English to math (All types are integers.) x is positive. x > 0x is negative. x < 0 $\neg(x < 0)$ or $x \ge 0$ x is non-negative. $(\exists i \mid x = 2 \cdot i)$ x is even. $(\exists i \mid : x = 2 \cdot i + 1)$ x is odd. x divides y. $x \mid y$ $(\exists i \mid x \cdot i = y)$ $(\exists i \mid : x = 2^i)$ x is a power of 2.

Hoare Triple

Recall from Sec. 1.6 that a *state* is a set of identifier-value pairs. Further, the Hoare triple $\{Q\} S \{R\}$, where S is a program statement, Q is the precondition, and R is the postcondition, has the interpretation

Execution of S begun in any state in which Q is *true* is guaranteed to terminate, and R is *true* in the final state.

Formal Specification

To specify a program is to say <u>what</u> it should do, not <u>how</u> it should do it.

Formal Specification

A specification of a program should give:

- a precondition Q (say): a boolean expression that describes the initial states for which execution of the program is being defined,
- a list x (say) of variables that may be assigned to, and
- a postcondition R (say): a boolean expression that characterizes the final states, after execution of the program.

$$\{Q\} x := ? \{R\}$$

Specification examples (All types are integers.)

Specify "Set x to y's value." $\{true\}$ x := ? $\{x = y\}$

Specify "Set y to x's value." $\{true\}$ y := ? $\{x = y\}$

Specify "Set x and y to have the same value." $\{true\}$ x, y := ? $\{x = y\}$

Specify "Swap the values of *x* and *y*."

This specification requires a rigid variable.

A rigid variable defines the initial value of a variable in the precondition, so it can be used in the postcondition.

$$\{x = X \land y = Y\} \quad x, y := ? \quad \{x = Y \land y = X\}$$

Specify "Set z to its own absolute value."
$$\{z = z\}$$
 $z := ?$ $\{z = |z|\}$

Specify "Set *z* to the maximum of integers *x* and *y*." {*true*} $z := ? \{(x \ge y \Rightarrow z = x) \land (y \ge x \Rightarrow z = y)\}$

Arrays

Abbreviation

 $x \in b[0..n-1]$ means $(\exists i \mid 0 \le i < n : x = b[i])$

Specify "Set *i* to the index of *x* assuming *x* is in *b*." $\{0 < n \land x \in b[0..n-1]\}$ $i := ? \{0 \le i < n \land x = b[i]\}$

Specify "Set *i* to the index of *x* if it is in *b* and to *n* if it is not." $\{0 \le n\}$ i := ? $\{(0 \le i < n \land x = b[i]) \lor (i = n \land x \notin b[0..n-1])\}$

Specify "If *x* is in *b* set boolean *c* to *true* and *i* to the index of *x*. Otherwise set *c* to *false*."

$$\{0 \le n\} \quad i, c :=? \quad \{(c \equiv x \in b[0..n-1]) \land (c \Rightarrow x = b[i])\}$$

Appropriate preconditions

<u>Sum</u>

It makes sense to have the sum of an empty range. For the sum of b[j..k-1], the precondition should include $j \le k$.

Max

There is no maximum in an empty range.

For the maximum of b[j..k-1], the precondition should include j < k.

Counting

$$\begin{bmatrix} 0 & [1] & [2] & [3] & [4] & [5] & [6] & [7] \\ b & 12 & 93 & 0 & 14 & 6 & 0 & 0 & 21 \\ \end{bmatrix} n = 8$$

How many zeros are in b[0..7]? ($\Sigma i \mid 0 \le i < n \land b[i] = 0:1$) = 3

Weakest precondition

Suppose

$$\{P\}x := E\{R\}$$

and

 $\{Q\}x := E\{R\}$

are two valid Hoare triples with the same program statements and the same postconditions.

P is called the weakest precondition if

$$Q \Rightarrow P$$

for all Q that make the Hoare triple valid.

