A Logical Approach to Discrete Math

English to math (All types are integers.)

X 18 positive.

X 1S negative.

X 1S non-negative.
X 1S even.

x 1s odd.

x dividesy. x|y

X 1s a power of 2.

x>0

x <0
—(x<0) or x>0

l

l

l

:x=2-1)
:x=2-i+1)
X-i=Y)

cx =20

A Logical Approach to Discrete Math

The element 13 is in b[j..k].

01 11 21 31 41 (51 [e]l [71 [8] I[9]

b | 23 14 | -6 5 13 | 23 19 | -2

| = |
| =P |

4 k="

J

(Ji|j<i<k:bli]=13)

x € b[0.n— 1] (3il0<i<n:x=Dbli)

A Logical Approach to Discrete Math

Hoare Triple

Recall from Sec. 1.6 that a state is a set of identifier-value pairs. Further,

the Hoare triple {Q} S {R}, where S is a program statement, () is the
precondition, and R is the postcondition, has the interpretation

Execution of S begun in any state in which Q is true is
guaranteed to terminate, and R is true in the final state.

A Logical Approach to Discrete Math

Formal Specification

To specify a program is to say what it should do,
not how it should do it.

A Logical Approach to Discrete Math

Formal Specification

A specification of a program should give:

e aprecondition @ (say): a boolean expression that describes the initial
states for which execution of the program is being defined,

e alist z (say) of variables that may be assigned to, and

e a postcondition R (say): a boolean expression that characterizes the
final states, after execution of the program.

Q) x:=71R}

A Logical Approach to Discrete Math

Specification examples (All types are integers.)

Specity “Set x to y’s value.”
{true} x:=? {x=y}

Specity “Set y to x’s value.”
{true} y:=? {x=y}

Specify “Set x and y to have the same value.”
{true} x,y:=7 {x=y}

A Logical Approach to Discrete Math

Specity “Swap the values of x and y.”
This specification requires a rigid variable.

A rigid variable defines the initial value of a variable in the precondition,
so 1t can be used 1n the postcondition.
{x=xAy=Y} xy:=? {x=YAy=X}

A Logical Approach to Discrete Math

Specity “Set z to 1its own absolute value.”

{z=12} z:=? {z=|z]}

Specity “Set z to the maximum of integers x and y.”
{true} z:=? {(x>y=z=x)AQy>x=z=y)}

A Logical Approach to Discrete Math

Arrays

(01 [11 (21 [31 [4] [5]1 [6] [7]
b n=2_8
Abbreviation

x€bl0.n—1] means (Fi|0<i<n:x=D>bli)

A Logical Approach to Discrete Math

Specity “Set i to the index of x assuming x 1s in b.”
{0<nAxebl0.n—1]} i:=? {0<i<nAx=Dblil}

Specity “Set i to the index of x if it 1s in b and to » 1f it is not.”
{0<n} i:=? {(0<i<nAx=0bli|))V(i=nAx¢gbl0.n—1])}

Specity “If x 1s in b set boolean c to true and i to the index of x.
Otherwise set ¢ to false.”

{0<n} ic:=? {(c=x€bl0.n—1]) N (c=x=D>bli])}

A Logical Approach to Discrete Math

Appropriate preconditions

Sum
It makes sense to have the sum of an empty range.
For the sum of b[j..k — 1], the precondition should include j < k.

Max
There 1s no maximum in an empty range.
For the maximum of b|j..k — 1], the precondition should include j < k.

A Logical Approach to Discrete Math

Counting

01 11 21 31 41 [51 [6] [7]
b| 12 | 93 0 14 6 0 0 21 n

I
o0

How many zeros are in b|0..7]?

(Zil0<i<nAb[i]=0:1)=3

A Logical Approach to Discrete Math

Weakest precondition

Suppose
{P}x:=E{R}
and
{Q)x:= E{R}

are two valid Hoare triples with the same program statements
and the same postconditions.
P 1s called the weakest precondition if

Q=P

for all Q that make the Hoare triple valid.

