## A Logical Approach to Discrete Math

English to math (All types are integers.)
$x$ is positive.
$x$ is negative.
$x$ is non-negative.
$x$ is even.
$x$ is odd.
$x$ divides $y . \quad x \mid y$
$x$ is a power of 2 .
$x>0$
$x<0$
$\neg(x<0) \quad$ or $\quad x \geq 0$
$(\exists i \mid: x=2 \cdot i)$
$(\exists i \mid: x=2 \cdot i+1)$
$(\exists i \mid: x \cdot i=y)$
$\left(\exists i \mid: x=2^{i}\right)$

## A Logical Approach to Discrete Math

The element 13 is in $b[j . . k]$.


$$
x \in b[0 . . n-1]
$$

$$
(\exists i \mid 0 \leq i<n: x=b[i])
$$

## A Logical Approach to Discrete Math

## Hoare Triple

Recall from Sec. 1.6 that a state is a set of identifier-value parrs. Further, the Hoare triple $\{Q\} S\{R\}$, where $S$ is a program statement, $Q$ is the precondition, and $R$ is the postcondition, has the interpretation

Execution of $S$ begun in any state in which $Q$ is true is guaranteed to terminate, and $R$ is true in the final state.

# A Logical Approach to Discrete Math 

## Formal Specification

To specify a program is to say what it should do, not how it should do it.

## A Logical Approach to Discrete Math

## Formal Specification

A specification of a program should give:

- a precondition $Q$ (say): a boolean expression that describes the initial states for which execution of the program is being defined,
- a list $x$ (say) of variables that may be assigned to, and
- a postcondition $R$ (say): a boolean expression that characterizes the final states, after execution of the program.

$$
\{Q\} x:=?\{R\}
$$

## A Logical Approach to Discrete Math

Specification examples (All types are integers.)
Specify "Set $x$ to $y$ 's value."
$\{$ true $\} \quad x:=? \quad\{x=y\}$
Specify "Set $y$ to $x$ 's value."
$\{$ true $\} \quad y:=? \quad\{x=y\}$
Specify "Set $x$ and $y$ to have the same value."
$\{$ true $\} \quad x, y:=? \quad\{x=y\}$

## A Logical Approach to Discrete Math

Specify "Swap the values of $x$ and $y$."
This specification requires a rigid variable.
A rigid variable defines the initial value of a variable in the precondition, so it can be used in the postcondition.
$\{x=\mathrm{X} \wedge y=\mathrm{Y}\} \quad x, y:=? \quad\{x=\mathrm{Y} \wedge y=\mathrm{x}\}$

## A Logical Approach to Discrete Math

Specify "Set $z$ to its own absolute value."
$\{z=\mathrm{z}\} \quad z:=? \quad\{z=|\mathrm{z}|\}$
Specify "Set $z$ to the maximum of integers $x$ and $y$." $\{$ true $\} \quad z:=? \quad\{(x \geq y \Rightarrow z=x) \wedge(y \geq x \Rightarrow z=y)\}$

## A Logical Approach to Discrete Math

Arrays


Abbreviation

$$
x \in b[0 . . n-1] \quad \text { means } \quad(\exists i \mid 0 \leq i<n: x=b[i])
$$

## A Logical Approach to Discrete Math

Specify "Set $i$ to the index of $x$ assuming $x$ is in $b$."
$\{0<n \wedge x \in b[0 . . n-1]\} \quad i:=? \quad\{0 \leq i<n \wedge x=b[i]\}$
Specify "Set $i$ to the index of $x$ if it is in $b$ and to $n$ if it is not."
$\{0 \leq n\} \quad i:=? \quad\{(0 \leq i<n \wedge x=b[i]) \vee(i=n \wedge x \notin b[0 . . n-1])\}$
Specify "If $x$ is in $b$ set boolean $c$ to true and $i$ to the index of $x$. Otherwise set $c$ to false."
$\{0 \leq n\} \quad i, c:=? \quad\{(c \equiv x \in b[0 . . n-1]) \wedge(c \Rightarrow x=b[i])\}$

## A Logical Approach to Discrete Math

## Appropriate preconditions

Sum
It makes sense to have the sum of an empty range.
For the sum of $b[j . . k-1]$, the precondition should include $j \leq k$.
Max
There is no maximum in an empty range.
For the maximum of $b[j . . k-1]$, the precondition should include $j<k$.