Weakest precondition

Example

$${x = 4}x := x + 1{x < 7}$$
 valid
 ${x < 6}x := x + 1{x < 7}$ valid

Note that

$$x = 4 \Rightarrow x < 6$$

Any precondition that makes this $S{R}$ valid implies x < 6.

$$\frac{x=4}{\text{strong}} \Rightarrow \frac{x<6}{\text{weak}}$$

Notation for weakest precondition

 $wp.S.post \equiv P$

means that

 $\{P\}S\{post\}$

is valid, and for every Q satisfying

 $\{Q\}S\{post\}$

Q must be stronger than P. That is,

 $Q \Rightarrow P$

Example

$$wp.(x := x+1).(x < 7) \equiv x < 6$$

A THEORY OF PROGRAMS

- (p.1) **Axiom, Excluded miracle:** $wp.S. false \equiv false$
- (p.2) **Axiom, Conjunctivity:** $wp.S.(X \wedge Y) \equiv wp.S.X \wedge wp.S.Y$
- (p.3) Monotonicity: $(X \Rightarrow Y) \Rightarrow (wp.S.X \Rightarrow wp.S.Y)$
- (p.4) **Definition, Hoare triple:** $\{Q\} S \{R\} \equiv Q \Rightarrow wp.S.R$
- $(p.4.1) \quad \{wp.S.R\} \ S \ \{R\}$
- (p.5) **Postcondition rule:** $\{Q\} S \{A\} \land (A \Rightarrow R) \Rightarrow \{Q\} S \{R\}$
- (p.6) **Definition, Program equivalence:** $S = T \equiv (\text{For all } R, wp.S.R \equiv wp.T.R)$
- $(p.7) \qquad (Q \Rightarrow A) \land \{A\} S \{R\} \Rightarrow \{Q\} S \{R\}$
- $(p.8) \qquad \{Q0\} S \{R0\} \land \{Q1\} S \{R1\} \Rightarrow \{Q0 \land Q1\} S \{R0 \land R1\}$
- $(p.9) \qquad \{Q0\} S \{R0\} \land \{Q1\} S \{R1\} \implies \{Q0 \lor Q1\} S \{R0 \lor R1\}$

Prove (p.3) Monotonicity: $(X \Rightarrow Y) \Rightarrow (wp.S.X \Rightarrow wp.S.Y)$ Proof $wp.S.X \Rightarrow wp.S.Y$ $= \langle (3.60) \rangle$ $wp.S.X \land wp.S.Y \equiv wp.S.X$ $= \langle (p.2) \rangle$ $wp.S.(X \wedge Y) \equiv wp.S.X$ \Leftarrow (3.83) Leibniz with $E, e, f := wp.S.z, X \land Y, X$ $X \wedge Y = X \Rightarrow (wp.S.z)[z := X] = (wp.S.z)[z := X \wedge Y]$ $X \wedge Y = X \Rightarrow wp.S.X = wp.S.(X \wedge Y)$ $X \wedge Y \equiv X$ $= \langle (3.60) \rangle$ $X \Rightarrow Y //$

Prove (p.4.1) {wp.S.R} S {R} Proof {wp.S.R} S {R} = $\langle (p.4) \rangle$ $wp.S.R \Rightarrow wp.S.R$ which is (3.71) Reflexivity if $\Rightarrow //$

(p.6) **Definition, Program equivalence:** $S = T \equiv (\text{For all } R, wp.S.R \equiv wp.T.R)$

In (p.6), you cannot use the \forall symbol because *R* is an expression, not a dummy variable.

S and T are programs statements

Sets

See (11.4) and (11.11b). To prove set *S* equals set *T*, let *v* be an arbitrary element, and prove $v \in S \equiv v \in T$

Programs

To prove program S equals program T, let R be an arbitrary postcondition, and prove

 $wp.S.R \equiv wp.T.R$

(p.10) **Definition, skip:** $wp.skip.R \equiv R$ (p.11) $\{Q\} skip \{R\} \equiv Q \Rightarrow R$

The *skip* statement does nothing. If *R* is true and you execute *skip*, *R* is guaranteed to be true.