A Logical Approach to Discrete Math

Weakest precondition

Example

{x=4}x:=x+1{x <7} wvalid

{x<6}x:=x+1{x <7} wvalid
Note that

x=4=x<6
Any precondition that makes this S{R} valid implies x < 6.

x=4=x<6

strong weak

A Logical Approach to Discrete Math

Notation for weakest precondition
wp.S.post = P

means that
{P}S{post}

is valid, and for every Q satisfying

1Q}S{post }

Q must be stronger than P. That 1s,
Q=P

Example

wp.(x:=x+1).x<7)=x<6

A Logical Approach to Discrete Math

A THEORY OF PROGRAMS

(p.1) Axiom, Excluded miracle: wp.S. false = false

(p.2) Axiom, Conjunctivity: wp.S.(X ANY) = wp.S. X ANwp.S.Y

(p.3) Monotonicity: (X =Y) = (wp.S.X = wp.5Y)

(p.4) Definition, Hoare triple: {Q} S {R} = Q = wp.S.R

(p4.1) {wp.S.R} S {R}

(p.5) Postcondition rule: {Q} S {A} AN (A= R) = {Q} S {R}

(p.6) Definition, Program equivalence: S =7 = (Forall R,wp.S.R = wp.T.R)
P77 (Q@=A)N{A} S{R} = {Q} S{R}

(p.8) {Q0} S {RO} AN{Q1} S{R1} = {QOANQ1} S{ROA R1}

(p.9) {Q0} S {RO} A{Q1} S{R1} = {Q0Vv Q1} S{ROV R1}

A Logical Approach to Discrete Math

Prove (p.3) Monotonicity: (X =Y) = (wp.S.X = wp.5.Y)
Proof
wp.S.X = wp.S.Y
= {(3.60))
wp S X Awp.SY =wp.§.X
)
wp.S.(XAY)=wp.S.X
< ((3.83) Leibniz with E,e, f :=wp.S.z, X \Y, X
XANY =X= (wp.S.2)|z:=X]|=(wp.S.2)[z:=XNY]
XNY =X=wpSX=wpS.(XNY))
XNY =X
— ((3.60))
X=Y [/

A Logical Approach to Discrete Math

Prove (p4.1) {wp.S.R} S {R}
Proof
{wp.S.R} S {R}
= ((p4)
wp.S.R = wp.S.R
which is (3.71) Reflexivity if = //

A Logical Approach to Discrete Math
(p.6) Definition, Program equivalence: S=T7 = (Forall R,wp.S.R=wp.T.R)

In (p.6), you cannot use the V symbol because R is an expression,
not a dummy variable.
S and T are programs statements

Sets
See (11.4) and (11.11b).

To prove set S equals set 7', let v be an arbitrary element, and prove
veS=veT

Programs

To prove program S equals program 7', let R be an arbitrary postcondition,
and prove
wp.S.R=wp.T.R

A Logical Approach to Discrete Math

(p.10) Definition, skip: wp.skip.R = R
(p11) {Q}skip{R} = Q=R

The skip statement does nothing.
If R 1s true and you execute skip,
R 1s guaranteed to be true.

A Logical Approach to Discrete Math

(p.12) Definition, abort: wp.abort.R = false
(p.13) {Q} abort{R} = Q= false

The abort statement causes the program to fail.

An abort statement can never establish its postcondition
because its precondition can never be true.

A program that executes abort 1s erroneous.

A Logical Approach to Discrete Math

(p.14) Definition, Composition: wp.(S;T).R = wp.S.(wp.T.R)
(015 {Q}S{H} A {H}T {R} = {Q}S:T {R}

(p.14) says that if you execute S and then execute T,
the postcondition of S is the precondition of T.

Prove (p.16a) S ;skip=3S
Proof

Let R be an arbitrary postcondition, and prove that
wp.(S; skip).R = wp.S.R

wp.(S ; skip).R
= ((p.14))
wp.S.(wp. skip .R)

= ((p.10))
wp.S.R //

A Logical Approach to Discrete Math

(p.18) Definition, Assignment: wp.(x:=FE).R = R[x:=E]

Example

Compute the weakest precondition P for the following program.
A and B are program constants, not rigid variables.

int x,y
constint A, B

{P}x:=x+y;y=x—y{x=AANy=B}

A Logical Approach to Discrete Math

{P}x:=x+y;y:=x—y{x=AAy=B}

wp.(x:=x+y;y:=x—y).(x=AANy=B)
= ((p14)
wp.(x:=x+y) . (wp.(y:=x—y).(x =ANy = B))
= ((p.18) and t.s.)
Wp.(x ::x—l—y)- X=AANx—y= B)
= ((p.18) and t.s.)
x+y=AAx+y—y=RB
= (Math)
x+y=AANx=B
= ((3.84a) Substitution)
x=BANy=A—B /]

A Logical Approach to Discrete Math

{x=BAy=A—B}lx:=x+y;y:=x—y{x=AANy=B}
Example

A=7B=4
{x=4Nny=3}x:=x+y;yi=x—y{x=TAy=4}

A Logical Approach to Discrete Math

Two applications

Program derivation

Given an assignment statement 1n a program with an unknown
expression in the assignment, solve for the unknown expression.