## A Logical Approach to Discrete Math

## Counting



How many zeros are in $b[0 . .7]$ ?

$$
(\Sigma i \mid 0 \leq i<n \wedge b[i]=0: 1)=3
$$

## A Logical Approach to Discrete Math

## Weakest precondition

Suppose

$$
\{P\} x:=E\{R\}
$$

and

$$
\{Q\} x:=E\{R\}
$$

are two valid Hoare triples with the same program statements and the same postconditions.
$P$ is called the weakest precondition if

$$
Q \Rightarrow P
$$

for all $Q$ that make the Hoare triple valid.

## A Logical Approach to Discrete Math

## Weakest precondition

Example

$$
\begin{array}{ll}
\{x=4\} x:=x+1\{x<7\} & \text { valid } \\
\{x<6\} x:=x+1\{x<7\} & \text { valid }
\end{array}
$$

Note that

$$
x=4 \Rightarrow x<6
$$

Any precondition that makes this $S\{R\}$ valid implies $x<6$.

$$
\frac{x=4}{\text { strong }} \Rightarrow \frac{x<6}{\text { weak }}
$$

## A Logical Approach to Discrete Math

Notation for weakest precondition

$$
w p . S . p o s t \equiv P
$$

means that

$$
\{P\} S\{\text { post }\}
$$

is valid, and for every $Q$ satisfying

$$
\{Q\} S\{p o s t\}
$$

$Q$ must be stronger than $P$. That is,

$$
Q \Rightarrow P
$$

Example

$$
w p \cdot(x:=x+1) \cdot(x<7) \equiv x<6
$$

## A Logical Approach to Discrete Math

## A Theory of Programs

(p.1) Axiom, Excluded miracle: wp.S.false $\equiv$ false
(p.2) Axiom, Conjunctivity: wp.S. $(X \wedge Y) \equiv$ wp.S. $X \wedge$ wp.S.Y
(p.3) Monotonicity: $\quad(X \Rightarrow Y) \Rightarrow(w p . S . X \Rightarrow w p . S . Y)$
(p.4) Definition, Hoare triple: $\{Q\} S\{R\} \equiv Q \Rightarrow w p . S . R$
(p.4.1) $\quad\{w p . S . R\} S\{R\}$
(p.5) Postcondition rule: $\quad\{Q\} S\{A\} \wedge(A \Rightarrow R) \Rightarrow\{Q\} S\{R\}$
(p.6) Definition, Program equivalence: $S=T \equiv$ (For all $R$, wp.S.R $\equiv$ wp.T.R)
(p.7) $\quad(Q \Rightarrow A) \wedge\{A\} S\{R\} \Rightarrow\{Q\} S\{R\}$
(p.8) $\quad\{Q 0\} S\{R 0\} \wedge\{Q 1\} S\{R 1\} \Rightarrow\{Q 0 \wedge Q 1\} S\{R 0 \wedge R 1\}$
(p.9) $\{Q 0\} S\{R 0\} \wedge\{Q 1\} S\{R 1\} \Rightarrow\{Q 0 \vee Q 1\} S\{R 0 \vee R 1\}$

## A Logical Approach to Discrete Math

Prove (p.3) Monotonicity: $\quad(X \Rightarrow Y) \Rightarrow(w p . S . X \Rightarrow$ wp.S.Y $)$
Proof

$$
\begin{aligned}
& w p . S . X \Rightarrow w p \cdot S . Y \\
= & \langle(3.60)\rangle \\
& w p . S . X \wedge w p . S . Y \equiv w p . S . X \\
= & \langle(p .2)\rangle \\
& w p \cdot S .(X \wedge Y) \equiv w p . S . X \\
\Leftarrow & \langle(3.83) \text { Leibniz with } E, e, f:=w p \cdot S . z, X \wedge Y, X \\
& X \wedge Y=X \Rightarrow(w p . S . z)[z:=X]=(w p . S . z)[z:=X \wedge Y] \\
& X \wedge Y=X \Rightarrow w p \cdot S . X=w p \cdot S .(X \wedge Y)\rangle \\
& X \wedge Y=X \\
= & \langle(3.60)\rangle \\
& X \Rightarrow Y \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

$$
\begin{aligned}
& \text { Prove (p.4.1) } \quad\{w p . S . R\} S\{R\} \\
& \text { Proof } \\
& \quad\{w p . S . R\} S\{R\} \\
& =\quad\langle(\mathrm{p} .4)\rangle \\
& \quad w p . S . R \Rightarrow w p . S . R \\
& \text { which is (3.71) Reflexivity if } \Rightarrow \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

