
A Logical Approach to Discrete Math 1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1]. (∃i 0 ≤ i < n−1 : x = b[i])

j = 3 k = 6

A Logical Approach to Discrete Math

1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1]. (∃i 0 ≤ i < n−1 : x = b[i])

j = 3 k = 6

[0]

b 23 14 -6 5 -7 13 23 4 19 -2

[1] [2] [3] [4] [5] [6] [7] [8] [9]

1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1]. (∃i 0 ≤ i < n−1 : x = b[i])

j = 4 k = 7

1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1]. (∃i 0 ≤ i < n−1 : x = b[i])

j = 4 k = 7

1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1] (∃i 0 ≤ i < n : x = b[i])

j = 4 k = 7

Specification examples (All types are integers.)

Specify “Set x to y’s value.”
{true} x :=? {x = y}

Specify “Set y to x’s value.”
{true} y :=? {x = y}

Specify “Set x and y to have the same value.”
{true} x,y :=? {x = y}

Specify “Swap the values of x and y.”
This specification requires a rigid variable.
A rigid variable defines the initial value of a variable in the precondition,
so it can be used in the postcondition.
{x = X∧ y = Y} x,y :=? {x = Y∧ y = X}

A Logical Approach to Discrete Math

Hoare Triple

Recall from Sec. 1.6 that a state is a set of identifier-value pairs. t urther,
the Hoare triple {Q} S {R} , where S is a program statement, Q is the
precondition, and R is the postcondition, has the interpretation

Execution of S begun in any state in which Q is true is
guaranteed to terminate, and R is true in the final state.

A specification of a program should give:

• a precondition Q (say) : a boolean expression that describes the initial
states for which execution of the program is being defined,

• a list x (say) of variables that may be assigned to, and

• a postcondition R (say): a boolean expression that characterizes the
final states, after execution of the program.

A Logical Approach to Discrete Math

Formal Specification

To specify a program is to say what it should do,
not how it should do it.

A Logical Approach to Discrete Math

Formal Specification

Recall from Sec. 1.6 that a state is a set of identifier-value pairs. t urther,
the Hoare triple {Q} S {R} , where S is a program statement, Q is the
precondition, and R is the postcondition, has the interpretation

Execution of S begun in any state in which Q is true is
guaranteed to terminate, and R is true in the final state.

A specification of a program should give:

• a precondition Q (say) : a boolean expression that describes the initial
states for which execution of the program is being defined,

• a list x (say) of variables that may be assigned to, and

• a postcondition R (say): a boolean expression that characterizes the
final states, after execution of the program.

{Q} x := ? {R}

A Logical Approach to Discrete Math

1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1]. (∃i 0 ≤ i < n−1 : x = b[i])

j = 4 k = 7

Specification examples (All types are integers.)

Specify “Set x to y’s value.”
{true} x :=? {x = y}

Specify “Set y to x’s value.”
{true} y :=? {x = y}

Specify “Set x and y to have the same value.”
{true} x,y :=? {x = y}

Specify “Swap the values of x and y.”
This specification requires a rigid variable.
A rigid variable defines the initial value of a variable in the precondition,
so it can be used in the postcondition.
{x = X∧ y = Y} x,y :=? {x = Y∧ y = X}

A Logical Approach to Discrete Math

1

English to math (All types are integers.)

x is positive. x > 0

x is negative. x < 0

x is non-negative. ¬(x < 0) or x ≥ 0

x is even. (∃i : x = 2 · i)
x is odd. (∃i : x = 2 · i+1)

x divides y. x | y (∃i : x · i = y)

x is a power of 2. (∃i : x = 2i)

The element 13 is in b[j..k].

(∃i j ≤ i ≤ k : b[i] = 13)

x ∈ b[0..n−1]. (∃i 0 ≤ i < n−1 : x = b[i])

j = 4 k = 7

Specification examples (All types are integers.)

Specify “Set x to y’s value.”
{true} x :=? {x = y}

Specify “Set y to x’s value.”
{true} y :=? {x = y}

Specify “Set x and y to have the same value.”
{true} x,y :=? {x = y}

Specify “Swap the values of x and y.”
This specification requires a rigid variable.
A rigid variable defines the initial value of a variable in the precondition,
so it can be used in the postcondition.
{x = X∧ y = Y} x,y :=? {x = Y∧ y = X}

A Logical Approach to Discrete Math

2

Specify “Set z to its own absolute value.”
{z = Z} z :=? {z =| Z |}

Specify “Set z to the maximum of integers x and y.”
{true} z :=? {(x ≥ y ⇒ z = x)∧ (y ≥ x ⇒ z = y)}

A Logical Approach to Discrete Math

[0]

b

[1] [2] [3] [4] [5] [6] [7]

n = 8

2

Specify “Set z to its own absolute value.”
{z = Z} z :=? {z =| Z |}

Specify “Set z to the maximum of integers x and y.”
{true} z :=? {(x ≥ y ⇒ z = x)∧ (y ≥ x ⇒ z = y)}

Arrays

Abbreviation

x ∈ b[0..n−1] means (∃i 0 ≤ i < n : x = b[i])

Specify “Set i to the index of x assuming x is in b.”
{0 < n∧ x ∈ b[0..n−1]} i :=? {0 ≤ i < n∧ x = b[i]}

Specify “Set i to the index of x if it is in b and to n if it is not.”
{0 ≤ n∧ x ∈ b[0..n−1]} i :=? {0 ≤ i < n∧ x = b[i]}

Specify “If x is in b set boolean c to true and i to the index of x.
Otherwise set c to f alse.”
{0 ≤ n} i,c :=? {(c ≡ x ∈ b[0..n−1) ∧ (c ⇒ x = b[i])}

A Logical Approach to Discrete Math

2

Specify “Set z to its own absolute value.”
{z = Z} z :=? {z =| Z |}

Specify “Set z to the maximum of integers x and y.”
{true} z :=? {(x ≥ y ⇒ z = x)∧ (y ≥ x ⇒ z = y)}

Arrays

Abbreviation

x ∈ b[0..n−1] means (∃i 0 ≤ i < n : x = b[i])

Specify “Set i to the index of x assuming x is in b.”
{0 < n∧ x ∈ b[0..n−1]} i :=? {0 ≤ i < n∧ x = b[i]}

Specify “Set i to the index of x if it is in b and to n if it is not.”
{0 ≤ n} i :=? {(0 ≤ i < n∧ x = b[i])∨ (i = n∧ x /∈ b[0..n−1])}

Specify “If x is in b set boolean c to true and i to the index of x.
Otherwise set c to f alse.”
{0 ≤ n} i,c :=? {(c ≡ x ∈ b[0..n−1]) ∧ (c ⇒ x = b[i])}

Appropriate preconditions

Sum
It makes sense to have the sum of an empty range.
For the sum of b[j..k−1], the precondition should include j ≤ k.

Max
There is no maximum in an empty range.
For the maximum of b[j..k−1], the precondition should include j < k.

A Logical Approach to Discrete Math
Appropriate preconditions

2

Specify “Set z to its own absolute value.”
{z = Z} z :=? {z =| Z |}

Specify “Set z to the maximum of integers x and y.”
{true} z :=? {(x ≥ y ⇒ z = x)∧ (y ≥ x ⇒ z = y)}

Arrays

Abbreviation

x ∈ b[0..n−1] means (∃i 0 ≤ i < n : x = b[i])

Specify “Set i to the index of x assuming x is in b.”
{0 < n∧ x ∈ b[0..n−1]} i :=? {0 ≤ i < n∧ x = b[i]}

Specify “Set i to the index of x if it is in b and to n if it is not.”
{0 ≤ n} i :=? {(0 ≤ i < n∧ x = b[i])∨ (i = n∧ x /∈ b[0..n−1])}

Specify “If x is in b set boolean c to true and i to the index of x.
Otherwise set c to f alse.”
{0 ≤ n} i,c :=? {(c ≡ x ∈ b[0..n−1]) ∧ (c ⇒ x = b[i])}

Appropriate preconditions

Sum
It makes sense to have the sum of an empty range.
For the sum of b[j..k−1], the precondition should include j ≤ k.

Max
There is no maximum in an empty range.
For the maximum of b[j..k−1], the precondition should include j < k.

A Logical Approach to Discrete Math

3

Counting

How many zeros are in b[0..7]?

(Σi 0 ≤ i < n∧b[i] = 0 : 1) = 3

[0]

b

[1] [2] [3] [4] [5] [6] [7]

n = 812 93 0 14 6 0 0 21

A Logical Approach to Discrete Math
Weakest precondition

3

Counting

How many zeros are in b[0..7]?

(Σi 0 ≤ i < n∧b[i] = 0 : 1) = 3

Suppose

{P}x := E{R}

and

{Q}x := E{R}

are two valid Hoare triples with the same program statements
and the same postconditions.
P is called the weakest precondition if

Q ⇒ P

for all Q that make the Hoare triple valid.

Example

{x = 4}x := x+1{x < 7} valid

{x < 6}x := x+1{x < 7} valid

Note that

x = 4 ⇒ x < 6

Any precondition that makes this S{R} valid implies x < 6.

x = 4 ⇒ x < 6

A Logical Approach to Discrete Math
Weakest precondition

3

Counting

How many zeros are in b[0..7]?

(Σi 0 ≤ i < n∧b[i] = 0 : 1) = 3

Suppose

{P}x := E{R}

and

{Q}x := E{R}

are two valid Hoare triples with the same program statements
and the same postconditions.
R is called the weakest precondition if

Q ⇒ P

for all Q that make the Hoare triple valid.

Example

{x = 4}x := x+1{x < 7} valid

{x < 6}x := x+1{x < 7} valid

Note that

x = 4 ⇒ x < 6

Any precondition that makes this S{R} valid implies x < 6.

x = 4 ⇒ x < 6
strong weak

A Logical Approach to Discrete Math 4

Notation for weakest precondition

wp.S.post ≡ P

means that

{P}S{post}

is valid, and for every Q satisfying

{Q}S{post}

Q must be stronger than P. That is,

Q ⇒ P

Example

wp.(x := x+1).(x < 7)≡ x < 6

A Logical Approach to Discrete Math

THEOREMS FROM LADM 11

(12.31) Definition, Number of Nodes:
#� = 0
#(d, l, r) = 1 + #l + #r

(12.32) Definition, Height:
height.� = 0
height.(d, l, r) = 1 + max(height.l, height.r)

(12.32.1) Definition, Leaf: A leaf is a node with no children (i.e. two empty subtrees).
(12.32.2) Definition, Internal node: An internal node is a node that is not a leaf.
(12.32.3) Definition, Complete: A binary tree is complete if every node has either

0 or 2 children.
(12.33) The maximum number of nodes in a tree with height n is 2n � 1 for n ⌅ 0.
(12.34) The minimum number of nodes in a tree with height n is n for n ⌅ 0.
(12.35) (a) The maximum number of leaves in a tree with height n is 2n�1 for n > 0.