Program correctness

Given a program, prove that it satisfies its specification.
In other words, prove that the program 1s correct.

A Logical Approach to Discrete Math

Program derivation example

Solve for unknown E in the program

int x
{true} x .= E {x =4}

{true} x .= E {x =4}
— ((p4)

true = wp.(x == FE).(x =4)
= (373))

wp.(x :=E).(x=4)
= ((p.18) and t.s.)

E=4

{true} x :=4{x =4}

A Logical Approach to Discrete Math

Program derivation example

From the division algorithm, where g 1s the quotient
and r 1s the remainder when you divide x by y.
Solve for unknown E in the program

ntx,y,q,r
{0<xN0<y}q,r:=E,x{0<rAg*xy+r=x}

By (p.4) we must have
0<xANO0<y=wp.(q,r:=E,x).(0<rAg*xy—+r=x)

Use (4.4) Deduction (assume the conjuncts of the antecedent)

A Logical Approach to Discrete Math

0<xNO<y=wp.(q,r:=E,x).(0<rAg*xy+r=x)

wp.(q,r :=E,x).(0<rAg*y+r=x)
= {((p.18)and t.s.)
O0<xANExy+x=x
= (Assume conjunct 0 < x)
true N\Exy+x=x
= ((3.39) and math)
Exy=0
= (Conjunct 0 < y and math)
E=0

{0<xN0<y}q,r:=0x{0<rAgxy+r=ux}

int x, y
{x=xAy=Y}
x=FE;y:=x+y
{x=xXx—-YAy=X}

Rigid variables cannot occur in E.

wp.(x:=E;y:=x4y).(x=X—YAy=X)
= ((p.14))
wp.(x:=E).(wp.(y =x+y).(x=X—YAy=X))
((p.18) and t.s.)
wp.(x:=E).x=X—YAx+y=X)
((p.18) and t.s.)
E=X-YANE+4+y=X
= (Assume conjuncts x =X and y = Y)
E=x—yANE+y=x
= ((339))
E=x—y

{x=xXAy=Ylx:=x—y;y:=x+y{x=X—YAy=X}

A Logical Approach to Discrete Math

Deriving sequential compositions
{x=xXANy=Y}y:=E;x:=F{x=YANy=X+Y}

wp.(y:=FE ; x:=F).x=YAy=X+Y)

= ((p.14) Definition, Composition)
wp.(y:=E .wp.(x:=F).(x=YAy=X+Y))

= ((p.18) and textual substitution)
wp.(y:=E).(F=YAy=X+Y)

= ((p.18) and textual substitution)
FF=YANE=X+Y

= (Assume conjuncts x =X and y =Y)
FR=yANE=x+Yy

= ((3.84a) Substitution (e = f) ANEZ = (e= f) NE%

e f>
Fl.,=yNE=x+y

A Logical Approach to Discrete Math

Deriving sequential compositions
{x=xXANy=Y}y:=E;x:=F{x=YANy=X+Y}

Fy

x—l—y:y/\E:x_I_y

F=y—x

because
Fy=Fh=x+y]=0-x)y:=x+y=xt+y—x=y
So, the program 1s

VI=X+Y,; X:=y—X

A Logical Approach to Discrete Math

Invariant

Invariant

An 1nvariant 1s a conjunct that appears in both
the precondition and the postcondition.

