0 0 0
0 0 1 0





Theorem – If a relation is asymmetric, then it is antisymmetric.

Informal proof :

If a relation is asymmetric then, by the alternative definition of an asymmetric relation, ρ ∩ρ−1 = /0. By Theorem
(11.60) /0 ⊆ S, an asymmetric relation satisfies ρ ∩ρ−1 ⊆ iB. But this is the alternative definition of an antisym-
metric relation. Therefore an asymmetric relation is also antisymmetric.

Theorem – A relation is asymmetric if and only if it is both antisymmetric and irreflexive.

Informal proof :

The proof is by mutual implication.

First, suppose the the relation is asymmetric. Then it is antisymmetric by the previous theorem. It is also irreflex-
ive because the diagonal elements must be 0 as described in “Asymmetric relations” above.

Second, suppose the relation is both antisymmetric and irreflexive. Then it must satisfy the alternative defini-
tion of an asymmetric relation ρ ∩ρ−1 = /0. There can be no off-diagonal elements in the intersection because
antisymmetry requires ρ ∩ρ−1 ⊆ iB and there are no off-diagonal elements in iB. There can be no on-diagonal
elements in the intersection because irreflexivity forbids 〈b,b〉 to be in the set of ordered pairs of ρ .

Theorem – If a relation is irreflexive and transitive, then it is asymmetric (and therefore antisymmetric).

Informal proof :

Suppose 〈b,c〉 is in an irreflexive and transitive relation, where b %= c. Then, 〈c,b〉 cannot be in the relation and
so the relation must be asymmetric. For if 〈c,b〉 were in the relation, then, because 〈b,c〉 is also in the relation,
〈b,b〉 would have to be in the relation by transitivity. But, that is impossible, because the relation is irreflexive.
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Prove Table 14.1(a) (∀b : b ρ b) ≡ iB ⊆ ρ

Proof
iB ⊆ ρ

= 〈(11.13) Axiom, Subset〉
(∀b,c 〈b,c〉 ∈ iB : 〈b,c〉 ∈ ρ)

= 〈(14.15.3) Identity lemma〉
(∀b,c b = c : 〈b,c〉 ∈ ρ)

= 〈(8.20) Nesting, with R := true〉
(∀b : (∀c b = c : 〈b,c〉 ∈ ρ))

= 〈(8.14) One-point rule and textual substitution〉
(∀b 〈b,b〉 ∈ ρ)

= 〈(14.15.4) Notation〉
(∀b : b ρ b) //
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Theorems for powers of a relation.
(14.25) Definition:

ρ0 = iB
ρn+1 = ρn ◦ρ for n ≥ 0

(14.26) ρm ◦ρn = ρm+n for m ≥ 0,n ≥ 0
(14.27) (ρm)n = ρm·n for m ≥ 0,n ≥ 0
(14.28) For ρ a relation on finite set B of n elements,

(∃i, j 0 ≤ i < j ≤ 2n2 : ρ i = ρ j)

(14.29) Let ρ be a relation on a finite set B. Suppose ρ i = ρ j and 0 ≤ i < j. Then
(a) ρ i+k = ρ j+k for k ≥ 0
(b) ρ i = ρ i+p·( j−i) for p ≥ 0

Table 14.1 Classes of relations ρ over set B
Name Property Alternative

(a) reflexive (∀b : b ρ b) iB ⊆ ρ
(b) irreflexive (∀b : ¬(b ρ b)) iB ∩ρ = /0
(c) symmetric (∀b,c : b ρ c ≡ c ρ b) ρ−1 = ρ
(d) antisymmetric (∀b,c : b ρ c∧ c ρ b ⇒ b = c) ρ ∩ρ−1 ⊆ iB
(e) asymmetric (∀b,c : b ρ c ⇒ ¬(c ρ b)) ρ ∩ρ−1 = /0
(f) transitive (∀b,c,d : b ρ c∧ c ρ d ⇒ b ρ d) ρ = (∪i i > 0 : ρ i)

(14.30.1) Definition: Let ρ be a relation on a set. The reflexive closure of ρ is the
relation r(ρ) that satisfies:
(a) r(ρ) is reflexive;
(b) ρ ⊆ r(ρ);
(c) If any relation σ is reflexive and ρ ⊆ σ , then r(ρ)⊆ σ .

(14.30.2) Definition: Let ρ be a relation on a set. The symmetric closure of ρ is the
relation s(ρ) that satisfies:
(a) s(ρ) is symmetric;
(b) ρ ⊆ s(ρ);
(c) If any relation σ is symmetric and ρ ⊆ σ , then s(ρ)⊆ σ .

(14.30.3) Definition: Let ρ be a relation on a set. The transitive closure of ρ is the
relation ρ+ that satisfies:
(a) ρ+ is transitive;
(b) ρ ⊆ ρ+;
(c) If any relation σ is transitive and ρ ⊆ σ , then ρ+ ⊆ σ .

(14.30.4) Definition: Let ρ be a relation on a set. The reflexive transitive closure of ρ
is the relation ρ∗ that is both the reflexive and the transitive closure of ρ .

22

Prove Table 14.1(a) (∀b : b ρ b) ≡ iB ⊆ ρ

Proof
iB ⊆ ρ

= 〈(11.13) Axiom, Subset〉
(∀b,c 〈b,c〉 ∈ iB : 〈b,c〉 ∈ ρ)

= 〈(14.15.3) Identity lemma〉
(∀b,c b = c : 〈b,c〉 ∈ ρ)

= 〈(8.20) Nesting, with R := true〉
(∀b : (∀c b = c : 〈b,c〉 ∈ ρ))

= 〈(8.14) One-point rule and textual substitution〉
(∀b 〈b,b〉 ∈ ρ)

= 〈(14.15.4) Notation〉
(∀b : b ρ b) //

Example

B = {0,1,2}
<= {〈0,1〉,〈0,2〉,〈1,2〉}
By part (b), every ordered pair in < must also be in r(<).

r(<) = {〈0,1〉,〈0,2〉,〈1,2〉, ...}
By part (a), r(<) must be reflexive.

r(<) = {〈0,1〉,〈0,2〉,〈1,2〉,〈0,0〉,〈1,1〉,〈2,2〉, ...}
By part (c), there can be no other ordered pairs in r(<).

r(<) = {〈0,1〉,〈0,2〉,〈1,2〉,〈0,0〉,〈1,1〉,〈2,2〉}
The relation

σ = {〈0,1〉,〈0,2〉,〈1,2〉,〈0,0〉,〈1,1〉,〈2,2〉〈1,0〉}
also satisfies (a) and (b) because (a) σ is reflexive, and (b) <⊆ σ .
However, σ cannot be the reflexive closure of <, because r(<) ⊆ σ .
To compute r(ρ), add the fewest number of ordered pairs to ρ that will make it reflexive.
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Theorems for powers of a relation.
(14.25) Definition:

ρ0 = iB
ρn+1 = ρn ◦ρ for n ≥ 0

(14.26) ρm ◦ρn = ρm+n for m ≥ 0,n ≥ 0
(14.27) (ρm)n = ρm·n for m ≥ 0,n ≥ 0
(14.28) For ρ a relation on finite set B of n elements,