(b) The maximum number of internal nodes is 2n�1 � 1 for n > 0.
(12.36) (a) The minimum number of leaves in a tree with height n is 1 for n > 0.

(b) The minimum number of internal nodes is n� 1 for n > 0.
(12.37) Every nonempy complete tree has an odd number of nodes.

A THEORY OF PROGRAMS

(p.1) Axiom, Excluded miracle: wp.S. false ⇤ false
(p.2) Axiom, Conjunctivity: wp.S.(X Y) ⇤ wp.S.X wp.S.Y

(p.3) Monotonicity: (X ⌃ Y) ⌃ (wp.S.X ⌃ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ⇤ Q ⌃ wp.S.R

(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A} (A ⌃ R) ⌃ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ⇤ (For all R,wp.S.R ⇤ wp.T.R)
(p.7) (Q ⌃ A) {A} S {R} ⌃ {Q} S {R}
(p.8) {Q0} S {R0} {Q1} S {R1} ⌃ {Q0 Q1} S {R0 R1}
(p.9) {Q0} S {R0} {Q1} S {R1} ⌃ {Q0 ⌦Q1} S {R0 ⌦R1}

(p.10) Definition, skip: wp.skip.R ⇤ R

(p.11) {Q} skip {R} ⇤ Q ⌃ R

(p.12) Definition, abort: wp.abort.R ⇤ false
(p.13) {Q} abort {R} ⇤ Q ⇤ false
(p.14) Definition, Composition: wp.(S;T).R ⇤ wp.S.(wp.T.R)
(p.15) {Q} S {H} {H} T {R} ⌃ {Q} S;T {R}
(p.16) Identity of composition:

S ; skip = S skip ;S = S

(p.17) Zero of composition:
S ; abort = abort abort ;S = abort

(p.18) Definition, Assignment: wp.(x := E).R ⇤ R[x := E]

A Logical Approach to Discrete Math

4

Notation for weakest precondition

wp.S.post ≡ P

means that

{P}S{post}

is valid, and for every Q satisfying

{Q}S{post}

Q must be stronger than P. That is,

Q ⇒ P

Example

wp.(x := x+1).(x < 7)≡ x < 6

Prove (p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
Proof

wp.S.X ⇒ wp.S.Y
= 〈(3.60)〉

wp.S.X ∧wp.S.Y ≡ wp.S.X
= 〈(p.2)〉

wp.S.(X ∧Y)≡ wp.S.X
⇐ 〈(3.83) Leibniz with E,e, f := wp.S.z, X ∧Y, X

X ∧Y = X ⇒ (wp.S.z)[z := X] = (wp.S.z)[z := X ∧Y]
X ∧Y = X ⇒ wp.S.X = wp.S.(X ∧Y)〉

X ∧Y = X
= 〈(3.60)〉

X ⇒ Y //

A Logical Approach to Discrete Math

4

Notation for weakest precondition

wp.S.post ≡ P

means that

{P}S{post}

is valid, and for every Q satisfying

{Q}S{post}

Q must be stronger than P. That is,

Q ⇒ P

Example

wp.(x := x+1).(x < 7)≡ x < 6

Prove (p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
Proof

wp.S.X ⇒ wp.S.Y
= 〈(3.60)〉

wp.S.X ∧wp.S.Y ≡ wp.S.X
= 〈(p.2)〉

wp.S.(X ∧Y)≡ wp.S.X
⇐ 〈(3.83) Leibniz with E,e, f := wp.S.z, X ∧Y, X

X ∧Y = X ⇒ (wp.S.z)[z := X] = (wp.S.z)[z := X ∧Y]
X ∧Y = X ⇒ wp.S.X = wp.S.(X ∧Y)〉

X ∧Y = X
= 〈(3.60)〉

X ⇒ Y //

Prove (p.4.1) {wp.S.R} S {R}
Proof

{wp.S.R} S {R}
= 〈(p.4)〉

wp.S.R ⇒ wp.S.R
which is (3.71) Reflexivity if ⇒ //

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R
(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A}∧ (A ⇒ R) ⇒ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ≡ (For all R,wp.S.R ≡ wp.T.R)
(p.7) (Q ⇒ A)∧{A} S {R} ⇒ {Q} S {R}
(p.8) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∧Q1} S {R0∧R1}
(p.9) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∨Q1} S {R0∨R1}

(p.10) Definition, skip: wp.skip.R ≡ R
(p.11) {Q} skip {R} ≡ Q ⇒ R
(p.12) Definition, abort: wp.abort.R ≡ false
(p.13) {Q} abort {R} ≡ Q ≡ false
(p.14) Definition, Composition: wp.(S;T).R ≡ wp.S.(wp.T.R)
(p.15) {Q} S {H} ∧ {H} T {R} ⇒ {Q} S;T {R}
(p.16) Identity of composition:

(a) S ; skip= S (b) skip ;S = S
(p.17) Zero of composition:

(a) S ; abort = abort (b) abort ;S = abort
(p.18) Definition, Assignment: wp.(x := E).R ≡ R[x := E]
(p.19) Proof method for assignment: (p.19) is (10.2)

To show that x := E is an implementation of {Q}x :=?{R},
prove Q ⇒ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1 → S1
[] B2 → S2
[] B3 → S3
fi

(p.22) Definition, IFG: wp.IFG.R ≡ (B1∨B2∨B3) ∧
B1 ⇒ wp.S1.R ∧ B2 ⇒ wp.S2.R ∧ B3 ⇒ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q ⇒ B1∨B2∨B3,
(b) {Q∧B1} S1 {R},
(c) {Q∧B2} S2 {R}, and
(d) {Q∧B3} S3 {R}.

(p.25) ¬(B1∨B2∨B3)⇒ IFG = abort
(p.26) One-guard rule: {Q} if B → S fi {R} ⇒ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1 → S1;T [] B2 → S2;T fi = if B1 → S1 [] B2 → S2 fi ;T

5

In (p.6), you cannot use the ∀ symbol because R is an expression,
not a dummy variable.
S and T are programs statements

Sets
See (11.4) and (11.11b).
To prove set S equals set T , let v be an arbitrary element, and prove

v ∈ S ≡ v ∈ T

Programs
To prove program S equals program T , let R be an arbitrary postcondition,
and prove

wp.S.R ≡ wp.T.R

The skip statement does nothing.
If R is true and you execute skip,
R is guaranteed to be true.

The abort statement causes the program to fail.
An abort statement can never establish its postcondition
because its precondition can never be true.
A program that executes abort is erroneous.

(p.14) says that if you execute S and then execute T ,
the postcondition of S is the precondition of T .

Prove (p.16a) S ; skip= S
Proof
Let R be an arbitrary postcondition, and prove that
wp.(S ; skip).R ≡ wp.S.R

wp.(S ; skip).R
= 〈(p.14)〉

wp.S.(wp. skip .R)
= 〈(p.10)〉

wp.S.R //

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R
(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A}∧ (A ⇒ R) ⇒ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ≡ (For all R,wp.S.R ≡ wp.T.R)
(p.7) (Q ⇒ A)∧{A} S {R} ⇒ {Q} S {R}
(p.8) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∧Q1} S {R0∧R1}
(p.9) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∨Q1} S {R0∨R1}

(p.10) Definition, skip: wp.skip.R ≡ R
(p.11) {Q} skip {R} ≡ Q ⇒ R
(p.12) Definition, abort: wp.abort.R ≡ false
(p.13) {Q} abort {R} ≡ Q ≡ false
(p.14) Definition, Composition: wp.(S;T).R ≡ wp.S.(wp.T.R)
(p.15) {Q} S {H} ∧ {H} T {R} ⇒ {Q} S;T {R}
(p.16) Identity of composition:

(a) S ; skip= S (b) skip ;S = S
(p.17) Zero of composition:

(a) S ; abort = abort (b) abort ;S = abort
(p.18) Definition, Assignment: wp.(x := E).R ≡ R[x := E]
(p.19) Proof method for assignment: (p.19) is (10.2)

To show that x := E is an implementation of {Q}x :=?{R},
prove Q ⇒ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1 → S1
[] B2 → S2
[] B3 → S3
fi

(p.22) Definition, IFG: wp.IFG.R ≡ (B1∨B2∨B3) ∧
B1 ⇒ wp.S1.R ∧ B2 ⇒ wp.S2.R ∧ B3 ⇒ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q ⇒ B1∨B2∨B3,
(b) {Q∧B1} S1 {R},
(c) {Q∧B2} S2 {R}, and
(d) {Q∧B3} S3 {R}.

(p.25) ¬(B1∨B2∨B3)⇒ IFG = abort
(p.26) One-guard rule: {Q} if B → S fi {R} ⇒ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1 → S1;T [] B2 → S2;T fi = if B1 → S1 [] B2 → S2 fi ;T

5

In (p.6), you cannot use the ∀ symbol because R is an expression,
not a dummy variable.
S and T are programs statements

Sets
See (11.4) and (11.11b).
To prove set S equals set T , let v be an arbitrary element, and prove

v ∈ S ≡ v ∈ T

Programs
To prove program S equals program T , let R be an arbitrary postcondition,
and prove

wp.S.R ≡ wp.S.T

The skip statement does nothing.
If R is true and you execute skip,
R is guaranteed to be true.

The abort statement causes the program to fail.
An abort statement can never establish its postcondition
because its precondition can never be true.
A program that executes abort is erroneous.

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R
(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A}∧ (A ⇒ R) ⇒ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ≡ (For all R,wp.S.R ≡ wp.T.R)
(p.7) (Q ⇒ A)∧{A} S {R} ⇒ {Q} S {R}
(p.8) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∧Q1} S {R0∧R1}
(p.9) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∨Q1} S {R0∨R1}

(p.10) Definition, skip: wp.skip.R ≡ R
(p.11) {Q} skip {R} ≡ Q ⇒ R
(p.12) Definition, abort: wp.abort.R ≡ false
(p.13) {Q} abort {R} ≡ Q ≡ false
(p.14) Definition, Composition: wp.(S;T).R ≡ wp.S.(wp.T.R)
(p.15) {Q} S {H} ∧ {H} T {R} ⇒ {Q} S;T {R}
(p.16) Identity of composition:

(a) S ; skip= S (b) skip ;S = S
(p.17) Zero of composition:

(a) S ; abort = abort (b) abort ;S = abort
(p.18) Definition, Assignment: wp.(x := E).R ≡ R[x := E]
(p.19) Proof method for assignment: (p.19) is (10.2)

To show that x := E is an implementation of {Q}x :=?{R},
prove Q ⇒ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1 → S1
[] B2 → S2
[] B3 → S3
fi

(p.22) Definition, IFG: wp.IFG.R ≡ (B1∨B2∨B3) ∧
B1 ⇒ wp.S1.R ∧ B2 ⇒ wp.S2.R ∧ B3 ⇒ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q ⇒ B1∨B2∨B3,
(b) {Q∧B1} S1 {R},
(c) {Q∧B2} S2 {R}, and
(d) {Q∧B3} S3 {R}.