Example Abbreviation

nt x,y,q,r Pl: 0<rAg-y+r=x
{0<rAg-y+r=x} int x,y,q,r

q,r:=" {P1}
{0<rAg-y+r=x Ar<y} q,r:=7

invariant {P1AT <y}

A Logical Approach to Discrete Math

Example
Pl: x=(Zk|0<k<i:blk])

01 (11 [21 [3]1 [4] [5] [6] [7]

?
! i=3

x = b[0] +b[1] + b[2]

We want to increment i by 1 and to maintain the invariant.
Afterwords, we want i = 4 and x = b[0] + b[1] + b[2] + b|3]

const int »n
int i, x,b|n]
{P1}i,x:=i+1,E{P1}

A Logical Approach to Discrete Math

Pl: x=(Zk|0<k<i:b[k])
{P1}i,x:=i+1,E {P1}

wp.(i,x:=i+1,E).P1
= {((p.18) and t.s.)
E=Zk|0<k<i+1:blk])
= (Split off last term)
E=(Xk|0<k<i:bk|)+bl|i
= (Assume conjunct P1)
E =x+bli]

(P1}ix:=i+1,x+bli] {P1}

A Logical Approach to Discrete Math

Program correctness

(p.19) Proof method for assignment:
To show that x := E is an implementation of {Q}x :=?{R},
prove Q = R|x := E].

A Logical Approach to Discrete Math

Example

Prove the correctness of the following program.
int x,y

{y=1}x,y:=x+1,x+y{x>y}

Use (p.4) and deduction.

wp.(x,yi=x+1,x+y).(x > y)
((p.18) and t.s.)

x+1>x+y

= (Assume antecedent y = 1)
x+1>x+1

= (Math)

true //

A Logical Approach to Discrete Math

Example

Prove the correctness of the following program.
int x,y
{x=xXAy=Y}lx:=x+y;y=x—y;x:=x—y{x=YANy=X}

wp.(x:=x+y;yi=x—y;x:=x—y).(x=YAy=X)

= ((p14)

wp.(x:=x+y;y:=x—y).(wp.(x :=x—y).(x =YAy=X))
((p.18) and t.s.)

wp.(x:=x+y;y:=x—y).(x—y=YAy=X)

= ((p14)
wp.(x:=x+y).(wp.(y:=x—y).(x—y=YAy=X))

A Logical Approach to Discrete Math

wp.(x:=x+y).(wp.(y:=x—y).(x—y=YAy=X))
= {((p.18)and t.s.)
wp.(xi=x+y).(x—(x—y) =Y Ax—y=X)
= (Math)
wp.(x:=x+y).(y = Y Ax—y = X)
((p.18) and t.s.)
y=YAx+y—y=X
= (Math)
y=YAx=X
= (Assume conjuncts x = X and y = Y)

true //

A Logical Approach to Discrete Math

(p.19) Proof method for assignment: (p.19) 1s (10.2)
To show that := F is an implementation of {Q}x :=7{R},
prove Q = R|x := E].
(p-20) (x :=x) = skip
p2l) IFG: (p.21) is (10.6)
if B1 — S1
| B2 — S2
| B3 — S3
fi
(p.22) Definition, /F'G: wp.IFG.R = (B1V B2V B3) A
Bl = wp.S1.R N B2 = wp.S2.R N B3 = wp.S3.R
(p.23) Empty guard: if fi = abort

A Logical Approach to Discrete Math

The alternative statement

(p.21) IFG:
if B1 — S1
| B2 — S2
| B3 — 53
fi

There are two key points with the alternative statement.

e Execution aborts if no guard is true.

e If more than one guard is true, only one of them is chosen (arbitrar-
ily) and its corresponding command is executed.

A Logical Approach to Discrete Math

Example

ifa<l18—=1r:=0

| 18<a<?2]l —t:=5
21 <a<65—1t:=10
fi

Initial value of a = 15 = final value of t =0
Initial value of a =20 = final value of r =5
Initial value of a = 30 = final value of t = 10
Initial value of a =70 = abort

A Logical Approach to Discrete Math

Example

ifa<I8—1:=0
J a<2l —¢t:=5
fi

Initial value of a =15 = final valueoft =0or¢t=>5
because both guards are true.

Initial value of a =20 = final value of t =5

Initial value of a =30 = abort

A Logical Approach to Discrete Math

Example

ifa<18—t:=0

| 18<a<?2]l —t:=5
| 21 <a— skip

fi

Cannot abort

(p-24)

(p-25)
(p.26)
(p.27)

A Logical Approach to Discrete Math

Proof method for [F'G: (p.24) is (10.7)
To prove {Q} I FG{ R}, it suffices to prove

a) Q= B1V B2V B3,

) {Q A B1Y S1{R},

(c) {Q AN B2} S2{R}, and

(d) {Q A B3} S3{R}.