(p.12)**Definition, abort:** $wp.abort.R \equiv false$ (p.13) $\{Q\}$ abort $\{R\} \equiv Q \equiv false$

The *abort* statement causes the program to fail. An abort statement can never establish its postcondition because its precondition can never be true. A program that executes *abort* is erroneous.

(p.14) **Definition, Composition:** $wp.(S;T).R \equiv wp.S.(wp.T.R)$ (p.15) $\{Q\} S \{H\} \land \{H\} T \{R\} \Rightarrow \{Q\} S;T \{R\}$

(p.14) says that if you execute S and then execute T, the postcondition of S is the precondition of T.

Prove (p.16a) S; skip = S *Proof* Let R be an arbitrary postcondition, and prove that $wp.(S; skip).R \equiv wp.S.R$ wp.(S; skip).R $= \langle (p.14) \rangle$ wp.S.(wp. skip .R) $= \langle (p.10) \rangle$ wp.S.R //

(p.18) **Definition, Assignment:** $wp.(x := E).R \equiv R[x := E]$

Example

Compute the weakest precondition P for the following program. A and B are program constants, not rigid variables.

int *x*, *y* const int *A*, *B* $\{P\} x := x + y ; y := x - y \{x = A \land y = B\}$

$$\{P\} x := x + y ; y := x - y \{x = A \land y = B\}$$

$$wp.(x := x + y ; y := x - y).(x = A \land y = B)$$

$$= \langle (p.14) \rangle$$

$$wp.(x := x + y) . (wp.(y := x - y).(x = A \land y = B))$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$wp.(x := x + y).(x = A \land x - y = B)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$x + y = A \land x + y - y = B$$

$$= \langle Math \rangle$$

$$x + y = A \land x = B$$

$$= \langle (3.84a) \text{ Substitution} \rangle$$

$$x = B \land y = A - B //$$

$$\{x = B \land y = A - B\} \ x := x + y \ ; \ y := x - y \ \{x = A \land y = B\}$$

Example

$$A = 7, B = 4$$

$$\{x = 4 \land y = 3\} \ x := x + y \ ; \ y := x - y \ \{x = 7 \land y = 4\}$$

Two applications

Program derivation

Given an assignment statement in a program with an unknown expression in the assignment, solve for the unknown expression.

Program correctness

Given a program, prove that it satisfies its specification. In other words, prove that the program is correct.

Program derivation example Solve for unknown E in the program int x $\{true\} x := E \{x = 4\}$ $\{true\} x := E \{x = 4\}$ $= \langle (p.4) \rangle$ $true \Rightarrow wp.(x := E).(x = 4)$ $= \langle (3.73) \rangle$ wp.(x := E).(x = 4) $= \langle (p.18) \text{ and } t.s. \rangle$ E=4 $\{true\} x := 4 \{x = 4\}$

Program derivation example

From the division algorithm, where q is the quotient and r is the remainder when you divide x by y. Solve for unknown E in the program

int *x*, *y*, *q*, *r* { $0 \le x \land 0 < y$ } *q*, *r* := *E*, *x* { $0 \le r \land q * y + r = x$ } By (p.4) we must have $0 \le x \land 0 < y \Rightarrow wp.(q, r := E, x).(0 \le r \land q * y + r = x)$ Use (4.4) Deduction (assume the conjuncts of the antecedent)

$$0 \le x \land 0 < y \Rightarrow wp.(q,r := E,x).(0 \le r \land q * y + r = x)$$

$$wp.(q,r := E,x).(0 \le r \land q * y + r = x)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$0 \le x \land E * y + x = x$$

$$= \langle Assume \text{ conjunct } 0 \le x \rangle$$

$$true \land E * y + x = x$$

$$= \langle (3.39) \text{ and } math \rangle$$

$$E * y = 0$$

$$= \langle Conjunct \ 0 < y \text{ and } math \rangle$$

$$E = 0$$

 $\{0 \le x \land 0 < y\} \ q, r := 0, x \ \{0 \le r \land q * y + r = x\}$

int x, y

$$\{x = X \land y = Y\}$$

$$x := E ; y := x + y$$

$$\{x = X - Y \land y = X\}$$

Rigid variables cannot occur in E.