(∃i, j 0 ≤ i < j ≤ 2n2 : ρ i = ρ j)

(14.29) Let ρ be a relation on a finite set B. Suppose ρ i = ρ j and 0 ≤ i < j. Then
(a) ρ i+k = ρ j+k for k ≥ 0
(b) ρ i = ρ i+p·( j−i) for p ≥ 0

Table 14.1 Classes of relations ρ over set B
Name Property Alternative

(a) reflexive (∀b : b ρ b) iB ⊆ ρ
(b) irreflexive (∀b : ¬(b ρ b)) iB ∩ρ = /0
(c) symmetric (∀b,c : b ρ c ≡ c ρ b) ρ−1 = ρ
(d) antisymmetric (∀b,c : b ρ c∧ c ρ b ⇒ b = c) ρ ∩ρ−1 ⊆ iB
(e) asymmetric (∀b,c : b ρ c ⇒ ¬(c ρ b)) ρ ∩ρ−1 = /0
(f) transitive (∀b,c,d : b ρ c∧ c ρ d ⇒ b ρ d) ρ = (∪i i > 0 : ρ i)

(14.30.1) Definition: Let ρ be a relation on a set. The reflexive closure of ρ is the
relation r(ρ) that satisfies:
(a) r(ρ) is reflexive;
(b) ρ ⊆ r(ρ);
(c) If any relation σ is reflexive and ρ ⊆ σ , then r(ρ)⊆ σ .

(14.30.2) Definition: Let ρ be a relation on a set. The symmetric closure of ρ is the
relation s(ρ) that satisfies:
(a) s(ρ) is symmetric;
(b) ρ ⊆ s(ρ);
(c) If any relation σ is symmetric and ρ ⊆ σ , then s(ρ)⊆ σ .

(14.30.3) Definition: Let ρ be a relation on a set. The transitive closure of ρ is the
relation ρ+ that satisfies:
(a) ρ+ is transitive;
(b) ρ ⊆ ρ+;
(c) If any relation σ is transitive and ρ ⊆ σ , then ρ+ ⊆ σ .

(14.30.4) Definition: Let ρ be a relation on a set. The reflexive transitive closure of ρ
is the relation ρ∗ that is both the reflexive and the transitive closure of ρ .
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Prove Table 14.1(a) (∀b : b ρ b) ≡ iB ⊆ ρ

Proof
iB ⊆ ρ

= 〈(11.13) Axiom, Subset〉
(∀b,c 〈b,c〉 ∈ iB : 〈b,c〉 ∈ ρ)

= 〈(14.15.3) Identity lemma〉
(∀b,c b = c : 〈b,c〉 ∈ ρ)

= 〈(8.20) Nesting, with R := true〉
(∀b : (∀c b = c : 〈b,c〉 ∈ ρ))

= 〈(8.14) One-point rule and textual substitution〉
(∀b 〈b,b〉 ∈ ρ)

= 〈(14.15.4) Notation〉
(∀b : b ρ b) //

Example

B = {0,1,2}
<= {〈0,1〉,〈0,2〉,〈1,2〉}
By part (b), every ordered pair in < must also be in r(<).

r(<) = {〈0,1〉,〈0,2〉,〈1,2〉, ...}
By part (a), r(<) must be reflexive.
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also satisfies (a) and (b) because (a) σ is reflexive, and (b) <⊆ σ .
However, σ cannot be the reflexive closure of <, because r(<) ⊆ σ .
To compute r(ρ), add the fewest number of ordered pairs to ρ that will make it reflexive.

Example

B = {0,1,2}
<= {〈0,1〉,〈0,2〉,〈1,2〉}
s(<) = {〈0,1〉,〈0,2〉,〈1,2〉,〈1,0〉,〈2,0〉,〈2,1〉}
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Theorems for powers of a relation.
(14.25) Definition:

ρ0 = iB
ρn+1 = ρn ◦ρ for n ≥ 0

(14.26) ρm ◦ρn = ρm+n for m ≥ 0,n ≥ 0
(14.27) (ρm)n = ρm·n for m ≥ 0,n ≥ 0
(14.28) For ρ a relation on finite set B of n elements,

(∃i, j 0 ≤ i < j ≤ 2n2 : ρ i = ρ j)

(14.29) Let ρ be a relation on a finite set B. Suppose ρ i = ρ j and 0 ≤ i < j. Then
(a) ρ i+k = ρ j+k for k ≥ 0
(b) ρ i = ρ i+p·( j−i) for p ≥ 0

Table 14.1 Classes of relations ρ over set B
Name Property Alternative

(a) reflexive (∀b : b ρ b) iB ⊆ ρ
(b) irreflexive (∀b : ¬(b ρ b)) iB ∩ρ = /0
(c) symmetric (∀b,c : b ρ c ≡ c ρ b) ρ−1 = ρ
(d) antisymmetric (∀b,c : b ρ c∧ c ρ b ⇒ b = c) ρ ∩ρ−1 ⊆ iB
(e) asymmetric (∀b,c : b ρ c ⇒ ¬(c ρ b)) ρ ∩ρ−1 = /0
(f) transitive (∀b,c,d : b ρ c∧ c ρ d ⇒ b ρ d) ρ = (∪i i > 0 : ρ i)

(14.30.1) Definition: Let ρ be a relation on a set. The reflexive closure of ρ is the
relation r(ρ) that satisfies:
(a) r(ρ) is reflexive;
(b) ρ ⊆ r(ρ);
(c) If any relation σ is reflexive and ρ ⊆ σ , then r(ρ)⊆ σ .

(14.30.2) Definition: Let ρ be a relation on a set. The symmetric closure of ρ is the
relation s(ρ) that satisfies:
(a) s(ρ) is symmetric;
(b) ρ ⊆ s(ρ);
(c) If any relation σ is symmetric and ρ ⊆ σ , then s(ρ)⊆ σ .

(14.30.3) Definition: Let ρ be a relation on a set. The transitive closure of ρ is the
relation ρ+ that satisfies:
(a) ρ+ is transitive;
(b) ρ ⊆ ρ+;
(c) If any relation σ is transitive and ρ ⊆ σ , then ρ+ ⊆ σ .

(14.30.4) Definition: Let ρ be a relation on a set. The reflexive transitive closure of ρ
is the relation ρ∗ that is both the reflexive and the transitive closure of ρ . 23

Example

B = {0,1,2,3}
pred = {〈0,1〉,〈1,2〉,〈2,3〉}
pred+ = {

〈0,1〉,〈1,2〉,〈2,3〉,
〈0,2〉,〈1,3〉,
〈0,3〉}

pred+ = <

pred∗ = {
〈0,1〉,〈1,2〉,〈2,3〉,〈0,2〉,〈1,3〉,〈0,3〉,
〈0,0〉〈1,1〉〈2,2〉〈3,3〉}

pred∗ = ≤

Exercise 14.32

ρ ∪σ ρ ∩σ ρ −σ (B×B)−ρ
Reflexive Y N
Irreflexive Y
Symmetric
Antisymmetric
Transitive

Is reflexivity preserved under union?
If ρ is reflexive and σ is reflexive, is ρ ∪σ reflexive?
If ρ has 〈a,a〉,〈b,b〉, ..., and σ has 〈a,a〉,〈b,b〉, ..., does ρ ∪σ have 〈a,a〉,〈b,b〉, ...?