—(B1V B2V B3) = IFG = abort

One-guard rule: {Q}if B — Sfi{R} = {Q} S {R}

Distributivity of program over alternation:
if Bl - S1;T(|B2—52,Tfi = ifBl—-S1[|B2—S52f;T

A Logical Approach to Discrete Math

Example

Verity, the correctness of the following program.

int x, v,z

{x>z}

if x>y—x,y:=yx
ly>z—=y,2:=2,y
fi

{x<yvy<z}

By (p.24), must prove
Qx>z=x>yVy>z

) {x>zAx>ylx,y:=yx{x<yVvy<z}
© {x>zny>ztyz:=zy{x<yVy<z}

A Logical Approach to Discrete Math

Proof of (a)

X>z2 = x>y Vy>z
= (Contrapositive)
—(x>yVy>z)=-(x>2)
(De Morgan and math)
XSYyANy<z=x<2
= (Math, transitivity of <)
true /I

A Logical Approach to Discrete Math

Proof of (b)
{x>zAx>ytxy=px{x<yvy<z}

wp.(x,y:=y,x).(x <yVy <z
= ((p.18)and t.s.)

y<xVx<zg
= (Assume conjunct x > z and math)
y<xV false

((3.30) Identity of V)
y<x
= (Math)

y<xVy=x

— (Assume conjunct x > y)
truevVy—=x

= {(3.29) Zero of V)
true //

A Logical Approach to Discrete Math

Proof of (¢)
{x>zny>z}yzi=zy{x<yVvy<z}

wp.(v,2:=2,).(x <yVy<z)
((p.18) and t.s.)
x<zVz<y
= (Assume conjunct x > z and math)
falseNVz <y
((3.30) Identity of V)
ZXy
= (Math)
Zz<yVz=y
= (Assume conjunct y > z)

trueNz=y
= ((3.29) Zero of V)
true //

A Logical Approach to Discrete Math

The alternative statement in the Promela language

active proctype P() {
byte a =5, b = 5;
byte max, branch;
if
s a > b -> max
:: a <= b -> max

a; branch
b; branch

o
N

A Logical Approach to Discrete Math

(p-28)
(p-29)

DO: doB — Sod
Fundamental Invariance Theorem. (p.29) 1s (12.43)
Suppose
e {P A B}S{P} holds—i.e. execution of .S begun in a state
in which P and B are true terminates with P true—and
e {P} do B — Sod {true}—i.e. execution of the loop begun
in a state in which P is true terminates.

Then {P} do B — S od {P A =B} holds.

A Logical Approach to Discrete Math

Example

nt x,i

x,i:=0,0;

do i<4 — i,x:=i+1,x+i od

Guardi < 4

x=(Zk|0<k<itk

?

true

true

true

true

false
Terminate

0

0

1= (Sk|0<k<2:
3=(Zk|0<k<3:

6=(Zk|0<k<4:

(Sk10<k<O:

(Sk10<k<1:

What does the loop do?
ItsetsxtoO+142+3
Thatis,x = (Zk10<k <4 :k)

Question

What is the invariant of statement
Lx:=i+1,x+1

That 1s, what 1s P1 in
{P1}ix:=i+1,x+i{P1}

Answer

x=(Zk|0<k<i:k)
Check by verifying P1 at each step.

A Logical Approach to Discrete Math

Check by correctness proof of:
Pl: x=(Zk|0<k<i:k)
{P1}i,x:=i+1,x+i{Pl}

wp.(i,x:=i+1,x+1).P1
((p.18) and t.s.)
xdi=(Tk10<k<itl:k)
= (Split off last term)
x+i=2Zk10<k<i:k)+i
= (Assume antecedent)
X+i=x-+1
(Reflexivity of =)

true //

A Logical Approach to Discrete Math

(p.30) Proof method for DO: (p.30) is (12.45)
To prove {Q} initialization; {P} do B — S od { R},
it suffices to prove
(a) P is true before execution of the loop: {Q} initialization; {P},
(b) P isaloop invariant: {P A B} S {P},
(¢) Execution of the loop terminates, and
(d) R holds upon termination: P A =B = R.