(p.25) ¬(B1∨B2∨B3)⇒ IFG = abort
(p.26) One-guard rule: {Q} if B → S fi {R} ⇒ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1 → S1;T [] B2 → S2;T fi = if B1 → S1 [] B2 → S2 fi ;T

5

In (p.6), you cannot use the ∀ symbol because R is an expression,
not a dummy variable.
S and T are programs statements

Sets
See (11.4) and (11.11b).
To prove set S equals set T , let v be an arbitrary element, and prove

v ∈ S ≡ v ∈ T

Programs
To prove program S equals program T , let R be an arbitrary postcondition,
and prove

wp.S.R ≡ wp.S.T

The skip statement does nothing.
If R is true and you execute skip,
R is guaranteed to be true.

The abort statement causes the program to fail.
An abort statement can never establish its postcondition
because its precondition can never be true.
A program that executes abort is erroneous.

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R
(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A}∧ (A ⇒ R) ⇒ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ≡ (For all R,wp.S.R ≡ wp.T.R)
(p.7) (Q ⇒ A)∧{A} S {R} ⇒ {Q} S {R}
(p.8) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∧Q1} S {R0∧R1}
(p.9) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∨Q1} S {R0∨R1}

(p.10) Definition, skip: wp.skip.R ≡ R
(p.11) {Q} skip {R} ≡ Q ⇒ R
(p.12) Definition, abort: wp.abort.R ≡ false
(p.13) {Q} abort {R} ≡ Q ≡ false
(p.14) Definition, Composition: wp.(S;T).R ≡ wp.S.(wp.T.R)
(p.15) {Q} S {H} ∧ {H} T {R} ⇒ {Q} S;T {R}
(p.16) Identity of composition:

(a) S ; skip= S (b) skip ;S = S
(p.17) Zero of composition:

(a) S ; abort = abort (b) abort ;S = abort
(p.18) Definition, Assignment: wp.(x := E).R ≡ R[x := E]
(p.19) Proof method for assignment: (p.19) is (10.2)

To show that x := E is an implementation of {Q}x :=?{R},
prove Q ⇒ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1 → S1
[] B2 → S2
[] B3 → S3
fi

(p.22) Definition, IFG: wp.IFG.R ≡ (B1∨B2∨B3) ∧
B1 ⇒ wp.S1.R ∧ B2 ⇒ wp.S2.R ∧ B3 ⇒ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q ⇒ B1∨B2∨B3,
(b) {Q∧B1} S1 {R},
(c) {Q∧B2} S2 {R}, and
(d) {Q∧B3} S3 {R}.

(p.25) ¬(B1∨B2∨B3)⇒ IFG = abort
(p.26) One-guard rule: {Q} if B → S fi {R} ⇒ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1 → S1;T [] B2 → S2;T fi = if B1 → S1 [] B2 → S2 fi ;T

5

In (p.6), you cannot use the ∀ symbol because R is an expression,
not a dummy variable.
S and T are programs statements

Sets
See (11.4) and (11.11b).
To prove set S equals set T , let v be an arbitrary element, and prove

v ∈ S ≡ v ∈ T

Programs
To prove program S equals program T , let R be an arbitrary postcondition,
and prove

wp.S.R ≡ wp.S.T

The skip statement does nothing.
If R is true and you execute skip,
R is guaranteed to be true.

The abort statement causes the program to fail.
An abort statement can never establish its postcondition
because its precondition can never be true.
A program that executes abort is erroneous.

(p.14) says that if you execute S and then execute T ,
the postcondition of S is the precondition of T .

Prove (p.16a) S ; skip= S
Proof
Let R be an arbitrary postcondition, and prove that
wp.(S ; skip).R ≡ wp.S.R

wp.(S ; skip).R
= 〈(p.14)〉

wp.S.(wp. skip .R)
= 〈(p.10)〉

wp.S.R //

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R
(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A}∧ (A ⇒ R) ⇒ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ≡ (For all R,wp.S.R ≡ wp.T.R)
(p.7) (Q ⇒ A)∧{A} S {R} ⇒ {Q} S {R}
(p.8) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∧Q1} S {R0∧R1}
(p.9) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∨Q1} S {R0∨R1}

(p.10) Definition, skip: wp.skip.R ≡ R
(p.11) {Q} skip {R} ≡ Q ⇒ R
(p.12) Definition, abort: wp.abort.R ≡ false
(p.13) {Q} abort {R} ≡ Q ≡ false
(p.14) Definition, Composition: wp.(S;T).R ≡ wp.S.(wp.T.R)
(p.15) {Q} S {H} ∧ {H} T {R} ⇒ {Q} S;T {R}
(p.16) Identity of composition:

(a) S ; skip= S (b) skip ;S = S
(p.17) Zero of composition:

(a) S ; abort = abort (b) abort ;S = abort
(p.18) Definition, Assignment: wp.(x := E).R ≡ R[x := E]
(p.19) Proof method for assignment: (p.19) is (10.2)

To show that x := E is an implementation of {Q}x :=?{R},
prove Q ⇒ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1 → S1
[] B2 → S2
[] B3 → S3
fi

(p.22) Definition, IFG: wp.IFG.R ≡ (B1∨B2∨B3) ∧
B1 ⇒ wp.S1.R ∧ B2 ⇒ wp.S2.R ∧ B3 ⇒ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q ⇒ B1∨B2∨B3,
(b) {Q∧B1} S1 {R},
(c) {Q∧B2} S2 {R}, and
(d) {Q∧B3} S3 {R}.

(p.25) ¬(B1∨B2∨B3)⇒ IFG = abort
(p.26) One-guard rule: {Q} if B → S fi {R} ⇒ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1 → S1;T [] B2 → S2;T fi = if B1 → S1 [] B2 → S2 fi ;T

6

Example

Compute the weakest precondition P for the following program.
A and B are program constants, not rigid variables.

int x,y
const int A,B
{P} x := x+ y ; y := x− y {x = A∧ y = B}

wp.(x := x+ y ; y := x− y).(x = A∧ y = B)
= 〈(3.14)〉

wp.(x := x+ y) . (wp.(y := x− y).(x = A∧ y = B))
= 〈(p.18) and t.s.〉

wp.(x := x+ y).(x = A∧ x− y = B))
= 〈(p.18) and t.s.〉

x+ y = A∧ x+ y− y = B))
= 〈Math〉

x+ y = A∧ x = B))
= 〈(3.84a) Substitution〉

X = B∧ y = A−B //

{X = B∧ y = A−B} x := x+ y ; y := x− y {x = A∧ y = B}

A Logical Approach to Discrete Math

6

Example

Compute the weakest precondition P for the following program.
A and B are program constants, not rigid variables.

int x,y
const int A,B
{P} x := x+ y ; y := x− y {x = A∧ y = B}

wp.(x := x+ y ; y := x− y).(x = A∧ y = B)
= 〈(p.14)〉

wp.(x := x+ y) . (wp.(y := x− y).(x = A∧ y = B))
= 〈(p.18) and t.s.〉

wp.(x := x+ y).(x = A∧ x− y = B)
= 〈(p.18) and t.s.〉

x+ y = A∧ x+ y− y = B
= 〈Math〉

x+ y = A∧ x = B
= 〈(3.84a) Substitution〉

x = B∧ y = A−B //

{x = B∧ y = A−B} x := x+ y ; y := x− y {x = A∧ y = B}
Example

A = 7,B = 4

{x = 4∧ y = 3} x := x+ y ; y := x− y {x = 7∧ y = 4}

A Logical Approach to Discrete Math

6

Example

Compute the weakest precondition P for the following program.
A and B are program constants, not rigid variables.

int x,y
const int A,B
{P} x := x+ y ; y := x− y {x = A∧ y = B}

wp.(x := x+ y ; y := x− y).(x = A∧ y = B)
= 〈(3.14)〉

wp.(x := x+ y) . (wp.(y := x− y).(x = A∧ y = B))
= 〈(p.18) and t.s.〉

wp.(x := x+ y).(x = A∧ x− y = B)
= 〈(p.18) and t.s.〉

x+ y = A∧ x+ y− y = B
= 〈Math〉

x+ y = A∧ x = B
= 〈(3.84a) Substitution〉

x = B∧ y = A−B //

{x = B∧ y = A−B} x := x+ y ; y := x− y {x = A∧ y = B}
Example

A = 7,B = 4

{x = 4∧ y = 3} x := x+ y ; y := x− y {x = 7∧ y = 4}

A Logical Approach to Discrete Math
Two applications

6

Example

Compute the weakest precondition P for the following program.
A and B are program constants, not rigid variables.

int x,y
const int A,B
{P} x := x+ y ; y := x− y {x = A∧ y = B}

wp.(x := x+ y ; y := x− y).(x = A∧ y = B)
= 〈(p.14)〉

wp.(x := x+ y) . (wp.(y := x− y).(x = A∧ y = B))
= 〈(p.18) and t.s.〉

wp.(x := x+ y).(x = A∧ x− y = B)
= 〈(p.18) and t.s.〉

x+ y = A∧ x+ y− y = B
= 〈Math〉

x+ y = A∧ x = B
= 〈(3.84a) Substitution〉

x = B∧ y = A−B //

{x = B∧ y = A−B} x := x+ y ; y := x− y {x = A∧ y = B}
Example

A = 7,B = 4

{x = 4∧ y = 3} x := x+ y ; y := x− y {x = 7∧ y = 4}

Program derivation
Given an assignment statement in a program with an unknown
expression in the assignment, solve for the unknown expression.

Program correctness
Given a program, prove that it satisfies its specification.
In other words, prove that the program is correct.