Is reflexivity preserved under set difference?
If ρ is reflexive and σ is reflexive, is ρ −σ reflexive?
If ρ has 〈a,a〉,〈b,b〉, ..., and σ has 〈a,a〉,〈b,b〉, ..., does ρ −σ have 〈a,a〉,〈b,b〉, ...?

Is irreflexivity preserved under set difference?
If ρ is irreflexive and σ is irreflexive, is ρ −σ irreflexive?
If ρ and σ are both missing 〈a,a〉,〈b,b〉, ..., is ρ −σ missing 〈a,a〉,〈b,b〉, ...?

(14.33) Example

B = {0,1,2,3,4}
ρ = {

〈0,0〉,〈1,1〉,〈2,2〉,〈3,3〉,〈4,4〉,
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Exercise 14.32

ρ ∪σ ρ ∩σ ρ −σ (B×B)−ρ
Reflexive Y N
Irreflexive Y
Symmetric
Antisymmetric
Transitive

Is reflexivity preserved under union?
If ρ is reflexive and σ is reflexive, is ρ ∪σ reflexive?
If ρ has 〈a,a〉,〈b,b〉, ..., and σ has 〈a,a〉,〈b,b〉, ..., does ρ ∪σ have 〈a,a〉,〈b,b〉, ...?

Is reflexivity preserved under set difference?
If ρ is reflexive and σ is reflexive, is ρ −σ reflexive?
If ρ has 〈a,a〉,〈b,b〉, ..., and σ has 〈a,a〉,〈b,b〉, ..., does ρ −σ have 〈a,a〉,〈b,b〉, ...?

Is irreflexivity preserved under set difference?
If ρ is irreflexive and σ is irreflexive, is ρ −σ irreflexive?
If ρ and σ are both missing 〈a,a〉,〈b,b〉, ..., is ρ −σ missing 〈a,a〉,〈b,b〉, ...?
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(14.31) (a) A reflexive relation is its own reflexive closure.
(b) A symmetric relation is its own symmetric closure.
(c) A transitive relation is its own transitive closure.

(14.32) Let ρ be a relation on a set B. Then,
(a) r(ρ) = ρ ∪ iB
(b) s(ρ) = ρ ∪ρ−1

(c) ρ+ = (∪i 0 < i : ρ i)

(d) ρ∗ = ρ+∪ iB

Equivalence relations.
(14.33) Definition: A relation is an equivalence relation iff it is reflexive, symmetric,

and transitive
(14.34) Definition: Let ρ be an equivalence relation on B. Then [b]ρ , the equivalence

class of b, is the subset of elements of B that are equivalent (under ρ) to b:
x ∈ [b]ρ ≡ x ρ b

(14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The
following three predicates are equivalent:
(a) b ρ c
(b) [b]∩ [c] '= /0
(c) [b] = [c]
That is, (b ρ c) = ([b]∩ [c] '= /0) = ([b] = [c])

(14.35.1) Let ρ be an equivalence relation on B. The equivalence classes partition B.
(14.36) Let P be the set of sets of a partition of B. The following relation ρ on B is an

equivalence relation:
b ρ c ≡ (∃p p ∈ P : b ∈ p∧ c ∈ p)

Functions.
(14.37) (a) Definition: A binary relation f on B×C is determinate iff

(∀b,c,c′ b f c ∧ b f c′ : c = c′)
(b) Definition: A binary relation is a function iff it is determinate.

(14.37.1) Notation: f .b = c and b f c are interchangeable notations.
(14.38) Definition: A function f on B×C is total if B = Dom. f .

Otherwise it is partial.
We write f : B →C for the type of f if f is total and f : B !C if f is partial.

(14.38.1) Total: A function f on B×C is total if, for an arbitrary element b: B,
(∃c: C : f .b = c)

(14.39) Definition, Composition: For functions f and g, f •g = g◦ f .
(14.40) Let g : B →C and f : C → D be total functions.

Then the composition f •g of f and g is the total function defined by
( f •g).b = f (g.b)

23

Example

B = {0,1,2,3}
pred = {〈0,1〉,〈1,2〉,〈2,3〉}
pred+ = {

〈0,1〉,〈1,2〉,〈2,3〉,
〈0,2〉,〈1,3〉,
〈0,3〉}

pred+ = <

pred∗ = ≤

Exercise 14.32

ρ ∪σ ρ ∩σ ρ −σ (B×B)−ρ
Reflexive Y N
Irreflexive Y
Symmetric
Antisymmetric
Transitive

Is reflexivity preserved under union?
If ρ is reflexive and σ is reflexive, is ρ ∪σ reflexive?
If ρ has 〈a,a〉,〈b,b〉, ..., and σ has 〈a,a〉,〈b,b〉, ..., does ρ ∪σ have 〈a,a〉,〈b,b〉, ...?

Is reflexivity preserved under set difference?
If ρ is reflexive and σ is reflexive, is ρ −σ reflexive?
If ρ has 〈a,a〉,〈b,b〉, ..., and σ has 〈a,a〉,〈b,b〉, ..., does ρ −σ have 〈a,a〉,〈b,b〉, ...?

Is irreflexivity preserved under set difference?
If ρ is irreflexive and σ is irreflexive, is ρ −σ irreflexive?
If ρ and σ are both missing 〈a,a〉,〈b,b〉, ..., is ρ −σ missing 〈a,a〉,〈b,b〉, ...?

(14.33) Example

B = {0,1,2,3,4}
ρ = {

〈0,0〉,〈1,1〉,〈2,2〉,〈3,3〉,〈4,4〉,
〈0,1〉,〈1,0〉,〈0,3〉,〈3,0〉,〈0,4〉,〈4,0〉,
〈2,4〉,〈4,2〉}
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(14.34) Example

[0] = {0,1,3}
[1] = {1,0,3}
[2] = {2,4}
[3] = {3,1,0}
[4] = {4,2}

Partition

[0]∩ [2] = /0
[0]∪ [2] = B
{[0], [2]} is a partition of B.
{{0,1,3},{2,4}} is a partition of B.
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10 J. STANLEY WARFORD

(11.69) (∃x x ∈ S : x /∈ T )⇒ S $= T
(11.70) Transitivity:

(a) S ⊆ T ∧T ⊂U ⇒ S ⊂U
(b) S ⊂ T ∧T ⊆U ⇒ S ⊂U
(c) S ⊂ T ∧T ⊂U ⇒ S ⊂U

Theorems concerning power set P .
(11.71) P /0 = { /0}
(11.72) S ∈ PS
(11.73) #(PS) = 2#S (for finite set S)

Union and intersection of families of sets.
(11.74.1) Definition: v ∈ (∪x R : E) ≡ (∃x R : v ∈ E)
(11.75.1) Definition: v ∈ (∩x R : E) ≡ (∀x R : v ∈ E)
(11.76) Axiom, Partition: Set S partitions T if

(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T , that is, if
(∀u,v u ∈ S∧ v ∈ S∧u $= v : u∩ v = /0)∧ (∪u u ∈ S : u) = T