(p.6) Definition, Program equivalence: $\quad S=T \equiv$ (For all $R, w p . S . R \equiv w p . T . R)$

In (p.6), you cannot use the $\forall$ symbol because $R$ is an expression, not a dummy variable.
$S$ and $T$ are programs statements
Sets
See (11.4) and (11.11b).
To prove set $S$ equals set $T$, let $v$ be an arbitrary element, and prove

$$
v \in S \equiv v \in T
$$

Programs
To prove program $S$ equals program $T$, let $R$ be an arbitrary postcondition, and prove

$$
w p . S . R \equiv w p . T . R
$$

## A Logical Approach to Discrete Math

$\begin{array}{ll}\text { (p.10) } & \text { Definition, skip: } \quad \text { wp.skip } . R \equiv R \\ \text { (p.11) } & \{Q\} \text { skip }\{R\} \equiv Q \Rightarrow R\end{array}$

The skip statement does nothing. If $R$ is true and you execute skip, $R$ is guaranteed to be true.

## A Logical Approach to Discrete Math

(p.12) Definition, abort: wp.abort. $R \equiv$ false
(p.13) $\{Q\}$ abort $\{R\} \equiv Q \equiv$ false

The abort statement causes the program to fail. An abort statement can never establish its postcondition because its precondition can never be true. A program that executes abort is erroneous.

## A Logical Approach to Discrete Math

(p.14) Definition, Composition: wp.(S;T).R $\equiv$ wp.S.(wp.T.R)
(p.15) $\{Q\} S\{H\} \wedge\{H\} T\{R\} \Rightarrow\{Q\} S ; T\{R\}$
(p.14) says that if you execute $S$ and then execute $T$, the postcondition of $S$ is the precondition of $T$.

$$
\begin{aligned}
& \text { Prove (p.16a) } \quad S ; \text { skip }=S \\
& \text { Proof } \\
& \text { Let } R \text { be an arbitrary postcon } \\
& w p .(S ; \text { skip }) \cdot R \equiv w p . S . R \\
& \quad w p .(S ; \text { skip }) \cdot R \\
& =\quad\langle(\mathrm{p} .14)\rangle \\
& \quad w p . S .(w p . \text { skip } . R) \\
& =\quad\langle(\mathrm{p} .10)\rangle \\
& \quad w p . S . R \quad / /
\end{aligned}
$$

$$
\text { Let } R \text { be an arbitrary postcondition, and prove that }
$$

## A Logical Approach to Discrete Math

(p.18) Definition, Assignment: wp. $x:=E) \cdot R \equiv R[x:=E]$

Example
Compute the weakest precondition $P$ for the following program. $A$ and $B$ are program constants, not rigid variables. int $x, y$
const int $A, B$
$\{P\} x:=x+y ; y:=x-y\{x=A \wedge y=B\}$

## A Logical Approach to Discrete Math

$$
\begin{aligned}
\{P\} x:= & x+y ; y:=x-y\{x=A \wedge y=B\} \\
& w p \cdot(x:=x+y ; y:=x-y) \cdot(x=A \wedge y=B) \\
= & \langle(\mathrm{p} \cdot 14)\rangle \\
& w p \cdot(x:=x+y) \cdot(w p \cdot(y:=x-y) \cdot(x=A \wedge y=B)) \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& w p \cdot(x:=x+y) \cdot(x=A \wedge x-y=B) \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& x+y=A \wedge x+y-y=B \\
= & \langle\text { Math }\rangle \\
& x+y=A \wedge x=B \\
= & \langle(3.84 \mathrm{a}) \text { Substitution }\rangle \\
& x=B \wedge y=A-B \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

$$
\{x=B \wedge y=A-B\} x:=x+y ; y:=x-y\{x=A \wedge y=B\}
$$

Example

$$
A=7, B=4
$$

$$
\{x=4 \wedge y=3\} x:=x+y ; y:=x-y\{x=7 \wedge y=4\}
$$

## A Logical Approach to Discrete Math

## Two applications

Program derivation
Given an assignment statement in a program with an unknown expression in the assignment, solve for the unknown expression.

Program correctness
Given a program, prove that it satisfies its specification.
In other words, prove that the program is correct.