(p.31) False guard: do false — S od = skip

A Logical Approach to Discrete Math

The multiplication algorithm

(12.42) {Q: 0< n}
t,pi1=0,0;
{P: 0<i<n A p=i-x}
doi#n—i,p:=1+1,p+zod
{R: p=n-z}

Multiplication algorithm proof checklist

(a) Prove 0 <n=wp.(i,p:=0,0).P

(b) Prove PA(i #n) = wp.(i,p:=i+1,p+x).P
(¢) Prove the loop terminates.

(d) Prove PA—(i#n)=p=n-x

A Logical Approach to Discrete Math

Multiplication algorithm

P: 0<i<nAp=i-x
(a) Prove 0 <n=wp.(i,p:=0,0).P

wp.(i,p:=0,0).P
= ((p.18) and t.s.)
0<0<nNAN0=0-x
(Math)
0 <0< nAtrue
((3.39) Identity of A)
0<0<n
= (Conjunctive meaning of <)
0<0N0<n
= (Assume antecedent 0 < n, (3.39))
true //

A Logical Approach to Discrete Math

Multiplication algorithm

P: 0<i<nAp=i-x
(b) Prove PA (i #n) = wp.(i,p:=i+1,p+x).P

wp.(i,p:=i+1,p+x).P
((p.18) and t.s.)
0<i+1<nAp+x=(i+1)x
= (Conjunctive meaning, math)
0<i+1ANi+1<nAp=i-x
= (Assume conjunct p = i-x, math)
—1<ini+1<n
= (Assume conjunct 0 < i)
i+1<n
= (Assume conjuncts i < n and i # n)

true //

A Logical Approach to Discrete Math

Multiplication algorithm

(¢) Prove the loop terminates.

By QO : 0 <n, ncannot be negative.
By the initialization i, p := 0,0, the initial value of i
cannot be greater than n.
Each time through the loop, i increases by 1, and n does not change.
Therefore, i must eventually equal n, i # n will be false,
and the loop will terminate.

A Logical Approach to Discrete Math

Multiplication algorithm

P: 0<i<nAp=i-x
(d) Prove PA=(i#n)=p=n-x

p=n-x
= (Assume conjunct p =i-x)
" X=nNn-X
= (Assume conjunct (i # n) and double negation)
n-x=n-x
(Reflexivity of =)

true //

A Logical Approach to Discrete Math

The division algorithm

(12.46) {Q: b>0 A c > 0}
g, F == 0,k
{invariant P : b = g.c+r N0OLZr}
dor>c—q,r:=qg+1,r—cod
{R: b=qc+r ANO<r<c}
Division algorithm proof checklist
(a) Prove b > 0Ac > 0= wp.(q,r :==0,b).P
(b) Prove PA(r>c¢) = wp.(q,r:==q+1,r—c).P
(¢) Prove the loop terminates.
(d) Prove PA=(r>c)=b=q-c+rN0<r<c

A Logical Approach to Discrete Math

Division algorithm

P: b=qg-c+rNO<Zr
(a) Prove b > 0Ac> 0= wp.(q,r :=0,b).P

wp.(q,r:=0,b).P
((p.18) and t.s.)
b=0-c+bN0<D
= (Math, (3.39) Identity of A)
0<b
= (Assume conjunct 0 < b)

true //

A Logical Approach to Discrete Math

Division algorithm

P: b=qg-c+rNO<Zr
(b) Prove PA (r > c¢) = wp.(q,r:=q+1,r—c).P

wp.(q,r:==q+1,r—c).P
((p.18) and t.s.)
b=(q+1)-c+r—cN0<r—c
= (Math)
b=qg-c+rANc<r
= (Assume conjuncts b =¢g-c+rand r > c)

true //

A Logical Approach to Discrete Math

Division algorithm

(¢) Prove the loop terminates.

ByQ: b>0Ac >0, cmustbe positive.

Regardless of the initial value of r, each time through the loop
it decreases by ¢, and ¢ does not change.

Therefore, r must eventually equal be less than ¢, r > ¢ will be false,
and the loop will terminate.

A Logical Approach to Discrete Math

Division algorithm

P: b=qg-c+rNO<r
(d) Prove PA=(r>c)=b=q-c+rN0<r<c

b=q-c+rN0<r<c
= (Assume conjunct b =¢g-c—+r)
0<r<c
= (Conjunctive meaning)
O0<rAr<c
= (Assume conjunct 0 < r)
r<c
= (Assume conjunct —(r > ¢) and math)

true //