Bags.
(11.79) Axiom, Membership: v ∈ {| x R : E |} ≡ (∃x R : v = E)
(11.80) Axiom, Size: #{| x R : E |}= (Σx R : 1)
(11.81) Axiom, Number of occurrences: v#{| x R : E |}= (Σx R∧ v = E : 1)
(11.82) Axiom, Bag equality: B =C ≡ (∀v : v#B = v#C)

(11.83) Axiom, Subbag: B ⊆C ≡ (∀v : v#B ≤ v#C)

(11.84) Axiom, Proper subbag: B ⊂C ≡ B ⊆C∧B $=C
(11.85) Axiom, Union: B∪C = {| v, i 0 ≤ i < v#B+ v#C : v |}
(11.86) Axiom, Intersection: B∩C = {| v, i 0 ≤ i < v#B ↓ v#C : v |}
(11.87) Axiom, Difference: B−C = {| v, i 0 ≤ i < v#B− v#C : v |}

Mathematical Induction

(12.3) Axiom, Mathematical Induction over N:
(∀n: N : (∀i 0 ≤ i < n : P.i)⇒ P.n) ⇒ (∀n: N : P.n)

(12.4) Mathematical Induction over N:
(∀n: N : (∀i 0 ≤ i < n : P.i)⇒ P.n) ≡ (∀n: N : P.n)

(12.5) Mathematical Induction over N:
P.0∧ (∀n: N : (∀i 0 ≤ i ≤ n : P.i)⇒ P(n+1)) ≡ (∀n: N : P.n)

(12.11) Definition, b to the power n:
b0 = 1
bn+1 = b ·bn for n ≥ 0
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CAUTION: You cannot use a metatheorem in a proof hint.
The following step is illegal.
Prove (11.51) S− /0 = S
Proof

S− /0 = S
= 〈(11.49)〉

S ∩∼ /0 = S
= 〈(11.25a)〉 Illegal

S∧¬ f alse ≡ S

Quantifying union ∪
∪ is symmetric: (11.26) S∪T = T ∪S
∪ is associative: (11.27) (S∪T )∪U = S∪ (T ∪U)

∪ has an identity: (11.30) S∪ /0 = S
Therefore, ∪ is an abelian monoid and can be quantified.

Example

T : {a,b,c,d,e, f}
S : {{a,c},{b,e, f},{d}}
S partitions T .

Example

T : {a,b,c,d,e, f}
S : {{a,c},{b,e, f},{d,e}}
S does not partition T because {b,e, f}∩{d,e} (= /0.

Example

T : {a,b,c,d,e, f}
S : {{a,c},{e, f},{d}}
S does not partition T because {a,c}∪{e, f}∪{d} (= T .
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(14.31) (a) A reflexive relation is its own reflexive closure.
(b) A symmetric relation is its own symmetric closure.
(c) A transitive relation is its own transitive closure.

(14.32) Let ρ be a relation on a set B. Then,
(a) r(ρ) = ρ ∪ iB
(b) s(ρ) = ρ ∪ρ−1

(c) ρ+ = (∪i 0 < i : ρ i)

(d) ρ∗ = ρ+∪ iB

Equivalence relations.
(14.33) Definition: A relation is an equivalence relation iff it is reflexive, symmetric,

and transitive
(14.34) Definition: Let ρ be an equivalence relation on B. Then [b]ρ , the equivalence

class of b, is the subset of elements of B that are equivalent (under ρ) to b:
x ∈ [b]ρ ≡ x ρ b

(14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The
following three predicates are equivalent:
(a) b ρ c
(b) [b]∩ [c] '= /0
(c) [b] = [c]
That is, (b ρ c) = ([b]∩ [c] '= /0) = ([b] = [c])

(14.35.1) Let ρ be an equivalence relation on B. The equivalence classes partition B.
(14.36) Let P be the set of sets of a partition of B. The following relation ρ on B is an

equivalence relation:
b ρ c ≡ (∃p p ∈ P : b ∈ p∧ c ∈ p)

Functions.
(14.37) (a) Definition: A binary relation f on B×C is determinate iff

(∀b,c,c′ b f c ∧ b f c′ : c = c′)
(b) Definition: A binary relation is a function iff it is determinate.

(14.37.1) Notation: f .b = c and b f c are interchangeable notations.
(14.38) Definition: A function f on B×C is total if B = Dom. f .

Otherwise it is partial.
We write f : B →C for the type of f if f is total and f : B !C if f is partial.

(14.38.1) Total: A function f on B×C is total if, for an arbitrary element b: B,
(∃c: C : f .b = c)

(14.39) Definition, Composition: For functions f and g, f •g = g◦ f .
(14.40) Let g : B →C and f : C → D be total functions.

Then the composition f •g of f and g is the total function defined by
( f •g).b = f (g.b)

24

(14.33) Example

B = {0,1,2,3,4}
ρ = {

〈0,0〉,〈1,1〉,〈2,2〉,〈3,3〉,〈4,4〉,
〈0,1〉,〈1,0〉,〈0,3〉,〈3,0〉,〈1,3〉,〈3,1〉,
〈2,4〉,〈4,2〉}

(14.34) Example

[0] = {0,1,3}
[1] = {1,0,3}
[2] = {2,4}
[3] = {3,1,0}
[4] = {4,2}

Partition

[0]∩ [2] = /0
[0]∪ [2] = B
{[0], [2]} is a partition of B.
{{0,1,3},{2,4}} is a partition of B.

Example

Using the previous example, the following are all equivalent:
(a) 1ρ3
(b) [1]∩ [3] %= /0
(c) [1] = [3]

because each one is true.

The following are all equivalent:
(a) 1ρ2
(b) [1]∩ [2] %= /0
(c) [1] = [2]

because each one is f alse.
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Prove (14.35)

To prove (14.35), first prove each of the following three sub-theorems:
(a) ⇒ (b)
(b) ⇒ (c)
(c) ⇒ (a)

Then by (3.82a) Transitivity, ((b) ⇒ (c)) ∧ ((c) ⇒ (a)) ⇒ ((b) ⇒ (a))
Then by (3.80) Mutual implication, ((a) ⇒ (b)) ∧ ((b) ⇒ (a)) ≡ ((a) ≡ (b))
And similarly for (a) ≡ (c) and for (b) ≡ (c)

Prove (a) ⇒ (b), which is bρc ⇒ [b]∩ [c] %= /0

Proof
bρc

= 〈(3.39) Identity of ∧〉
true∧bρc

= 〈ρ is reflexive〉
bρb∧bρc

= 〈(14.34) Definition, twice〉
b ∈ [b]∧b ∈ [c]

= 〈(11.21) Axiom intersection〉
b ∈ [b]∩ [c]

⇒ 〈Lemma: b ∈ A ⇒ A %= /0〉
[b]∩ [c] %= /0 //

Prove the lemma: b ∈ A ⇒ A %= /0
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(14.31) (a) A reflexive relation is its own reflexive closure.
(b) A symmetric relation is its own symmetric closure.
(c) A transitive relation is its own transitive closure.