$$wp.(x := E; y := x + y).(x = X - Y \land y = X)$$

$$= \langle (p.14) \rangle$$

$$wp.(x := E).(wp.(y := x + y).(x = X - Y \land y = X))$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$wp.(x := E).(x = X - Y \land x + y = X)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$E = X - Y \land E + y = X$$

$$= \langle Assume \text{ conjuncts } x = X \text{ and } y = Y \rangle$$

$$E = x - y \land E + y = x$$

$$= \langle (3.38) \rangle$$

$$E = x - y$$

$${x = X \land y = Y}x := x - y; y := x + y{x = X - Y \land y = X}$$

Deriving sequential compositions

$$\{x = X \land y = Y\} \ y := E \ ; \ x := F \ \{x = Y \land y = X + Y\}$$

$$wp.(y := E ; x := F).(x = Y \land y = X + Y)$$

$$= \langle (p.14) \text{ Definition, Composition} \rangle$$

$$wp.(y := E . wp.(x := F).(x = Y \land y = X + Y))$$

$$= \langle (p.18) \text{ and textual substitution} \rangle$$

$$wp.(y := E).(F = Y \land y = X + Y)$$

$$= \langle (p.18) \text{ and textual substitution} \rangle$$

$$F_E^y = Y \land E = X + Y$$

$$= \langle \text{Assume conjuncts } x = X \text{ and } y = Y \rangle$$

$$F_E^y = y \land E = x + y$$

$$= \langle (3.84a) \text{ Substitution} (e = f) \land E_e^z \equiv (e = f) \land E_f^z \rangle$$

$$F_{x+y}^y = y \land E = x + y$$

Deriving sequential compositions

$$\{x = \mathbf{X} \land y = \mathbf{Y}\} \ y := E \ ; \ x := F \ \{x = \mathbf{Y} \land y = \mathbf{X} + \mathbf{Y}\}$$

$$F_{x+y}^y = y \wedge E = x+y$$

F = y - x

because

$$F_{x+y}^{y} = F[y := x+y] = (y-x)[y := x+y] = x+y-x = y$$

So, the program is

$$y := x + y$$
; $x := y - x$

Invariant

<u>Invariant</u>

An invariant is a conjunct that appears in both the precondition and the postcondition.

 $\frac{\text{Example}}{\text{int } x, y, q, r}$ $\{0 \le r \land q \cdot y + r = x\}$ q, r := ? $\{0 \le r \land q \cdot y + r = x \land r < y\}$ invariant

Abbreviation $P1: 0 \le r \land q \cdot y + r = x$ int x, y, q, r $\{P1\}$ q, r := ? $\{P1 \land r < y\}$

 $\frac{\text{Example}}{P1: \quad x = (\Sigma k \mid 0 \le k < i : b[k])}$

We want to increment *i* by 1 and to maintain the invariant. Afterwords, we want i = 4 and x = b[0] + b[1] + b[2] + b[3]

const int *n* int i, x, b[n] $\{P1\}$ i, x := i + 1, E $\{P1\}$

$$P1: x = (\Sigma k \mid 0 \le k < i : b[k])$$

$$\{P1\} i, x := i + 1, E \{P1\}$$

$$wp.(i, x := i + 1, E).P1$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$E = (\Sigma k \mid 0 \le k < i + 1 : b[k])$$

$$= \langle \text{Split off last term} \rangle$$

$$E = (\Sigma k \mid 0 \le k < i : b[k]) + b[i]$$

$$= \langle \text{Assume conjunct } P1 \rangle$$

$$E = x + b[i]$$

$$\{P1\} i, x := i + 1, x + b[i] \{P1\}$$

Program correctness

(p.19) **Proof method for assignment:**

To show that x := E is an implementation of $\{Q\}x := ?\{R\}$, prove $Q \Rightarrow R[x := E]$.