A Logical Approach to Discrete Math
7

Program derivation example
Solve for unknown E in the program

int x
{true} x := E {x = 4}

{true} x := E {x = 4}
= 〈(p.4)〉

true ⇒ wp.(x := E).(x = 4)
= 〈(3.73)〉

wp.(x := E).(x = 4)
= 〈(p.18) and t.s.〉

E = 4

{true} x := 4 {x = 4}

Program derivation example
From the division algorithm, where q is the quotient
and r is the remainder when you divide x by y.
Solve for unknown E in the program

int x, y, q, r
{0 ≤ x∧0 < y} q,r := E,x {0 ≤ r∧q∗ y+ r = x}
By (p.4) we must have
0 ≤ x∧0 < y ⇒ wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)

Use (4.4) Deduction (assume the conjuncts of the antecedent)

0 ≤ x∧0 < y ⇒ wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)

wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)
= 〈(p.18) and t.s.〉

0 ≤ x∧E ∗ y+ x = x
= 〈Assume conjunct 0 ≤ x〉

true∧E ∗ y+ x = x
= 〈(3.39) and math〉

E ∗ y = 0
= 〈Conjunct 0 < y and math〉

E = 0

{0 ≤ x∧0 < y} q,r := 0,x {0 ≤ r∧q∗ y+ r = x}

A Logical Approach to Discrete Math

7

Program derivation example
Solve for unknown E in the program

int x
{true} x := E {x = 4}

{true} x := E {x = 4}
= 〈(p.4)〉

true ⇒ wp.(x := E).(x = 4)
= 〈(3.73)〉

wp.(x := E).(x = 4)
= 〈(p.18) and t.s.〉

E = 4

{true} x := 4 {x = 4}

Program derivation example
From the division algorithm, where q is the quotient
and r is the remainder when you divide x by y.
Solve for unknown E in the program

int x, y, q, r
{0 ≤ x∧0 < y} q,r := E,x {0 ≤ r∧q∗ y+ r = x}
By (p.4) we must have
0 ≤ x∧0 < y ⇒ wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)

Use (4.4) Deduction (assume the conjuncts of the antecedent)

0 ≤ x∧0 < y ⇒ wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)

wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)
= 〈(p.18) and t.s.〉

0 ≤ x∧E ∗ y+ x = x
= 〈Assume conjunct 0 ≤ x〉

true∧E ∗ y+ x = x
= 〈(3.39) and math〉

E ∗ y = 0
= 〈Conjunct 0 < y and math〉

E = 0

{0 ≤ x∧0 < y} q,r := 0,x {0 ≤ r∧q∗ y+ r = x}

A Logical Approach to Discrete Math

7

Program derivation example
Solve for unknown E in the program

int x
{true} x := E {x = 4}

{true} x := E {x = 4}
= 〈(p.4)〉

true ⇒ wp.(x := E).(x = 4)
= 〈(3.73)〉

wp.(x := E).(x = 4)
= 〈(p.18) and t.s.〉

E = 4

{true} x := 4 {x = 4}

Program derivation example
From the division algorithm, where q is the quotient
and r is the remainder when you divide x by y.
Solve for unknown E in the program

int x, y, q, r
{0 ≤ x∧0 < y} q,r := E,x {0 ≤ r∧q∗ y+ r = x}
By (p.4) we must have
0 ≤ x∧0 < y ⇒ wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)

Use (4.4) Deduction (assume the conjuncts of the antecedent)

0 ≤ x∧0 < y ⇒ wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)

wp.(q,r := E,x).(0 ≤ r∧q∗ y+ r = x)
= 〈(p.18) and t.s.〉

0 ≤ x∧E ∗ y+ x = x
= 〈Assume conjunct 0 ≤ x〉

true∧E ∗ y+ x = x
= 〈(3.39) and math〉

E ∗ y = 0
= 〈Conjunct 0 < y and math〉

E = 0

{0 ≤ x∧0 < y} q,r := 0,x {0 ≤ r∧q∗ y+ r = x}

8

int x, y
{x = X∧ y = Y}
x := E ; y := x+ y
{x = X−Y∧ y = X}
Rigid variables cannot occur in E.

wp.(x := E ; y := x+ y).(x = X−Y∧ y = X)
= 〈(p.14)〉

wp.(x := E).(wp.(y := x+ y).(x = X−Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := E).(x = X−Y∧ x+ y = X)
= 〈(p.18) and t.s.〉

E = X−Y∧E + y = X
= 〈Assume conjuncts x = X and y = Y〉

E = x− y∧E + y = x
= 〈(3.38)〉

E = x− y

{x = X∧ y = Y}x := x− y ; y := x+ y{x = X−Y∧ y = X}

A Logical Approach to Discrete Math
Deriving sequential compositions

Deriving sequential compositions Math 221, Discrete Structures

The derivation for a sequence of two assignment statements when the unknown expression is in the second as-
signment is more complex than when the expression is in the first assignment. Because the weakest precondition
is computed from right-to-left, you must consider the textual substitution that may occur in the expression when
computing the weakest precondition of the first assignment.

This example assumes x and y are two Fibonacci numbers and replaces them with the next pair of Fibonacci
numbers. Unknown expression F is in the second assignment and has a textual substitution in the derivation. X
and Y are rigid variables.

{x = X∧ y = Y} y := E ; x := F {x = Y∧ y = X+Y}

The derivation uses (4.4) deduction with (p.4) the definition of the Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R

Here is the derivation beginning with the consequent of the definition.
wp.(y := E ; x := F).(x = Y∧ y = X+Y)

= 〈(p.14) Definition, Composition〉
wp.(y := E . wp.(x := F).(x = Y∧ y = X+Y))

= 〈(p.18) and textual substitution〉
wp.(y := E).(F = Y∧ y = X+Y)

= 〈(p.18) and textual substitution〉
Fy

E = Y∧E = X+Y
= 〈Assume conjuncts x =X and y =Y〉

Fy
E = y∧E = x+ y

= 〈(3.84a) Substitution (e = f)∧Ez
e ≡ (e = f)∧Ez

f 〉
Fy

x+y = y∧E = x+ y

The derivation shows that E = x+ y but what is the expression F? Recall that Fy
x+y is an abbreviation for the

textual substitution F [y := x+ y]. The derivation shows that F is an expression such that if you make the textual
substitution [y := x+ y] you get y. Working backward, F must be the expression

F = y− x

because

Fy
x+y = F [y := x+ y] = (y− x)[y := x+ y] = x+ y− x = y

So, the program is

y := x+ y ; x := y− x

For example, if the initial state is the pair of Fibonacci numbers (x,3),(y,5) and you execute the program then the
final state is (x,5),(y,8), which is the next pair of Fibonacci numbers.

1

Deriving sequential compositions Math 221, Discrete Structures

The derivation for a sequence of two assignment statements when the unknown expression is in the second as-
signment is more complex than when the expression is in the first assignment. Because the weakest precondition
is computed from right-to-left, you must consider the textual substitution that may occur in the expression when
computing the weakest precondition of the first assignment.

This example assumes x and y are two Fibonacci numbers and replaces them with the next pair of Fibonacci
numbers. Unknown expression F is in the second assignment and has a textual substitution in the derivation. X
and Y are rigid variables.

{x = X∧ y = Y} y := E ; x := F {x = Y∧ y = X+Y}

The derivation uses (4.4) deduction with (p.4) the definition of the Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R

Here is the derivation beginning with the consequent of the definition.
wp.(y := E ; x := F).(x = Y∧ y = X+Y)

= 〈(p.14) Definition, Composition〉
wp.(y := E . wp.(x := F).(x = Y∧ y = X+Y))

= 〈(p.18) and textual substitution〉
wp.(y := E).(F = Y∧ y = X+Y)

= 〈(p.18) and textual substitution〉
Fy

E = Y∧E = X+Y
= 〈Assume conjuncts x =X and y =Y〉

Fy
E = y∧E = x+ y

= 〈(3.84a) Substitution (e = f)∧Ez
e ≡ (e = f)∧Ez

f 〉
Fy

x+y = y∧E = x+ y

The derivation shows that E = x+ y but what is the expression F? Recall that Fy
x+y is an abbreviation for the

textual substitution F [y := x+ y]. The derivation shows that F is an expression such that if you make the textual
substitution [y := x+ y] you get y. Working backward, F must be the expression

F = y− x

because

Fy
x+y = F [y := x+ y] = (y− x)[y := x+ y] = x+ y− x = y

So, the program is

y := x+ y ; x := y− x

For example, if the initial state is the pair of Fibonacci numbers (x,3),(y,5) and you execute the program then the
final state is (x,5),(y,8), which is the next pair of Fibonacci numbers.

1

A Logical Approach to Discrete Math
Deriving sequential compositions

Deriving sequential compositions Math 221, Discrete Structures

The derivation for a sequence of two assignment statements when the unknown expression is in the second as-
signment is more complex than when the expression is in the first assignment. Because the weakest precondition
is computed from right-to-left, you must consider the textual substitution that may occur in the expression when
computing the weakest precondition of the first assignment.

This example assumes x and y are two Fibonacci numbers and replaces them with the next pair of Fibonacci
numbers. Unknown expression F is in the second assignment and has a textual substitution in the derivation. X
and Y are rigid variables.

{x = X∧ y = Y} y := E ; x := F {x = Y∧ y = X+Y}

The derivation uses (4.4) deduction with (p.4) the definition of the Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R

Here is the derivation beginning with the consequent of the definition.
wp.(y := E ; x := F).(x = Y∧ y = X+Y)

= 〈(p.14) Definition, Composition〉
wp.(y := E . wp.(x := F).(x = Y∧ y = X+Y))

= 〈(p.18) and textual substitution〉
wp.(y := E).(F = Y∧ y = X+Y)

= 〈(p.18) and textual substitution〉
Fy

E = Y∧E = X+Y
= 〈Assume conjuncts x =X and y =Y〉

Fy
E = y∧E = x+ y

= 〈(3.84a) Substitution (e = f)∧Ez
e ≡ (e = f)∧Ez

f 〉
Fy

x+y = y∧E = x+ y

The derivation shows that E = x+ y but what is the expression F? Recall that Fy
x+y is an abbreviation for the

textual substitution F [y := x+ y]. The derivation shows that F is an expression such that if you make the textual
substitution [y := x+ y] you get y. Working backward, F must be the expression

F = y− x

because

Fy
x+y = F [y := x+ y] = (y− x)[y := x+ y] = x+ y− x = y

So, the program is

y := x+ y ; x := y− x

For example, if the initial state is the pair of Fibonacci numbers (x,3),(y,5) and you execute the program then the
final state is (x,5),(y,8), which is the next pair of Fibonacci numbers.

1

Deriving sequential compositions Math 221, Discrete Structures

The derivation for a sequence of two assignment statements when the unknown expression is in the second as-
signment is more complex than when the expression is in the first assignment. Because the weakest precondition
is computed from right-to-left, you must consider the textual substitution that may occur in the expression when
computing the weakest precondition of the first assignment.