(14.32) Let ρ be a relation on a set B. Then,
(a) r(ρ) = ρ ∪ iB
(b) s(ρ) = ρ ∪ρ−1

(c) ρ+ = (∪i 0 < i : ρ i)

(d) ρ∗ = ρ+∪ iB

Equivalence relations.
(14.33) Definition: A relation is an equivalence relation iff it is reflexive, symmetric,

and transitive
(14.34) Definition: Let ρ be an equivalence relation on B. Then [b]ρ , the equivalence

class of b, is the subset of elements of B that are equivalent (under ρ) to b:
x ∈ [b]ρ ≡ x ρ b

(14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The
following three predicates are equivalent:
(a) b ρ c
(b) [b]∩ [c] '= /0
(c) [b] = [c]
That is, (b ρ c) = ([b]∩ [c] '= /0) = ([b] = [c])

(14.35.1) Let ρ be an equivalence relation on B. The equivalence classes partition B.
(14.36) Let P be the set of sets of a partition of B. The following relation ρ on B is an

equivalence relation:
b ρ c ≡ (∃p p ∈ P : b ∈ p∧ c ∈ p)

Functions.
(14.37) (a) Definition: A binary relation f on B×C is determinate iff

(∀b,c,c′ b f c ∧ b f c′ : c = c′)
(b) Definition: A binary relation is a function iff it is determinate.

(14.37.1) Notation: f .b = c and b f c are interchangeable notations.
(14.38) Definition: A function f on B×C is total if B = Dom. f .

Otherwise it is partial.
We write f : B →C for the type of f if f is total and f : B !C if f is partial.

(14.38.1) Total: A function f on B×C is total if, for an arbitrary element b: B,
(∃c: C : f .b = c)

(14.39) Definition, Composition: For functions f and g, f •g = g◦ f .
(14.40) Let g : B →C and f : C → D be total functions.

Then the composition f •g of f and g is the total function defined by
( f •g).b = f (g.b)

(14.35.1) Equivalence
relation Partition

(14.36) Equivalence
relationPartition
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ρ a relation on B×C
f a function, f : B →C

Determinate (14.37) Total (14.38)

B C B C

Determinate: f is a function Total

B C B C

Not determinate: ρ is not a function Not total (partial)

Onto (14.41a) One-to-one (14.41b)

B C B C

Onto One-to-one

B C B C

Not onto Not one-to-one

Inverses of total functions.
(14.41) Definitions:

(a) Total function f : B →C is onto or surjective if Ran. f =C.
(b) Total function f is one-to-one or injective if

(∀b,b′: B,c: C : b f c ∧ b′ f c ≡ b = b′).
(c) Total function f is bijective if it is one-to-one and onto.

(14.42) Let f be a total function, and let f−1 be its relational inverse.
(a) Then f−1 is a function, i.e. is determinate, iff f is one-to-one.
(b) And, f−1 is total iff f is onto.

(14.43) Definitions: Let f : B →C.
(a) A left inverse of f is a function g : C → B such that g• f = iB.
(b) A right inverse of f is a function g : C → B such that f •g = iC.
(c) Function g is an inverse of f if it is both a left inverse and a right inverse.

(14.44) Function f : B →C is onto iff f has a right inverse.
(14.45) Let f : B →C be total. Then f is one-to-one iff f has a left inverse.
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ρ = {〈a,1〉,〈a,2〉,〈b,3〉,〈d,4〉}
ρ is a relation.
ρ is not a function.

Have aρ1∧aρ2 but 1 $= 2.
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and transitive
(14.34) Definition: Let ρ be an equivalence relation on B. Then [b]ρ , the equivalence

class of b, is the subset of elements of B that are equivalent (under ρ) to b:
x ∈ [b]ρ ≡ x ρ b

(14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The
following three predicates are equivalent:
(a) b ρ c
(b) [b]∩ [c] '= /0
(c) [b] = [c]
That is, (b ρ c) = ([b]∩ [c] '= /0) = ([b] = [c])

(14.35.1) Let ρ be an equivalence relation on B. The equivalence classes partition B.
(14.36) Let P be the set of sets of a partition of B. The following relation ρ on B is an

equivalence relation:
b ρ c ≡ (∃p p ∈ P : b ∈ p∧ c ∈ p)

Functions.
(14.37) (a) Definition: A binary relation f on B×C is determinate iff

(∀b,c,c′ b f c ∧ b f c′ : c = c′)
(b) Definition: A binary relation is a function iff it is determinate.

(14.37.1) Notation: f .b = c and b f c are interchangeable notations.
(14.38) Definition: A function f on B×C is total if B = Dom. f .

Otherwise it is partial.
We write f : B →C for the type of f if f is total and f : B !C if f is partial.

(14.38.1) Total: A function f on B×C is total if, for an arbitrary element b: B,
(∃c: C : f .b = c)

(14.39) Definition, Composition: For functions f and g, f •g = g◦ f .
(14.40) Let g : B →C and f : C → D be total functions.

Then the composition f •g of f and g is the total function defined by
( f •g).b = f (g.b)
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ρ = {〈a,1〉,〈a,2〉,〈b,3〉,〈d,4〉}
ρ is a relation.
ρ is not a function.

Have aρ1∧aρ2 but 1 $= 2.

f = {〈a,1〉,〈b,2〉,〈c,2〉,〈d,4〉}
f is a relation.
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f : B →C
f . d = 4 is equivalent to d f 4

f is total.
f : B →C
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f : B !C

3 (pred ◦ swap) 7
3 (swap• pred) 7 by (14.39)
(swap• pred).3 = 7 by (14.37.1)
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ρ = {〈a,1〉,〈a,2〉,〈b,3〉,〈d,4〉}
ρ is a relation.
ρ is not a function.

Have aρ1∧aρ2 but 1 $= 2.

f = {〈a,1〉,〈b,2〉,〈c,2〉,〈d,4〉}
f is a relation.
f is a function.

f : B →C
f . d = 4 is equivalent to d f 4

f is total.
f : B →C

f is partial.
f : B !C

3 (pred ◦ swap) 7
3 (swap• pred) 7 by (14.39)
(swap• pred).3 = 7 by (14.37.1)

f : B →C
f is total.
f is onto.
f is not one-to-one.

f : B →C
f is total.
f is not onto.
f is one-to-one.

f : B →C
f is total.
f is onto.
f is one-to-one.
Therefore, f is a bijection.
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(a) f is not one-to-one. f−1 is not determinate.

(b) f is not onto. f−1 is not total.
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abs•neg = iC
neg is a right inverse of abs.
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(14.46) Let f : B →C be total. The following statements are equivalent.
(a) f is one-to-one and onto.
(b) There is a function g : C → B that is both a left and a right inverse of f .
(c) f has a left inverse and f has a right inverse.

Order relations.
(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is

reflexive, antisymmetric, and transitive. In this case, pair 〈B,ρ〉 is called a partially
ordered set or poset.

We use the symbol $ for an arbitrary partial order, sometimes writing c % b instead of b $ c.

(14.47.1) Definition, Incomparable: incomp(b,c) ≡ ¬(b $ c)∧¬(c $ b)
(14.48) Definition: Relation ≺ is a quasi order or strict partial order if ≺ is transitive

and irreflexive
(14.48.1) Definition, Reflexive reduction: Given $, its reflexive reduction ≺ is computed

by eliminating all pairs 〈b,b〉 from $.
(14.48.2) Let ≺ be the reflexive reduction of $. Then,

¬(b $ c) ≡ c ≺ b∨ incomp(b,c)
(14.49) (a) If ρ is a partial order over a set B, then ρ − iB is a quasi order.