Example

Prove the correctness of the following program.

int x, y{y = 1} x, y := x + 1, x + y { $x \ge y$ } Use (p.4) and deduction.

$$wp.(x, y := x + 1, x + y).(x \ge y)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$x + 1 \ge x + y$$

$$= \langle \text{Assume antecedent } y = 1 \rangle$$

$$x + 1 \ge x + 1$$

$$= \langle \text{Math} \rangle$$

$$true //$$

Example

Prove the correctness of the following program.

$$\{x = X \land y = Y\} \ x := x + y \ ; \ y := x - y \ ; \ x := x - y \ \{x = Y \land y = X\}$$

$$wp.(x := x + y \ ; \ y := x - y \ ; \ x := x - y).(x = Y \land y = X)$$

$$= \ \langle (p.14) \rangle$$

$$wp.(x := x + y \ ; \ y := x - y).(wp.(x := x - y).(x = Y \land y = X))$$

$$= \ \langle (p.18) \ and \ t.s. \rangle$$

$$wp.(x := x + y \ ; \ y := x - y).(x - y = Y \land y = X)$$

$$= \ \langle (p.14) \rangle$$

$$wp.(x := x + y).(wp.(y := x - y).(x - y = Y \land y = X))$$

$$wp.(x := x + y).(wp.(y := x - y).(x - y = Y \land y = X))$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$wp.(x := x + y).(x - (x - y) = Y \land x - y = X)$$

$$= \langle Math \rangle$$

$$wp.(x := x + y).(y = Y \land x - y = X)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$y = Y \land x + y - y = X$$

$$= \langle Math \rangle$$

$$y = Y \land x = X$$

$$= \langle Assume \text{ conjuncts } x = X \text{ and } y = Y \rangle$$

$$true \quad //$$

The alternative statement

(p.21) IFG: **if** $B1 \rightarrow S1$ [] $B2 \rightarrow S2$ [] $B3 \rightarrow S3$ **fi**

There are two key points with the alternative statement.

- Execution aborts if no guard is *true*.
- If more than one guard is *true*, only one of them is chosen (arbitrarily) and its corresponding command is executed.

Example

if
$$a < 18 \rightarrow t := 0$$

[] $18 \le a < 21 \rightarrow t := 5$
[] $21 \le a < 65 \rightarrow t := 10$
fi

Initial value of $a = 15 \Rightarrow$ final value of t = 0Initial value of $a = 20 \Rightarrow$ final value of t = 5Initial value of $a = 30 \Rightarrow$ final value of t = 10Initial value of $a = 70 \Rightarrow$ abort

Example

if $a < 18 \to t := 0$ [] $a < 21 \to t := 5$ **fi**

Initial value of $a = 15 \Rightarrow$ final value of t = 0 or t = 5because both guards are true. Initial value of $a = 20 \Rightarrow$ final value of t = 5Initial value of $a = 30 \Rightarrow$ abort

Example

if $a < 18 \rightarrow t := 0$ [] $18 \le a < 21 \rightarrow t := 5$ [] $21 \le a \rightarrow skip$ **fi**

Cannot abort

(p.24) **Proof method for** IFG: To prove $\{Q\}IFG\{R\}$, it suffices to prove

- (a) $Q \Rightarrow B1 \lor B2 \lor B3$,
- (b) $\{Q \land B1\} S1 \{R\},\$
- (c) $\{Q \land B2\} S2 \{R\}$, and
- (d) $\{Q \land B3\} S3 \{R\}.$
- $(p.25) \quad \neg(B1 \lor B2 \lor B3) \Rightarrow IFG = abort$
- (p.26) **One-guard rule:** $\{Q\}$ if $B \to S$ fi $\{R\} \Rightarrow \{Q\} S \{R\}$
- (p.27) **Distributivity of program over alternation:**