This example assumes x and y are two Fibonacci numbers and replaces them with the next pair of Fibonacci
numbers. Unknown expression F is in the second assignment and has a textual substitution in the derivation. X
and Y are rigid variables.

{x = X∧ y = Y} y := E ; x := F {x = Y∧ y = X+Y}

The derivation uses (4.4) deduction with (p.4) the definition of the Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R

Here is the derivation beginning with the consequent of the definition.
wp.(y := E ; x := F).(x = Y∧ y = X+Y)

= 〈(p.14) Definition, Composition〉
wp.(y := E . wp.(x := F).(x = Y∧ y = X+Y))

= 〈(p.18) and textual substitution〉
wp.(y := E).(F = Y∧ y = X+Y)

= 〈(p.18) and textual substitution〉
Fy

E = Y∧E = X+Y
= 〈Assume conjuncts x =X and y =Y〉

Fy
E = y∧E = x+ y

= 〈(3.84a) Substitution (e = f)∧Ez
e ≡ (e = f)∧Ez

f 〉
Fy

x+y = y∧E = x+ y

The derivation shows that E = x+ y but what is the expression F? Recall that Fy
x+y is an abbreviation for the

textual substitution F [y := x+ y]. The derivation shows that F is an expression such that if you make the textual
substitution [y := x+ y] you get y. Working backward, F must be the expression

F = y− x

because

Fy
x+y = F [y := x+ y] = (y− x)[y := x+ y] = x+ y− x = y

So, the program is

y := x+ y ; x := y− x

For example, if the initial state is the pair of Fibonacci numbers (x,3),(y,5) and you execute the program then the
final state is (x,5),(y,8), which is the next pair of Fibonacci numbers.

1

Deriving sequential compositions Math 221, Discrete Structures

The derivation for a sequence of two assignment statements when the unknown expression is in the second as-
signment is more complex than when the expression is in the first assignment. Because the weakest precondition
is computed from right-to-left, you must consider the textual substitution that may occur in the expression when
computing the weakest precondition of the first assignment.

This example assumes x and y are two Fibonacci numbers and replaces them with the next pair of Fibonacci
numbers. Unknown expression F is in the second assignment and has a textual substitution in the derivation. X
and Y are rigid variables.

{x = X∧ y = Y} y := E ; x := F {x = Y∧ y = X+Y}

The derivation uses (4.4) deduction with (p.4) the definition of the Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R

Here is the derivation beginning with the consequent of the definition.
wp.(y := E ; x := F).(x = Y∧ y = X+Y)

= 〈(p.14) Definition, Composition〉
wp.(y := E . wp.(x := F).(x = Y∧ y = X+Y))

= 〈(p.18) and textual substitution〉
wp.(y := E).(F = Y∧ y = X+Y)

= 〈(p.18) and textual substitution〉
Fy

E = Y∧E = X+Y
= 〈Assume conjuncts x =X and y =Y〉

Fy
E = y∧E = x+ y

= 〈(3.84a) Substitution (e = f)∧Ez
e ≡ (e = f)∧Ez

f 〉
Fy

x+y = y∧E = x+ y

The derivation shows that E = x+ y but what is the expression F? Recall that Fy
x+y is an abbreviation for the

textual substitution F [y := x+ y]. The derivation shows that F is an expression such that if you make the textual
substitution [y := x+ y] you get y. Working backward, F must be the expression

F = y− x

because

Fy
x+y = F [y := x+ y] = (y− x)[y := x+ y] = x+ y− x = y

So, the program is

y := x+ y ; x := y− x

For example, if the initial state is the pair of Fibonacci numbers (x,3),(y,5) and you execute the program then the
final state is (x,5),(y,8), which is the next pair of Fibonacci numbers.

1

A Logical Approach to Discrete Math
Invariant

8

int x, y
{x = X∧ y = Y}
x := E ; y := x+ y
{x = X−Y∧ y = X}
Rigid variables cannot occur in E.

wp.(x := E ; y := x+ y).(x = X−Y∧ y = X)
= 〈(p.14)〉

wp.(x := E).(wp.(y := x+ y).(x = X−Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := E).(x = X−Y∧ x+ y = X)
= 〈(p.18) and t.s.〉

E = X−Y∧E + y = X
= 〈Assume conjuncts x = X and y = Y〉

E = x− y∧E + y = x
= 〈(3.38)〉

E = x− y

{x = X∧ y = Y}x := x− y ; y := x+ y{x = X−Y∧ y = X}

Invariant
An invariant is a conjunct that appears in both
the precondition and the postcondition.

Example
int x,y,q,r
{0 ≤ r∧q · y+ r = x}
q,r :=?
{0 ≤ r∧q · y+ r = x ∧ r < y}

invariant

Abbreviation
P1 : 0 ≤ r∧q · y+ r = x
{P1}
q,r :=?
{P1∧ r < y}

8

int x, y
{x = X∧ y = Y}
x := E ; y := x+ y
{x = X−Y∧ y = X}
Rigid variables cannot occur in E.

wp.(x := E ; y := x+ y).(x = X−Y∧ y = X)
= 〈(p.14)〉

wp.(x := E).(wp.(y := x+ y).(x = X−Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := E).(x = X−Y∧ x+ y = X)
= 〈(p.18) and t.s.〉

E = X−Y∧E + y = X
= 〈Assume conjuncts x = X and y = Y〉

E = x− y∧E + y = x
= 〈(3.38)〉

E = x− y

{x = X∧ y = Y}x := x− y ; y := x+ y{x = X−Y∧ y = X}

Invariant
An invariant is a conjunct that appears in both
the precondition and the postcondition.

Example
int x,y,q,r
{0 ≤ r∧q · y+ r = x}
q,r :=?
{0 ≤ r∧q · y+ r = x ∧ r < y}

invariant

Abbreviation
P1 : 0 ≤ r∧q · y+ r = x
int x,y,q,r
{P1}
q,r :=?
{P1∧ r < y}

A Logical Approach to Discrete Math

[0]

b

[1] [2] [3] [4] [5] [6] [7]

n = 8

9

Example
P1 : x = (Σk 0 ≤ k < i : b[k])

i = 3 x is the sum b[0]+b[1]+b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x to be the sum

b[0]+b[1]+b[2]+b[3]

const int n
int i,x,b[n]
{P1} i,x := i+1,E {P1}

9

Example
P1 : x = (Σk 0 ≤ k < i : b[k])

i = 3 x is the sum b[0]+b[1]+b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x to be the sum

b[0]+b[1]+b[2]+b[3]

const int n
int i,x,b[n]
{P1} i,x := i+1,E {P1}

9

Example
P1 : x = (Σk 0 ≤ k < i : b[k])

i = 3 x = b[0]+b[1]+b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x = b[0]+b[1]+b[2]+b[3]

const int n
int i,x,b[n]
{P1} i,x := i+1,E {P1}

9

Example
P1 : x = (Σk 0 ≤ k < i : b[k])

i = 3 x = b[0]+b[1]+b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x = b[0]+b[1]+b[2]+b[3]

const int n
int i,x,b[n]
{P1} i,x := i+1,E {P1}

A Logical Approach to Discrete Math

9

Example
P1 : x = (Σk 0 ≤ k < i : b[k])

i = 3 x = b[0]+b[1]+b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x = b[0]+b[1]+b[2]+b[3]

const int n
int i,x,b[n]
{P1} i,x := i+1,E {P1}

P1 : x = (Σk 0 ≤ k < i : b[k])

{P1} i,x := i+1,E {P1}

wp.(i,x := i+1,E).P1
= 〈(p.18) and t.s.〉

E = (Σk 0 ≤ k < i+1 : b[k])
= 〈Split off last term〉

E = (Σk 0 ≤ k < i : b[k])+b[i]
= 〈Assume conjunct P1〉

E = x+b[i]

{P1} i,x := i+1,x+b[i] {P1}

A Logical Approach to Discrete Math
Program correctness

12 J. STANLEY WARFORD

(p.3) Monotonicity: (X ⇒ Y) ⇒ (wp.S.X ⇒ wp.S.Y)
(p.4) Definition, Hoare triple: {Q} S {R} ≡ Q ⇒ wp.S.R
(p.4.1) {wp.S.R} S {R}
(p.5) Postcondition rule: {Q} S {A}∧ (A ⇒ R) ⇒ {Q} S {R}
(p.6) Definition, Program equivalence: S = T ≡ (For all R,wp.S.R ≡ wp.T.R)
(p.7) (Q ⇒ A)∧{A} S {R} ⇒ {Q} S {R}
(p.8) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∧Q1} S {R0∧R1}
(p.9) {Q0} S {R0} ∧{Q1} S {R1} ⇒ {Q0∨Q1} S {R0∨R1}

(p.10) Definition, skip: wp.skip.R ≡ R
(p.11) {Q} skip {R} ≡ Q ⇒ R
(p.12) Definition, abort: wp.abort.R ≡ false
(p.13) {Q} abort {R} ≡ Q ≡ false
(p.14) Definition, Composition: wp.(S;T).R ≡ wp.S.(wp.T.R)
(p.15) {Q} S {H} ∧ {H} T {R} ⇒ {Q} S;T {R}
(p.16) Identity of composition:

(a) S ; skip= S (b) skip ;S = S
(p.17) Zero of composition:

(a) S ; abort = abort (b) abort ;S = abort
(p.18) Definition, Assignment: wp.(x := E).R ≡ R[x := E]
(p.19) Proof method for assignment: (p.19) is (10.2)

To show that x := E is an implementation of {Q}x :=?{R},
prove Q ⇒ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1 → S1
[] B2 → S2
[] B3 → S3
fi

(p.22) Definition, IFG: wp.IFG.R ≡ (B1∨B2∨B3) ∧
B1 ⇒ wp.S1.R ∧ B2 ⇒ wp.S2.R ∧ B3 ⇒ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q ⇒ B1∨B2∨B3,
(b) {Q∧B1} S1 {R},
(c) {Q∧B2} S2 {R}, and
(d) {Q∧B3} S3 {R}.