(b) If ρ is a quasi order over a set B, then ρ ∪ iB is a partial order.

Total orders and topological sort.
(14.50) Definition: A partial order $ over B is called a total or linear order if

(∀b,c : b $ c∨b % c), i.e. iff $ ∪$−1= B×B.
In this case, the pair 〈B,$〉 is called a linearly ordered set or a chain.

(14.51) Definitions: Let S be a nonempty subset of poset 〈U,$〉.
(a) Element b of S is a minimal element of S if no element of S is smaller than b,

i.e. if b ∈ S∧ (∀c c ≺ b : c /∈ S).
(b) Element b of S is the least element of S if b ∈ S∧ (∀c c ∈ S : b $ c).
(c) Element b is a lower bound of S if (∀c c ∈ S : b $ c).

(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound

and if every lower bound c satisfies c $ b.

(14.52) Every finite nonempty subset S of poset 〈U,$〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,$〉.
(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily

vice versa).

Equivalence relation:
Reflexive
Symmetric
Transitive

Partial order:
Reflexive
Antisymmetric
Transitive
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(a) f is not one-to-one. f−1 is not determinate.

(b) f is not onto. f−1 is not total.

neg : C → B abs : B →C

neg◦abs = iC
abs•neg = iC
neg is a right inverse of abs.

Example 1
B : {a,b,c}
PB = {{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
〈PB,⊆〉 is a poset.
Reflexive: D ⊆ D
Antisymmetric: D ⊆ E ∧E ⊆ D ⇒ D = E
Transitive: D ⊆ E ∧E ⊆ F ⇒ D ⊆ F

Example 2
B : {3,4,6,8,12,24}
〈B, |〉 where | means “divides” is a poset.
Reflexive: b | b
Antisymmetric: b | c∧ c | b ⇒ b = c
Transitive: b | c∧ c | d ⇒ b | d
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and if every lower bound c satisfies c $ b.

(14.52) Every finite nonempty subset S of poset 〈U,$〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,$〉.
(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily

vice versa).

27

(a) f is not one-to-one. f−1 is not determinate.

(b) f is not onto. f−1 is not total.

neg : C → B abs : B →C

neg◦abs = iC
abs•neg = iC
neg is a right inverse of abs.

Example 1
B : {a,b,c}
PB = {{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
〈PB,⊆〉 is a poset.
Reflexive: D ⊆ D
Antisymmetric: D ⊆ E ∧E ⊆ D ⇒ D = E
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Example 2
B : {3,4,6,8,12,24}
〈B, |〉 where | means “divides” is a poset.
Reflexive: b | b
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Transitive: b | c∧ c | d ⇒ b | d

Hasse diagrams
• Each element in B is a dot.
• Elevation matters.
• If b ) c there is a line up from b to c,

but only if there is not another element d
that is “between” b and c such that b ) d ) c.
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(14.46) Let f : B →C be total. The following statements are equivalent.
(a) f is one-to-one and onto.
(b) There is a function g : C → B that is both a left and a right inverse of f .
(c) f has a left inverse and f has a right inverse.

Order relations.
(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is

reflexive, antisymmetric, and transitive. In this case, pair 〈B,ρ〉 is called a partially
ordered set or poset.

We use the symbol $ for an arbitrary partial order, sometimes writing c % b instead of b $ c.

(14.47.1) Definition, Incomparable: incomp(b,c) ≡ ¬(b $ c)∧¬(c $ b)
(14.48) Definition: Relation ≺ is a quasi order or strict partial order if ≺ is transitive

and irreflexive
(14.48.1) Definition, Reflexive reduction: Given $, its reflexive reduction ≺ is computed

by eliminating all pairs 〈b,b〉 from $.
(14.48.2) Let ≺ be the reflexive reduction of $. Then,

¬(b $ c) ≡ c ≺ b∨ incomp(b,c)
(14.49) (a) If ρ is a partial order over a set B, then ρ − iB is a quasi order.

(b) If ρ is a quasi order over a set B, then ρ ∪ iB is a partial order.

Total orders and topological sort.
(14.50) Definition: A partial order $ over B is called a total or linear order if

(∀b,c : b $ c∨b % c), i.e. iff $ ∪$−1= B×B.
In this case, the pair 〈B,$〉 is called a linearly ordered set or a chain.

(14.51) Definitions: Let S be a nonempty subset of poset 〈U,$〉.
(a) Element b of S is a minimal element of S if no element of S is smaller than b,

i.e. if b ∈ S∧ (∀c c ≺ b : c /∈ S).
(b) Element b of S is the least element of S if b ∈ S∧ (∀c c ∈ S : b $ c).
(c) Element b is a lower bound of S if (∀c c ∈ S : b $ c).

(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound

and if every lower bound c satisfies c $ b.

(14.52) Every finite nonempty subset S of poset 〈U,$〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,$〉.
(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily
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{ }
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{b,c}{a,c}{a,b}
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(14.46) Let f : B →C be total. The following statements are equivalent.
(a) f is one-to-one and onto.
(b) There is a function g : C → B that is both a left and a right inverse of f .
(c) f has a left inverse and f has a right inverse.

Order relations.
(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is

reflexive, antisymmetric, and transitive. In this case, pair 〈B,ρ〉 is called a partially
ordered set or poset.

We use the symbol $ for an arbitrary partial order, sometimes writing c % b instead of b $ c.

(14.47.1) Definition, Incomparable: incomp(b,c) ≡ ¬(b $ c)∧¬(c $ b)
(14.48) Definition: Relation ≺ is a quasi order or strict partial order if ≺ is transitive

and irreflexive
(14.48.1) Definition, Reflexive reduction: Given $, its reflexive reduction ≺ is computed

by eliminating all pairs 〈b,b〉 from $.
(14.48.2) Let ≺ be the reflexive reduction of $. Then,

¬(b $ c) ≡ c ≺ b∨ incomp(b,c)
(14.49) (a) If ρ is a partial order over a set B, then ρ − iB is a quasi order.

(b) If ρ is a quasi order over a set B, then ρ ∪ iB is a partial order.

Total orders and topological sort.
(14.50) Definition: A partial order $ over B is called a total or linear order if

(∀b,c : b $ c∨b % c), i.e. iff $ ∪$−1= B×B.
In this case, the pair 〈B,$〉 is called a linearly ordered set or a chain.

(14.51) Definitions: Let S be a nonempty subset of poset 〈U,$〉.
(a) Element b of S is a minimal element of S if no element of S is smaller than b,

i.e. if b ∈ S∧ (∀c c ≺ b : c /∈ S).
(b) Element b of S is the least element of S if b ∈ S∧ (∀c c ∈ S : b $ c).
(c) Element b is a lower bound of S if (∀c c ∈ S : b $ c).

(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound

and if every lower bound c satisfies c $ b.

(14.52) Every finite nonempty subset S of poset 〈U,$〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,$〉.
(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily

vice versa).