 $\mathbf{if}\ B1 \to S1; T \ []\ B2 \to S2; T \ \mathbf{fi} \ = \ \mathbf{if}\ B1 \to S1 \ []\ B2 \to S2 \ \mathbf{fi}\ ; T$

(p.24) is (10.7)

Example

Verify, the correctness of the following program.

int
$$x, y, z$$

 $\{x > z\}$
if $x > y \rightarrow x, y := y, x$
[] $y > z \rightarrow y, z := z, y$
fi
 $\{x \le y \lor y \le z\}$

By (p.24), must prove (a) $x > z \Rightarrow x > y \lor y > z$ (b) $\{x > z \land x > y\} x, y := y, x \{x \le y \lor y \le z\}$ (c) $\{x > z \land y > z\} y, z := z, y \{x \le y \lor y \le z\}$

Proof of (a)

 $x > z \Rightarrow x > y \lor y > z$ = $\langle \text{Contrapositive} \rangle$ $\neg (x > y \lor y > z) \Rightarrow \neg (x > z)$ = $\langle \text{De Morgan and math} \rangle$ $x \le y \land y \le z \Rightarrow x \le z$ = $\langle \text{Math, transitivity of } \le \rangle$ true //

$$\frac{\operatorname{Proof of (b)}}{\{x > z \land x > y\}} x, y := y, x \{x \le y \lor y \le z\}$$

$$wp.(x, y := y, x).(x \le y \lor y \le z)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$y \le x \lor x \le z$$

$$= \langle Assume \text{ conjunct } x > z \text{ and math} \rangle$$

$$y \le x \lor false$$

$$= \langle (3.30) \text{ Identity of } \lor \rangle$$

$$y \le x$$

$$= \langle Math \rangle$$

$$y < x \lor y = x$$

$$= \langle Assume \text{ conjunct } x > y \rangle$$

$$true \lor y = x$$

$$= \langle (3.29) \text{ Zero of } \lor \rangle$$

$$true //$$

$$\frac{\text{Proof of (c)}}{\{x > z \land y > z\}} y, z := z, y \{x \le y \lor y \le z\}$$

$$wp.(y, z := z, y).(x \le y \lor y \le z)$$

$$= \langle (p.18) \text{ and } t.s. \rangle$$

$$x \le z \lor z \le y$$

$$= \langle \text{Assume conjunct } x > z \text{ and math} \rangle$$

$$false \lor z \le y$$

$$= \langle (3.30) \text{ Identity of } \lor \rangle$$

$$z \le y$$

$$= \langle \text{Math} \rangle$$

$$z < y \lor z = y$$

$$= \langle \text{Assume conjunct } y > z \rangle$$

$$true \lor z = y$$

$$= \langle (3.29) \text{ Zero of } \lor \rangle$$

$$true //$$

The alternative statement in the Promela language

```
active proctype P() {
byte a = 5, b = 5;
byte max, branch;
if
    :: a >= b -> max = a; branch = 1
    :: a <= b -> max = b; branch = 2
fi
}
```

 $(p.28) \quad DO: \quad \mathbf{do} \ B \to S \ \mathbf{od}$

(p.29) **Fundamental Invariance Theorem.** Suppose

(p.29) is (12.43)

- { $P \land B$ } S {P} holds—i.e. execution of S begun in a state in which P and B are true terminates with P true—and
- $\{P\}$ do $B \to S$ od $\{true\}$ —i.e. execution of the loop begun in a state in which P is true terminates.

Then $\{P\}$ do $B \to S$ od $\{P \land \neg B\}$ holds.