(p.25) ¬(B1∨B2∨B3)⇒ IFG = abort
(p.26) One-guard rule: {Q} if B → S fi {R} ⇒ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1 → S1;T [] B2 → S2;T fi = if B1 → S1 [] B2 → S2 fi ;T

A Logical Approach to Discrete Math

9

Example
P1 : x = (Σk 0 ≤ k < i : b[k])

i = 3 x = b[0]+b[1]+b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x = b[0]+b[1]+b[2]+b[3]

const int n
int i,x,b[n]
{P1} i,x := i+1,E {P1}

P1 : x = (Σk 0 ≤ k < i : b[k])

{P1} i,x := i+1,E {P1}

wp.(i,x := i+1,E).P1
= 〈(p.18) and t.s.〉

E = (Σk 0 ≤ k < i+1 : b[k])
= 〈Split off last term〉

E = (Σk 0 ≤ k < i : b[k])+b[i]
= 〈Assume conjunct P1〉

E = x+b[i]

{P1} i,x := i+1,x+b[i] {P1}

Example

Prove the correctness of the following program.
int x,y
{y = 1} x,y := x+1,x+ y {x ≥ y}
Use (p.4) and deduction.

wp.(x,y := x+1,x+ y).(x ≥ y)
= 〈(p.18) and t.s.〉

x+1 ≥ x+ y
= 〈Assume antecedent y = 1〉

x+1 ≥ x+1
= 〈Math〉

true //

A Logical Approach to Discrete Math 10

Example

Prove the correctness of the following program.
int x,y
{x = X∧ y = Y} x := x+ y ; y := x− y ; x := x− y {x = Y∧ y = X}

wp.(x := x+ y ; y := x− y ; x := x− y).(x = Y∧ y = X)
= 〈(p.14)〉

wp.(x := x+ y ; y := x− y).(wp.(x := x− y).(x = Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := x+ y ; y := x− y).(x− y = Y∧ y = X)
= 〈(p.14)〉

wp.(x := x+ y).(wp.(y := x− y).(x− y = Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := x+ y).(x− (x− y) = Y∧ x− y = X)
= 〈Math〉

wp.(x := x+ y).(y = Y∧ x− y = X)
= 〈(p.18) and t.s.〉

y = Y∧ x+ y− y = X
= 〈Math〉

y = Y∧ x = X
= 〈Assume conjuncts x = X and y = Y〉

true //

A Logical Approach to Discrete Math

10

Example

Prove the correctness of the following program.
int x,y
{x = X∧ y = Y} x := x+ y ; y := x− y ; x := x− y {x = Y∧ y = X}

wp.(x := x+ y ; y := x− y ; x := x− y).(x = Y∧ y = X)
= 〈(p.14)〉

wp.(x := x+ y ; y := x− y).(wp.(x := x− y).(x = Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := x+ y ; y := x− y).(x− y = Y∧ y = X)
= 〈(p.14)〉

wp.(x := x+ y).(wp.(y := x− y).(x− y = Y∧ y = X))
= 〈(p.18) and t.s.〉

wp.(x := x+ y).(x− (x− y) = Y∧ x− y = X)
= 〈Math〉

wp.(x := x+ y).(y = Y∧ x− y = X)
= 〈(p.18) and t.s.〉

y = Y∧ x+ y− y = X
= 〈Math〉

y = Y∧ x = X
= 〈Assume conjuncts x = X and y = Y〉

true //

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.19) Proof method for assignment: (p.19) is (10.2)
To show that x := E is an implementation of {Q}x :=?{R},
prove Q⌅ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1⇤ S1
[] B2⇤ S2
[] B3⇤ S3
fi

(p.22) Definition, IFG: wp.IFG.R ⇥ (B1 ⌥B2 ⌥B3) ⌃
B1⌅ wp.S1.R ⌃ B2⌅ wp.S2.R ⌃ B3⌅ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q⌅ B1 ⌥B2 ⌥B3,
(b) {Q ⌃B1} S1 {R},
(c) {Q ⌃B2} S2 {R}, and
(d) {Q ⌃B3} S3 {R}.

(p.25) ¬(B1 ⌥B2 ⌥B3)⌅ IFG = abort
(p.26) One-guard rule: {Q} if B ⇤ S fi {R} ⌅ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1⇤ S1;T [] B2⇤ S2;T fi = if B1⇤ S1 [] B2⇤ S2 fi ;T
(p.28) DO : do B ⇤ S od
(p.29) Fundamental Invariance Theorem. (p.28) is (12.43)

Suppose
• {P ⌃B} S {P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B ⇤ S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B ⇤ S od {P ⌃ ¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B ⇤ S od {R},
it suffices to prove
(a) P is true before execution of the loop,
(b) P is a loop invariant: {P ⌃B} S {P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P ⌃ ¬B ⌅ R.

(p.31) False guard: do false⇤ S od = skip

A Logical Approach to Discrete Math

The alternative statement

12 J. STANLEY WARFORD

(p.19) Proof method for assignment: (p.19) is (10.2)
To show that x := E is an implementation of {Q}x :=?{R},
prove Q⌅ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1⇤ S1
[] B2⇤ S2
[] B3⇤ S3
fi

(p.22) Definition, IFG: wp.IFG.R ⇥ (B1 ⌥B2 ⌥B3) ⌃
B1⌅ wp.S1.R ⌃ B2⌅ wp.S2.R ⌃ B3⌅ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q⌅ B1 ⌥B2 ⌥B3,
(b) {Q ⌃B1} S1 {R},
(c) {Q ⌃B2} S2 {R}, and
(d) {Q ⌃B3} S3 {R}.

(p.25) ¬(B1 ⌥B2 ⌥B3)⌅ IFG = abort
(p.26) One-guard rule: {Q} if B ⇤ S fi {R} ⌅ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1⇤ S1;T [] B2⇤ S2; T fi = if B1⇤ S1 [] B2⇤ S2 fi ;T
(p.28) DO : do B ⇤ S od
(p.29) Fundamental Invariance Theorem. (p.29) is (12.43)

Suppose
• {P ⌃B} S {P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B ⇤ S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B ⇤ S od {P ⌃ ¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B ⇤ S od {R},
it suffices to prove
(a) P is true before execution of the loop: {Q} initialization; {P},
(b) P is a loop invariant: {P ⌃B} S {P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P ⌃ ¬B ⌅ R.

(p.31) False guard: do false⇤ S od = skip

(10.6) IFG : if B1 -* S1

B2 S2

B3 -* S3

fi

Execution of the alternative statement proceeds as follows. If none of the
guards is true, execution aborts 5 . If at least one guard is true , then one
true guard is chosen and the corresponding command is executed.

There are two key points with the alternative statement.

• Execution aborts if no guard is true.

• If more than one guard is true , only one of them is chosen (arbitrar-
ily) and its corresponding command is executed.

if x<y->z:=y
y<x-*z:=x

fi
{z is the maximum of x and y j

A Logical Approach to Discrete Math

10

Example

Prove the correctness of the following program.
int x,y
{x = X∧ y = Y} x := x+ y ; y := x− y ; x := x− y {x = Y∧ y = X}

wp.(x := x+ y ; y := x− y ; x := x− y).(x = Y∧ y = X)

= 〈(p.14)〉
wp.(x := x+ y ; y := x− y).(wp.(x := x− y).(x = Y∧ y = X))

= 〈(p.18) and t.s.〉
wp.(x := x+ y ; y := x− y).(x− y = Y∧ y = X)

= 〈(p.14)〉
wp.(x := x+ y).(wp.(y := x− y).(x− y = Y∧ y = X))

= 〈(p.18) and t.s.〉
wp.(x := x+ y).(x− (x− y) = Y∧ x− y = X)

= 〈Math〉
wp.(x := x+ y).(y = Y∧ x− y = X)

= 〈(p.18) and t.s.〉
y = Y∧ x+ y− y = X

= 〈Math〉
y = Y∧ x = X

= 〈Assume conjuncts x = X and y = Y〉
true //

Example

if a < 18 → t := 0
[] 18 ≤ a < 21 → t := 5
[] 21 ≤ a < 65 → t := 10
fi

Initial value of a = 15 ⇒ final value of t = 0
Initial value of a = 20 ⇒ final value of t = 5
Initial value of a = 30 ⇒ final value of t = 10
Initial value of a = 70 ⇒ abort

A Logical Approach to Discrete Math

11

Example

if a < 18 → t := 0
[] a < 21 → t := 5
fi

Initial value of a = 15 ⇒ final value of t = 0 or t = 5
because both guards are true.

Initial value of a = 20 ⇒ final value of t = 5
Initial value of a = 30 ⇒ abort

Example

if a < 18 → t := 0
[] 18 ≤ a < 21 → t := 5
[] 21 ≤ a → skip
fi

Cannot abort

Example
Verify, the correctness of the following program.

int x,y,z
{x > z}
if x > y → x,y := y,x
[] y > z → y,z := z,y
fi
{x ≤ y∧ y ≤ z}

Cannot abort

A Logical Approach to Discrete Math

11

Example

if a < 18 → t := 0
[] a < 21 → t := 5
fi

Initial value of a = 15 ⇒ final value of t = 0 or t = 5
because both guards are true.

Initial value of a = 20 ⇒ final value of t = 5
Initial value of a = 30 ⇒ abort

Example

if a < 18 → t := 0
[] 18 ≤ a < 21 → t := 5
[] 21 ≤ a → skip
fi

Cannot abort

Example
Verify, the correctness of the following program.

int x,y,z
{x > z}
if x > y → x,y := y,x
[] y > z → y,z := z,y
fi
{x ≤ y∧ y ≤ z}

Cannot abort

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.19) Proof method for assignment: (p.19) is (10.2)
To show that x := E is an implementation of {Q}x :=?{R},
prove Q⌅ R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1⇤ S1
[] B2⇤ S2
[] B3⇤ S3
fi

(p.22) Definition, IFG: wp.IFG.R ⇥ (B1 ⌥B2 ⌥B3) ⌃
B1⌅ wp.S1.R ⌃ B2⌅ wp.S2.R ⌃ B3⌅ wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q⌅ B1 ⌥B2 ⌥B3,
(b) {Q ⌃B1} S1 {R},
(c) {Q ⌃B2} S2 {R}, and
(d) {Q ⌃B3} S3 {R}.

(p.25) ¬(B1 ⌥B2 ⌥B3)⌅ IFG = abort
(p.26) One-guard rule: {Q} if B ⇤ S fi {R} ⌅ {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1⇤ S1;T [] B2⇤ S2;T fi = if B1⇤ S1 [] B2⇤ S2 fi ;T
(p.28) DO : do B ⇤ S od
(p.29) Fundamental Invariance Theorem. (p.28) is (12.43)

Suppose
• {P ⌃B} S {P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B ⇤ S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B ⇤ S od {P ⌃ ¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B ⇤ S od {R},
it suffices to prove
(a) P is true before execution of the loop,
(b) P is a loop invariant: {P ⌃B} S {P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P ⌃ ¬B ⌅ R.

(p.31) False guard: do false⇤ S od = skip

A Logical Approach to Discrete Math

11

Example

if a < 18 → t := 0
[] a < 21 → t := 5
fi

Initial value of a = 15 ⇒ final value of t = 0 or t = 5
because both guards are true.