28

Example 1
{a,b} and {a,c} are incomparable.
¬({a,b}⊆ {a,c})∧¬({a,c}⊆ {a,b})

Example 2
6 and 8 are incomparable.
¬(6 | 8)∧¬(8 | 6)
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{a,b} and {a,c} are incomparable.
¬({a,b}⊆ {a,c})∧¬({a,c}⊆ {a,b})

Example 2
6 and 8 are incomparable.
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Example
The proper subset relation ⊂ is a quasi order.
Irreflexive: ¬(D ⊂ D)

Transitive: D ⊂ E ∧E ⊂ F ⇒ D ⊂ F

(14.47) % is a RAT relation (partial order).
(14.48) ≺ is a IT relation (strict partial order).
We can prove that a IT relation is also antisymmetric.
Therefore, ≺ is a IAT relation.

Summary
Equivalence relation = is RST.
Partial order % is RAT.
Strict partial order ≺ is IAT.

Hasse diagram of a total order.
All pairs of elements are comparable.

Examples
〈N,≤〉 is a total order.
〈{1,3,6,9,12}, |〉 is not a total order.
〈{1,3,6,12,24}, |〉 is a total order.

Example
In 〈N, |〉 with S = {3,5,7,15,20}
3, 5, 7 are minimal.
There is no least element.
For b to be least it must be related to every other element.
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(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily

vice versa).

28

Example 1
{a,b} and {a,c} are incomparable.
¬({a,b}⊆ {a,c})∧¬({a,c}⊆ {a,b})

Example 2
6 and 8 are incomparable.
¬(6 | 8)∧¬(8 | 6)

Example
The proper subset relation ⊂ is a quasi order.
Irreflexive: ¬(D ⊂ D)

Transitive: D ⊂ E ∧E ⊂ F ⇒ D ⊆ F

(14.47) % is a RAT relation (partial order).
(14.48) ≺ is a IT relation (strict partial order).
We can prove that a IT relation is also antisymmetric.
Therefore, ≺ is a IAT relation.

Summary
Equivalence relation = is RST.
Partial order % is RAT.
Strict partial order ≺ is IAT.
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(14.46) Let f : B →C be total. The following statements are equivalent.
(a) f is one-to-one and onto.
(b) There is a function g : C → B that is both a left and a right inverse of f .
(c) f has a left inverse and f has a right inverse.

Order relations.
(14.47) Definition: A binary relation ρ on a set B is called a partial order on b if it is

reflexive, antisymmetric, and transitive. In this case, pair 〈B,ρ〉 is called a partially
ordered set or poset.

We use the symbol $ for an arbitrary partial order, sometimes writing c % b instead of b $ c.

(14.47.1) Definition, Incomparable: incomp(b,c) ≡ ¬(b $ c)∧¬(c $ b)
(14.48) Definition: Relation ≺ is a quasi order or strict partial order if ≺ is transitive

and irreflexive
(14.48.1) Definition, Reflexive reduction: Given $, its reflexive reduction ≺ is computed

by eliminating all pairs 〈b,b〉 from $.
(14.48.2) Let ≺ be the reflexive reduction of $. Then,

¬(b $ c) ≡ c ≺ b∨ incomp(b,c)
(14.49) (a) If ρ is a partial order over a set B, then ρ − iB is a quasi order.

(b) If ρ is a quasi order over a set B, then ρ ∪ iB is a partial order.

Total orders and topological sort.
(14.50) Definition: A partial order $ over B is called a total or linear order if

(∀b,c : b $ c∨b % c), i.e. iff $ ∪$−1= B×B.
In this case, the pair 〈B,$〉 is called a linearly ordered set or a chain.

(14.51) Definitions: Let S be a nonempty subset of poset 〈U,$〉.
(a) Element b of S is a minimal element of S if no element of S is smaller than b,

i.e. if b ∈ S∧ (∀c c ≺ b : c /∈ S).
(b) Element b of S is the least element of S if b ∈ S∧ (∀c c ∈ S : b $ c).
(c) Element b is a lower bound of S if (∀c c ∈ S : b $ c).

(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound

and if every lower bound c satisfies c $ b.

(14.52) Every finite nonempty subset S of poset 〈U,$〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,$〉.
(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily

vice versa).

Reflexive reduction is the opposite of reflexive closure.

To compute the reflexive closure of a relation, you add ordered 
pairs to make the relation reflexive.

To compute the reflexive reduction of a relation, you eliminate 
ordered pairs to make the relation irreflexive.
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Hasse diagram of a total order.
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We use the symbol $ for an arbitrary partial order, sometimes writing c % b instead of b $ c.
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(14.48) Definition: Relation ≺ is a quasi order or strict partial order if ≺ is transitive

and irreflexive
(14.48.1) Definition, Reflexive reduction: Given $, its reflexive reduction ≺ is computed

by eliminating all pairs 〈b,b〉 from $.
(14.48.2) Let ≺ be the reflexive reduction of $. Then,

¬(b $ c) ≡ c ≺ b∨ incomp(b,c)
(14.49) (a) If ρ is a partial order over a set B, then ρ − iB is a quasi order.

(b) If ρ is a quasi order over a set B, then ρ ∪ iB is a partial order.

Total orders and topological sort.
(14.50) Definition: A partial order $ over B is called a total or linear order if

(∀b,c : b $ c∨b % c), i.e. iff $ ∪$−1= B×B.
In this case, the pair 〈B,$〉 is called a linearly ordered set or a chain.

(14.51) Definitions: Let S be a nonempty subset of poset 〈U,$〉.
(a) Element b of S is a minimal element of S if no element of S is smaller than b,

i.e. if b ∈ S∧ (∀c c ≺ b : c /∈ S).
(b) Element b of S is the least element of S if b ∈ S∧ (∀c c ∈ S : b $ c).
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(A lower bound of S need not be in S.)
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and if every lower bound c satisfies c $ b.

(14.52) Every finite nonempty subset S of poset 〈U,$〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,$〉.
(a) A least element of B is also a minimal element of B (but not necessarily
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(b) A least element of B is also a greatest lower bound of B (but not necessarily
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29

Example
In 〈N, |〉 with S = {2,4,6,8}
2 is minimal and least.

2
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Example
In 〈N, |〉 with S = {2,4,6,8}
2 is minimal and least.

Example
In set B = {a,b,c,d,e, f ,g,h, i, j,k} with the relation
defined by the Hasse diagram and subset S = {i, j,k}
the lower bounds of {i, j,k} are i, f ,g,c,d,a.
The greatest lower bound is glb.S = i.
The lower bound of S = {i, f ,g} is only a.
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Total orders and topological sort.

(14.50) Definition: A partial order ! over B is called a total or linear order if
(∀b,c : b ! c∨b $ c), i.e. iff ! ∪!−1= B×B.
In this case, the pair 〈B,!〉 is called a linearly ordered set or a chain.

(14.51) Definitions: Let S be a nonempty subset of poset 〈U,!〉.
(a) Element b of S is a minimal element of S if no element of S is smaller than b,

i.e. if b ∈ S∧ (∀c c ≺ b : c /∈ S).
(b) Element b of S is the least element of S if b ∈ S∧ (∀c c ∈ S : b ! c).
(c) Element b is a lower bound of S if (∀c c ∈ S : b ! c).

(A lower bound of S need not be in S.)
(d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound

and if every lower bound c satisfies c ! b.

(14.52) Every finite nonempty subset S of poset 〈U,!〉 has a minimal element.