Example

int x, i

x, i := 0, 0;

do $i < 4 \rightarrow i, x := i + 1, x + i$ **od**

Guard $i < 4$	l i	x	$ x = (\Sigma k \mid 0 \le k < i : k)$
?	?	?	
	0	0	$0 = (\Sigma k \mid 0 \le k < 0 : k)$
true			
	1	0	$0 = (\Sigma k \mid 0 \le k < 1 : k)$
true		1	
4.000	2		$1 = (\Sigma k \mid 0 \le k < 2 : k)$
true	3	3	$3 - (\Sigma k \mid 0 < k < 3 \cdot k)$
true	5	5	$\int J = (2\kappa + 0 \leq \kappa \leq J \cdot \kappa)$
u uc	4	6	$6 = (\Sigma k \mid 0 \le k \le 4 : k)$
false			
Terminate			

What does the loop do? It sets x to 0 + 1 + 2 + 3That is, $x = (\Sigma k \mid 0 \le k < 4 : k)$

Question

What is the invariant of statement

i, x := i+1, x+i

That is, what is *P*1 in $\{P1\} i, x := i + 1, x + i \{P1\}$

Answer

 $x = (\Sigma k \mid 0 \le k < i : k)$ Check by verifying *P*1 at each step.

```
Check by correctness proof of:
P1: x = (\Sigma k \mid 0 \le k < i : k)
\{P1\} i,x := i+1,x+i \{P1\}
          wp.(i, x := i + 1, x + i).P1
       = \langle (p.18) \text{ and } t.s. \rangle
          x + i = (\Sigma k \mid 0 \le k < i + 1 : k)
       = (Split off last term)
          x + i = (\Sigma k \mid 0 \le k < i : k) + i
       = (Assume antecedent)
          x+i=x+i
       = \langle \text{Reflexivity of } = \rangle
          true //
```

(p.30) **Proof method for** *DO*: To prove $\{Q\}$ *initialization*; $\{P\}$ **do** $B \rightarrow S$ **od** $\{R\}$, it suffices to prove

- (a) P is true before execution of the loop: $\{Q\}$ initialization; $\{P\}$,
- (b) P is a loop invariant: $\{P \land B\} S \{P\}$,
- (c) Execution of the loop terminates, and
- (d) *R* holds upon termination: $P \land \neg B \Rightarrow R$.
- (p.31) False guard: do $false \rightarrow S$ od = skip

The multiplication algorithm

$$\begin{array}{ll} (12.42) & \{Q: \ 0 \leq n\} \\ & i, p := 0, 0; \\ & \{P: \ 0 \leq i \leq n \ \land \ p = i \cdot x\} \\ & \mathbf{do} \ i \neq n \rightarrow i, p := \ i + 1, p + x \ \mathbf{od} \\ & \{R: \ p = n \cdot x\} \end{array}$$

Multiplication algorithm proof checklist

(a) Prove $0 \le n \Rightarrow wp.(i, p := 0, 0).P$ (b) Prove $P \land (i \ne n) \Rightarrow wp.(i, p := i + 1, p + x).P$ (c) Prove the loop terminates. (d) Prove $P \land \neg (i \ne n) \Rightarrow p = n \cdot x$

Multiplication algorithm

- $P: 0 \le i \le n \land p = i \cdot x$
- (a) Prove $0 \le n \Rightarrow wp.(i, p := 0, 0).P$

wp.(i, p := 0, 0).P

 $= \langle (p.18) \text{ and } t.s. \rangle$

 $0 \le 0 \le n \land 0 = 0 \cdot x$

- $= \langle Math \rangle$
 - $0 \le 0 \le n \wedge true$
- $= \langle (3.39) \text{ Identity of } \land \rangle$ 0 < 0 < n
- $= \langle \text{Conjunctive meaning of } \leq \rangle$ $0 \leq 0 \land 0 \leq n$
- $= \langle \text{Assume antecedent } 0 \le n, (3.39) \rangle$ true //