Initial value of a = 20 ⇒ final value of t = 5
Initial value of a = 30 ⇒ abort

Example

if a < 18 → t := 0
[] 18 ≤ a < 21 → t := 5
[] 21 ≤ a → skip
fi

Cannot abort

Example
Verify, the correctness of the following program.

int x,y,z
{x > z}
if x > y → x,y := y,x
[] y > z → y,z := z,y
fi
{x ≤ y∨ y ≤ z}

By (p.24), must prove
(a) x > z ⇒ x > y ∨ y > z
(b) {x > z∧ x > y} x,y := y,x {x ≤ y∨ y ≤ z}
(c) {x > z∧ y > z} y,z := z,y {x ≤ y∨ y ≤ z}

A Logical Approach to Discrete Math

12

Proof of (a)

x > z ⇒ x > y ∨ y > z
= 〈Contrapositive〉

¬(x > y ∨ y > z)⇒ ¬(x > z)
= 〈De Morgan and math〉

x ≤ y ∧ y ≤ z ⇒ x ≤ z
= 〈Math, transitivity of ≤〉

true //

Proof of (b)
{x > z∧ x > y} x,y := y,x {x ≤ y∧ y ≤ z}

wp.(x,y := y,x).(x ≤ y∧ y ≤ z)
= 〈(p.18) and t.s.〉

y ≤ x∧ x ≤ z
= 〈Assume conjunct x > z and math〉

y ≤ x∧ f alse
= 〈(3.30) Identity of ∨〉

y ≤ x
= 〈Math〉

y < x∨ y = x
= 〈Assume conjunct x > y〉

true∨ y = x
= 〈(3.29) Zero of ∨〉

true //

A Logical Approach to Discrete Math

12

Proof of (a)

x > z ⇒ x > y ∨ y > z
= 〈Contrapositive〉

¬(x > y ∨ y > z)⇒ ¬(x > z)
= 〈De Morgan and math〉

x ≤ y ∧ y ≤ z ⇒ x ≤ z
= 〈Math, transitivity of ≤〉

true //

Proof of (b)
{x > z∧ x > y} x,y := y,x {x ≤ y∨ y ≤ z}

wp.(x,y := y,x).(x ≤ y∨ y ≤ z)
= 〈(p.18) and t.s.〉

y ≤ x∨ x ≤ z
= 〈Assume conjunct x > z and math〉

y ≤ x∨ f alse
= 〈(3.30) Identity of ∨〉

y ≤ x
= 〈Math〉

y < x∨ y = x
= 〈Assume conjunct x > y〉

true∨ y = x
= 〈(3.29) Zero of ∨〉

true //

A Logical Approach to Discrete Math 13

Proof of (c)
{x > z∧ y > z} y,z := z,y {x ≤ y∨ y ≤ z}

wp.(y,z := z,y).(x ≤ y∨ y ≤ z)
= 〈(p.18) and t.s.〉

x ≤ z∨ z ≤ y
= 〈Assume conjunct x > z and math〉

f alse∨ z ≤ y
= 〈(3.30) Identity of ∨〉

z ≤ y
= 〈Math〉

z < y∨ z = y
= 〈Assume conjunct y > z〉

true∨ z = y
= 〈(3.29) Zero of ∨〉

true //

A Logical Approach to Discrete Math

The alternative statement in the Promela language

active proctype P() {
byte a = 5, b = 5;
byte max, branch;
if
 :: a >= b -> max = a; branch = 1
 :: a <= b -> max = b; branch = 2
fi
}

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.19) Proof method for assignment: (p.19) is (10.2)
To show that x := E is an implementation of {Q}x :=?{R},
prove Q� R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1⌥ S1
[] B2⌥ S2
[] B3⌥ S3
fi

(p.22) Definition, IFG: wp.IFG.R ⇧ (B1 ✓B2 ✓B3) ⌘
B1� wp.S1.R ⌘ B2� wp.S2.R ⌘ B3� wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q� B1 ✓B2 ✓B3,
(b) {Q ⌘B1} S1 {R},
(c) {Q ⌘B2} S2 {R}, and
(d) {Q ⌘B3} S3 {R}.

(p.25) ¬(B1 ✓B2 ✓B3)� IFG = abort
(p.26) One-guard rule: {Q} if B ⌥ S fi {R} � {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1⌥ S1;T [] B2⌥ S2; T fi = if B1⌥ S1 [] B2⌥ S2 fi ;T
(p.28) DO : do B ⌥ S od
(p.29) Fundamental Invariance Theorem. (p.29) is (12.43)

Suppose
• {P ⌘B} S {P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B ⌥ S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B ⌥ S od {P ⌘ ¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B ⌥ S od {R},
it suffices to prove
(a) P is true before execution of the loop: {Q} initialization; {P},
(b) P is a loop invariant: {P ⌘B} S {P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P ⌘ ¬B � R.

(p.31) False guard: do false⌥ S od = skip

A Logical Approach to Discrete Math

13

Proof of (c)
{x > z∧ y > z} y,z := z,y {x ≤ y∨ y ≤ z}

wp.(y,z := z,y).(x ≤ y∨ y ≤ z)
= 〈(p.18) and t.s.〉

x ≤ z∨ z ≤ y
= 〈Assume conjunct x > z and math〉

f alse∨ z ≤ y
= 〈(3.30) Identity of ∨〉

z ≤ y
= 〈Math〉

z < y∨ z = y
= 〈Assume conjunct y > z〉

true∨ z = y
= 〈(3.29) Zero of ∨〉

true //
Example
int x, i
x, i := 0,0 ;
do i < 4 → i,x := i+1,x+ i od

Guard i < 4 i x x = (Σk 0 ≤ k < i : k)

? ? ?
0 0 0 = (Σk 0 ≤ k < 0 : k)

true
1 0 0 = (Σk 0 ≤ k < 1 : k)

true
2 1 1 = (Σk 0 ≤ k < 2 : k)

true
3 3 3 = (Σk 0 ≤ k < 3 : k)

true
4 6 6 = (Σk 0 ≤ k < 4 : k)

false
Terminate

{x = B∧ y = A−B} x := x+ y ; y := x− y {x = A∧ y = B}
Example

A = 7,B = 4

{x = 4∧ y = 3} x := x+ y ; y := x− y {x = 7∧ y = 4}

14

What does the loop do?
It sets x to 0+1+2+3
That is, x = (Σk 0 ≤ k < 4 : k)

Question
What is the invariant of statement

i,x := i+1,x+ i
That is, what is P1 in

{P1} i,x := i+1,x+ i {P1}

Answer
x = (Σk 0 ≤ k < i : k)

Check by verifying P1 at each step.

A Logical Approach to Discrete Math

14

What does the loop do?
It sets x to 0+1+2+3
That is, x = (Σk 0 ≤ k < 4 : k)

Question
What is the invariant of statement

i,x := i+1,x+ i
That is, what is P1 in

{P1} i,x := i+1,x+ i {P1}

Answer
x = (Σk 0 ≤ k < i : k)

Check by verifying P1 at each step.

Check by correctness proof of:
P1 : x = (Σk 0 ≤ k < i : k)
{P1} i,x := i+1,x+ i {P1}

wp.(i,x := i+1,x+ i).P1
= 〈(p.18) and t.s.〉

x+ i = (Σk 0 ≤ k < i+1 : k)
= 〈Split off last term〉

x+ i = (Σk 0 ≤ k < i : k)+ i
= 〈Assume antecedent〉

x+ i = x+ i
= 〈Reflexivity of =〉

true //

Multiplication algorithm proof checklist

(a) Prove 0 ≤ n ⇒ wp.(i, p := 0,0).P
(b) Prove P∧B ⇒ wp.(i, p := i+1, p+ x).P
(c) Prove the loop terminates.
(d) Prove P∧¬B ⇒ p = n · x

A Logical Approach to Discrete Math

12 J. STANLEY WARFORD

(p.19) Proof method for assignment: (p.19) is (10.2)
To show that x := E is an implementation of {Q}x :=?{R},
prove Q� R[x := E].

(p.20) (x := x) = skip
(p.21) IFG : (p.21) is (10.6)

if B1⌥ S1
[] B2⌥ S2
[] B3⌥ S3
fi

(p.22) Definition, IFG: wp.IFG.R ⇧ (B1 ⌘B2 ⌘B3) ⇣
B1� wp.S1.R ⇣ B2� wp.S2.R ⇣ B3� wp.S3.R

(p.23) Empty guard: if fi = abort
(p.24) Proof method for IFG: (p.24) is (10.7)

To prove {Q}IFG{R}, it suffices to prove
(a) Q� B1 ⌘B2 ⌘B3,
(b) {Q ⇣B1} S1 {R},
(c) {Q ⇣B2} S2 {R}, and
(d) {Q ⇣B3} S3 {R}.

(p.25) ¬(B1 ⌘B2 ⌘B3)� IFG = abort
(p.26) One-guard rule: {Q} if B ⌥ S fi {R} � {Q} S {R}
(p.27) Distributivity of program over alternation:

if B1⌥ S1;T [] B2⌥ S2;T fi = if B1⌥ S1 [] B2⌥ S2 fi ;T
(p.28) DO : do B ⌥ S od
(p.29) Fundamental Invariance Theorem. (p.28) is (12.43)

Suppose
• {P ⇣B} S {P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
• {P} do B ⌥ S od {true}—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B ⌥ S od {P ⇣ ¬B} holds.

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B ⌥ S od {R},
it suffices to prove
(a) P is true before execution of the loop: {Q} initialization; {P},
(b) P is a loop invariant: {P ⇣B} S {P},
(c) Execution of the loop terminates, and
(d) R holds upon termination: P ⇣ ¬B � R.

(p.31) False guard: do false⌥ S od = skip

A Logical Approach to Discrete Math

The multiplication algorithm

(12.42) {Q: 0<n}
i, p : = 0,0;
{P: 0<i<n A p=i-x}
do i 0 n --* i,p:= i+ 1,p+x od

{R: p=n•x}

(12.46) {Q: b>0 A c>0}
q,r:= 0,b;
{invariant P: b q- c + r A 0< r}
dor>c---+q,r:= q+l,r-cod

{R: b=q•c+r A 0 <r<c}

14

What does the loop do?
It sets x to 0+1+2+3
That is, x = (Σk 0 ≤ k < 4 : k)

Question
What is the invariant of statement

i,x := i+1,x+ i
That is, what is P1 in

{P1} i,x := i+1,x+ i {P1}

Answer
x = (Σk 0 ≤ k < i : k)

Check by verifying P1 at each step.