(14.53) Let B be a nonempty subset of poset 〈U,!〉.
(a) A least element of B is also a minimal element of B (but not necessarily

vice versa).
(b) A least element of B is also a greatest lower bound of B (but not necessarily

vice versa).
(c) A lower bound of B that belongs to B is also a least element of B.

((14.54) Definitions: Let S be a nonempty subset of poset 〈U,!〉.
(a) Element b of S is a maximal element of S if no element of S is larger than b,

i.e. if b ∈ S∧ (∀c b ≺ c : c /∈ S).
(b) Element b of S is the greatest element of S if b ∈ S∧ (∀c c ∈ S : c ! b).
(c) Element b is an upper bound of S if (∀c c ∈ S : c ! b).

(An upper bound of S need not be in S.)
(d) Element b is the least upper bound of S, written lub.S, if b is an upper bound

and if every upper bound c satisfies b ! c.

Relational databases.

(14.56.1) Definition, select: For Relation R and predicate F , which may contain names
of fields of R, σ(R,F) = {t t ∈ R∧F}

(14.56.2) Definition, project: For A1, . . . ,Am a subset of the names of the fields of
relation R, π(R,A1, . . . ,Am) = {t t ∈ R : 〈t.A1, t.A2, . . . , t.Am〉}

(14.56.3) Definition, natural join: For Relations R1 and R2, R1 !" R2 has all the attributes
that R1 and R2 have, but if an attribute appears in both, then it appears only once in
the result; further, only those tuples that agree on this common attribute are included.

Homework
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(14.56.2) Definition, project: For A1, . . . ,Am a subset of the names of the fields of
relation R, π(R,A1, . . . ,Am) = {t t ∈ R : 〈t.A1, t.A2, . . . , t.Am〉}

(14.56.3) Definition, natural join: For Relations R1 and R2, R1 !" R2 has all the attributes
that R1 and R2 have, but if an attribute appears in both, then it appears only once in
the result; further, only those tuples that agree on this common attribute are included.
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Example
In 〈N, |〉 with S = {2,4,6,8}
2 is minimal and least.

Example
In set B = {a,b,c,d,e, f ,g,h, i, j,k} with the relation
defined by the Hasse diagram and subset S = {i, j,k}
the lower bounds of {i, j,k} are i, f ,g,c,d,a.
The greatest lower bound is glb.S = i.
The lower bound of S = {i, f ,g} is only a.

Binary relation
Subset of ordered pairs from B1 ×B2

Trinary relation
Subset of ordered triples from B1 ×B2 ×B3

n-ary relation
Subset of ordered n-tuples from B1 ×B2 ×B3...×Bn
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defined by the Hasse diagram and subset S = {i, j,k}
the lower bounds of {i, j,k} are i, f ,g,c,d,a.
The greatest lower bound is glb.S = i.
The lower bound of S = {i, f ,g} is only a.

Binary relation
Subset of ordered pairs from B1 ×B2

Trinary relation
Subset of ordered triples from B1 ×B2 ×B3

n-ary relation
Subset of ordered n-tuples from B1 ×B2 ×B3...×Bn

Relation
MyRelation = {〈apple, baseball, cat, John 〉,〈banana, football, dog, Mary 〉}

Table representation

MyRelation
apple baseball cat John
banana football dog Mary

Table representation with field names

MyRelation
Fruit Toy Animal Person
apple baseball cat John
banana football dog Mary
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THEOREMS FROM LADM 19

(c) A lower bound of B that belongs to B is also a least element of B.

((14.54) Definitions: Let S be a nonempty subset of poset 〈U,"〉.
(a) Element b of S is a maximal element of S if no element of S is larger than b,

i.e. if b ∈ S∧ (∀c b ≺ c : c /∈ S).
(b) Element b of S is the greatest element of S if b ∈ S∧ (∀c c ∈ S : c " b).
(c) Element b is an upper bound of S if (∀c c ∈ S : c " b).

(An upper bound of S need not be in S.)
(d) Element b is the least upper bound of S, written lub.S, if b is an upper bound

and if every upper bound c satisfies b " c.

Relational databases.
(14.56.1) Definition, select: For Relation R and predicate F , which may contain names

of fields of R, σ(R,F) = {t t ∈ R∧F}

(14.56.2) Definition, project: For A1, . . . ,Am a subset of the names of the fields of
relation R, π(R,A1, . . . ,Am) = {t t ∈ R : 〈t.A1, t.A2, . . . , t.Am〉}

(14.56.3) Definition, natural join: For Relations R1 and R2, R1 !" R2 has all the attributes
that R1 and R2 have, but if an attribute appears in both, then it appears only once in
the result; further, only those tuples that agree on this common attribute are included.

Growth of Functions

(g.1) Definition of asymptotic upper bound: For a given function g.n, O(g.n),
pronounced “big-oh of g of n”, is the set of functions
{ f .n (∃c,n0 c > 0∧n0 > 0 : (∀n n ≥ n0 : 0 ≤ f .n ≤ c ·g.n) )}

(g.2) O-notation: f .n = O(g.n) means function f .n is in the set O(g.n).

(g.3) Definition of asymptotic lower bound: For a given function g.n, Ω(g.n),
pronounced “big-omega of g of n”, is the set of functions
{ f .n (∃c,n0 c > 0∧n0 > 0 : (∀n n ≥ n0 : 0 ≤ c ·g.n ≤ f .n) )}

(g.4) Ω -notation: f .n = Ω(g.n) means function f .n is in the set Ω(g.n).

(g.5) Definition of asymptotic tight bound: For a given function g.n, Θ(g.n),
pronounced “big-theta of g of n”, is the set of functions
{ f .n (∃c1,c2,n0 c1 > 0∧ c2 > 0∧n0 > 0 :

(∀n n ≥ n0 : 0 ≤ c1 ·g.n ≤ f .n ≤ c2 ·g.n) )}
(g.6) Θ -notation: f .n =Θ(g.n) means function f .n is in the setΘ(g.n).

(g.7) f .n =Θ(g.n) if and only if f .n = O(g.n) and f .n = Ω(g.n)

30

Select
σ selects rows from R that satisfy F .
Example: Use database A to list all the 6-tuples that opened on Forty-Sixth St.
σ (PABM, Theater = Forty-Sixth St.)

Project
π selects fields (attributes) from R as listed.
Example: Use database A to list only the titles of the musicals that opened

on Forty-Sixth St.
π(σ (PABM, Theater = Forty-Sixth St.), Title)
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Select
σ selects rows from R that satisfy F .
Example: Use database A to list all the 6-tuples that opened on Forty-Sixth St.
σ (PABM, Theater = Forty-Sixth St.)

Project
π selects fields (attributes) from R as listed.
Example: Use database A to list only the titles of the musicals that opened

on Forty-Sixth St.
π(σ (PABM, Theater = Forty-Sixth St.), Title)

Join
!" is a binary infix operator.
Example: Use database C to list the theater where each book was performed.
Author !"Where has three columns: Title, Book, Theater.
To list just the Book and Theater
π(Author !"Where, Book, Theater)

Example: Use database A to list who wrote the lyrics for the show
that had 2717 performances.

π(σ (PABM !"MC, Perfs = 2717), Lyrics)