Multiplication algorithm

 $P: 0 \le i \le n \land p = i \cdot x$ (b) Prove $P \land (i \neq n) \Rightarrow wp.(i, p := i+1, p+x).P$ wp.(i, p := i+1, p+x).P $= \langle (p.18) \text{ and } t.s. \rangle$ $0 \le i+1 \le n \land p+x = (i+1) \cdot x$ = (Conjunctive meaning, math) $0 \le i + 1 \land i + 1 \le n \land p = i \cdot x$ = $\langle \text{Assume conjunct } p = i \cdot x, \text{ math} \rangle$ $-1 \leq i \wedge i + 1 \leq n$ = $\langle \text{Assume conjunct } 0 \leq i \rangle$ $i+1 \le n$ = $\langle \text{Assume conjuncts } i \leq n \text{ and } i \neq n \rangle$ true //

Multiplication algorithm

- (c) Prove the loop terminates.
- By $Q: 0 \le n$, *n* cannot be negative.
- By the initialization i, p := 0, 0, the initial value of i

cannot be greater than n.

Each time through the loop, *i* increases by 1, and *n* does not change.

Therefore, *i* must eventually equal $n, i \neq n$ will be false,

and the loop will terminate.

Multiplication algorithm

$$P: 0 \le i \le n \land p = i \cdot x$$

(d) Prove $P \land \neg(i \ne n) \Rightarrow p = n \cdot x$

$$p = n \cdot x$$

$$= \langle \text{Assume conjunct } p = i \cdot x \rangle$$

$$i \cdot x = n \cdot x$$

$$= \langle \text{Assume conjunct } \neg(i \neq n) \text{ and double negation} \rangle$$

$$n \cdot x = n \cdot x$$

$$= \langle \text{Reflexivity of } = \rangle$$

$$true //$$

The division algorithm

Division algorithm proof checklist

(a) Prove $b \ge 0 \land c > 0 \Rightarrow wp.(q,r := 0,b).P$ (b) Prove $P \land (r \ge c) \Rightarrow wp.(q,r := q+1,r-c).P$ (c) Prove the loop terminates. (d) Prove $P \land \neg (r \ge c) \Rightarrow b = q \cdot c + r \land 0 \le r < c$

Division algorithm

 $P: b = q \cdot c + r \wedge 0 \leq r$ (a) Prove $b \ge 0 \land c > 0 \Rightarrow wp.(q, r := 0, b).P$ wp.(q,r:=0,b).P $= \langle (p.18) \text{ and } t.s. \rangle$ $b = 0 \cdot c + b \wedge 0 < b$ = \langle Math, (3.39) Identity of $\wedge \rangle$ $0 \le b$ = $\langle \text{Assume conjunct } 0 \leq b \rangle$ true //

Division algorithm

$$P: b = q \cdot c + r \land 0 \leq r$$

(b) Prove $P \land (r \geq c) \Rightarrow wp.(q,r) = q+1, r-c).P$
$$= \langle (p.18) \text{ and } t.s. \rangle$$

 $b = (q+1) \cdot c + r - c \land 0 \leq r - c$
$$= \langle Math \rangle$$

 $b = q \cdot c + r \land c \leq r$
$$= \langle Assume \text{ conjuncts } b = q \cdot c + r \text{ and } r \geq c \rangle$$

 $true //$

Division algorithm

(c) Prove the loop terminates.

By $Q: b \ge 0 \land c > 0$, c must be positive.

Regardless of the initial value of r, each time through the loop

it decreases by c, and c does not change.

Therefore, *r* must eventually equal be less than $c, r \ge c$ will be false, and the loop will terminate.

Division algorithm

- $P: b = q \cdot c + r \wedge 0 \leq r$ (d) Prove $P \wedge \neg (r \geq c) \Rightarrow b = q \cdot c + r \wedge 0 \leq r < c$ $b = q \cdot c + r \wedge 0 \leq r < c$ $= \langle \text{Assume conjunct } b = q \cdot c + r \rangle$ $0 \leq r < c$
 - $= \langle \text{Conjunctive meaning} \rangle \\ 0 < r \land r < c$
 - $= \langle \text{Assume conjunct } 0 \le r \rangle$ r < c
 - = $\langle Assume conjunct \neg (r \ge c) and math \rangle$ *true* //