Check by correctness proof of:
P1 : x = (Σk 0 ≤ k < i : k)
{P1} i,x := i+1,x+ i {P1}

wp.(i,x := i+1,x+ i).P1
= 〈(p.18) and t.s.〉

x+ i = (Σk 0 ≤ k < i+1 : k)
= 〈Split off last term〉

x+ i = (Σk 0 ≤ k < i : k)+ i
= 〈Assume antecedent〉

x+ i = x+ i
= 〈Reflexivity of =〉

true //

Multiplication algorithm proof checklist

(a) Prove 0 ≤ n ⇒ wp.(i, p := 0,0).P
(b) Prove P∧ (i &= n)⇒ wp.(i, p := i+1, p+ x).P
(c) Prove the loop terminates.
(d) Prove P∧¬(i &= n)⇒ p = n · x

Multiplication algorithm

A Logical Approach to Discrete Math
15

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(a) Prove 0 ≤ n ⇒ wp.(i, p := 0,0).P

wp.(i, p := 0,0).P
= 〈(p.18) and t.s.〉

0 ≤ 0 ≤ n∧0 = 0 · x
= 〈Math〉

0 ≤ 0 ≤ n∧ true
= 〈(3.39) Identity of ∧〉

0 ≤ 0 ≤ n
= 〈Conjunctive meaning of ≤〉

0 ≤ 0∧0 ≤ n
= 〈Assume antecedent 0 ≤ n, (3.39)〉

true //

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(b) Prove P∧ (i &= n)⇒ wp.(i, p := i+1, p+ x).P

wp.(i, p := i+1, p+ x).P
= 〈(p.18) and t.s.〉

0 ≤ i+1 ≤ n∧ p+ x = (i+1) · x
= 〈Conjunctive meaning, math〉

0 ≤ i+1∧ i+1 ≤ n∧ p = i · x
= 〈Assume conjunct p = i · x, math〉

−1 ≤ i∧ i+1 ≤ n
= 〈Assume conjunct 0 ≤ i〉

i+1 ≤ n
= 〈Assume conjuncts i ≤ n and i &= n〉

true //

Multiplication algorithm

(c) Prove the loop terminates.

By Q : 0 ≤ n, i cannot be greater than n.
Each time through the loop, i increases by 1, and n does not change.
Therefore, i must eventually equal n, i &= n will be false,

and the loop will terminate.

A Logical Approach to Discrete Math

15

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(a) Prove 0 ≤ n ⇒ wp.(i, p := 0,0).P

wp.(i, p := 0,0).P
= 〈(p.18) and t.s.〉

0 ≤ 0 ≤ n∧0 = 0 · x
= 〈Math〉

0 ≤ 0 ≤ n∧ true
= 〈(3.39) Identity of ∧〉

0 ≤ 0 ≤ n
= 〈Conjunctive meaning of ≤〉

0 ≤ 0∧0 ≤ n
= 〈Assume antecedent 0 ≤ n, (3.39)〉

true //

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(b) Prove P∧ (i &= n)⇒ wp.(i, p := i+1, p+ x).P

wp.(i, p := i+1, p+ x).P
= 〈(p.18) and t.s.〉

0 ≤ i+1 ≤ n∧ p+ x = (i+1) · x
= 〈Conjunctive meaning, math〉

0 ≤ i+1∧ i+1 ≤ n∧ p = i · x
= 〈Assume conjunct p = i · x, math〉

−1 ≤ i∧ i+1 ≤ n
= 〈Assume conjunct 0 ≤ i〉

i+1 ≤ n
= 〈Assume conjuncts i ≤ n and i &= n〉

true //

Multiplication algorithm

(c) Prove the loop terminates.

By Q : 0 ≤ n, i cannot be greater than n.
Each time through the loop, i increases by 1, and n does not change.
Therefore, i must eventually equal n, i &= n will be false,

and the loop will terminate.

A Logical Approach to Discrete Math

16

Multiplication algorithm

(c) Prove the loop terminates.

By Q : 0 ≤ n, n cannot be negative.
By the initialization i, p := 0,0, the initial value of i

cannot be greater than n.
Each time through the loop, i increases by 1, and n does not change.
Therefore, i must eventually equal n, i "= n will be false,

and the loop will terminate.

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(d) Prove P∧¬(i "= n)⇒ p = n · x

p = n · x
= 〈Assume conjunct p = i · x〉

i · x = n · x
= 〈Assume conjunct ¬(i "= n) and double negation〉

n · x = n · x
= 〈Reflexivity of =〉

true //

Division algorithm proof checklist

(a) Prove b ≥ 0∧ c > 0 ⇒ wp.(q,r := 0,b).P
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P
(c) Prove the loop terminates.
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

A Logical Approach to Discrete Math
16

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(d) Prove P∧¬(i #= n)⇒ p = n · x

p = n · x
= 〈Assume conjunct p = i · x〉

i · x = n · x
= 〈Assume conjunct ¬(i #= n) and double negation〉

n · x = n · x
= 〈Reflexivity of =〉

true //

A Logical Approach to Discrete Math

The division algorithm

(12.42) {Q: 0<n}
i, p : = 0,0;
{P: 0<i<n A p=i-x}
do i 0 n --* i,p:= i+ 1,p+x od

{R: p=n•x}

(12.46) {Q: b>0 A c>0}
q,r:= 0,b;
{invariant P: b q- c + r A 0< r}
dor>c---+q,r:= q+l,r-cod

{R: b=q•c+r A 0 <r<c}

16

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(d) Prove P∧¬(i #= n)⇒ p = n · x

p = n · x
= 〈Assume conjunct p = i · x〉

i · x = n · x
= 〈Assume conjunct ¬(i #= n) and double negation〉

n · x = n · x
= 〈Reflexivity of =〉

true //

Division algorithm proof checklist

(a) Prove b ≥ 0∧ c > 0 ⇒ wp.(q,r := 0,b).P
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P
(c) Prove the loop terminates.
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

A Logical Approach to Discrete Math

16

Multiplication algorithm

(c) Prove the loop terminates.

By Q : 0 ≤ n, n cannot be negative.
By the initialization i, p := 0,0, the initial value of i

cannot be greater than n.
Each time through the loop, i increases by 1, and n does not change.
Therefore, i must eventually equal n, i "= n will be false,

and the loop will terminate.

Multiplication algorithm

P : 0 ≤ i ≤ n∧ p = i · x
(d) Prove P∧¬(i "= n)⇒ p = n · x

p = n · x
= 〈Assume conjunct p = i · x〉

i · x = n · x
= 〈Assume conjunct ¬(i "= n) and double negation〉

n · x = n · x
= 〈Reflexivity of =〉

true //

Division algorithm proof checklist

(a) Prove b ≥ 0∧ c > 0 ⇒ wp.(q,r := 0,b).P
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P
(c) Prove the loop terminates.
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

Division algorithm

P : b = q · c+ r∧0 ≤ r
(a) Prove b ≥ 0∧ c > 0 ⇒ wp.(q,r := 0,b).P

wp.(q,r := 0,b).P
= 〈(p.18) and t.s.〉

b = 0 · c+b∧0 ≤ b
= 〈Math, (3.39) Identity of ∧〉

0 ≤ b
= 〈Assume conjunct 0 ≤ b〉

true //

A Logical Approach to Discrete Math
17

Division algorithm

P : b = q · c+ r∧0 ≤ r
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P

wp.(q,r := q+1,r− c).P
= 〈(p.18) and t.s.〉

b = (q+1) · c+ r− c∧0 ≤ r− c
= 〈Math〉

b = q · c+ r∧ c ≤ r
= 〈Assume conjuncts b = q · c+ r and r ≥ c〉

true //

Division algorithm

(c) Prove the loop terminates.

By Q : b ≥ 0∧ c > 0, c must be positive.
Regardless of the initial value of r, each time through the loop

it decreases by c, and c does not change.
Therefore, r must eventually equal be less than c, r ≥ c will be false,

and the loop will terminate.

Division algorithm

P : b = q · c+ r∧0 ≤ r
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

b = q · c+ r∧0 ≤ r < c
= 〈Assume conjunct b = q · c+ r〉

0 ≤ r < c
= 〈Conjunctive meaning〉

0 ≤ r∧ r < c
= 〈Assume conjunct 0 ≤ r〉

r < c
= 〈Assume conjunct ¬(r ≥ c) and math〉

true //

A Logical Approach to Discrete Math

17

Division algorithm

P : b = q · c+ r∧0 ≤ r
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P

wp.(q,r := q+1,r− c).P
= 〈(p.18) and t.s.〉

b = (q+1) · c+ r− c∧0 ≤ r− c
= 〈Math〉

b = q · c+ r∧ c ≤ r
= 〈Assume conjuncts b = q · c+ r and r ≥ c〉

true //

Division algorithm

(c) Prove the loop terminates.

By Q : b ≥ 0∧ c > 0, c must be positive.
Regardless of the initial value of r, each time through the loop

it decreases by c, and c does not change.
Therefore, r must eventually equal be less than c, r ≥ c will be false,

and the loop will terminate.

Division algorithm

P : b = q · c+ r∧0 ≤ r
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

b = q · c+ r∧0 ≤ r < c
= 〈Assume conjunct b = q · c+ r〉

0 ≤ r < c
= 〈Conjunctive meaning〉

0 ≤ r∧ r < c
= 〈Assume conjunct 0 ≤ r〉

r < c
= 〈Assume conjunct ¬(r ≥ c) and math〉

true //

A Logical Approach to Discrete Math

17

Division algorithm

P : b = q · c+ r∧0 ≤ r
(b) Prove P∧ (r ≥ c)⇒ wp.(q,r := q+1,r− c).P

wp.(q,r := q+1,r− c).P
= 〈(p.18) and t.s.〉

b = (q+1) · c+ r− c∧0 ≤ r− c
= 〈Math〉

b = q · c+ r∧ c ≤ r
= 〈Assume conjuncts b = q · c+ r and r ≥ c〉

true //

Division algorithm

(c) Prove the loop terminates.

By Q : b ≥ 0∧ c > 0, c must be positive.
Regardless of the initial value of r, each time through the loop

it decreases by c, and c does not change.
Therefore, r must eventually equal be less than c, r ≥ c will be false,

and the loop will terminate.

Division algorithm

P : b = q · c+ r∧0 ≤ r
(d) Prove P∧¬(r ≥ c)⇒ b = q · c+ r∧0 ≤ r < c

b = q · c+ r∧0 ≤ r < c
= 〈Assume conjunct b = q · c+ r〉

0 ≤ r < c
= 〈Conjunctive meaning〉

0 ≤ r∧ r < c
= 〈Assume conjunct 0 ≤ r〉

r < c
= 〈Assume conjunct ¬(r ≥ c) and math〉

true //