## A Logical Approach to Discrete Math

Program derivation example
Solve for unknown $E$ in the program int $x$
$\{$ true $\} x:=E\{x=4\}$

$$
\begin{aligned}
& \{\text { true }\} x:=E\{x=4\} \\
= & \langle(\mathrm{p} .4)\rangle \\
& \text { true } \Rightarrow w p .(x:=E) \cdot(x=4) \\
= & \langle(3.73)\rangle \\
& w p .(x:=E) .(x=4) \\
= & \langle(\text { p.18 ) and t.s. }\rangle \\
& E=4
\end{aligned}
$$

$\{$ true $\} x:=4\{x=4\}$

## A Logical Approach to Discrete Math

Program derivation example
From the division algorithm, where $q$ is the quotient and $r$ is the remainder when you divide $x$ by $y$.
Solve for unknown $E$ in the program
int $x, y, q, r$
$\{0 \leq x \wedge 0<y\} q, r:=E, x\{0 \leq r \wedge q * y+r=x\}$
By (p.4) we must have
$0 \leq x \wedge 0<y \Rightarrow w p \cdot(q, r:=E, x) .(0 \leq r \wedge q * y+r=x)$
Use (4.4) Deduction (assume the conjuncts of the antecedent)

## A Logical Approach to Discrete Math

$$
\begin{aligned}
0 \leq & x \wedge 0<y \Rightarrow w p \cdot(q, r:=E, x) \cdot(0 \leq r \wedge q * y+r=x) \\
& w p \cdot(q, r:=E, x) \cdot(0 \leq r \wedge q * y+r=x) \\
= & \langle(\text { p.18) and t.s. }) \\
& 0 \leq x \wedge E * y+x=x \\
= & \langle\text { Assume conjunct } 0 \leq x\rangle \\
& \quad \text { true } \wedge E * y+x=x \\
= & \langle(3.39) \text { and math }\rangle \\
& E * y=0 \\
= & \langle\text { Conjunct } 0<y \text { and math }\rangle \\
& E=0 \\
\{0 \leq & x \wedge 0<y\} q, r:=0, x\{0 \leq r \wedge q * y+r=x\}
\end{aligned}
$$

int $x, y$
$\{x=\mathrm{X} \wedge y=\mathrm{Y}\}$
$x:=E ; y:=x+y$
$\{x=\mathrm{X}-\mathrm{Y} \wedge y=\mathrm{X}\}$
Rigid variables cannot occur in $E$.

$$
\begin{aligned}
& w p \cdot(x:=E ; y:=x+y) \cdot(x=\mathrm{x}-\mathrm{Y} \wedge y=\mathrm{x}) \\
= & \langle(\mathrm{p} \cdot 14)\rangle \\
& w p \cdot(x:=E) \cdot(w p \cdot(y:=x+y) \cdot(x=\mathrm{x}-\mathrm{Y} \wedge y=\mathrm{x})) \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& w p \cdot(x:=E) \cdot(x=\mathrm{x}-\mathrm{Y} \wedge x+y=\mathrm{x}) \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& E=\mathrm{x}-\mathrm{Y} \wedge E+y=\mathrm{x} \\
= & \langle\text { Assume conjuncts } x=\mathrm{x} \text { and } y=\mathrm{Y}\rangle \\
& E=x-y \wedge E+y=x \\
= & \langle(3.38)\rangle \\
& E=x-y \\
\{x= & \mathrm{x} \wedge y=\mathrm{Y}\} x:=x-y ; y:=x+y\{x=\mathrm{x}-\mathrm{Y} \wedge y=\mathrm{x}\}
\end{aligned}
$$

## A Logical Approach to Discrete Math

## Deriving sequential compositions

$$
\begin{aligned}
\{x= & \mathrm{X} \wedge y=\mathrm{Y}\} y:=E ; x:=F\{x=\mathrm{Y} \wedge y=\mathrm{X}+\mathrm{Y}\} \\
& w p \cdot(y:=E ; x:=F) \cdot(x=\mathrm{Y} \wedge y=\mathrm{x}+\mathrm{Y}) \\
= & \langle(\mathrm{p} \cdot 14) \text { Definition, Composition }\rangle \\
& w p \cdot(y:=E \cdot w p \cdot(x:=F) \cdot(x=\mathrm{Y} \wedge y=\mathrm{x}+\mathrm{Y})) \\
= & \langle(\mathrm{p} \cdot 18) \text { and textual substitution }\rangle \\
& w p \cdot(y:=E) \cdot(F=\mathrm{Y} \wedge y=\mathrm{X}+\mathrm{Y}) \\
= & \langle(\mathrm{p} \cdot 18) \text { and textual substitution }\rangle \\
& F_{E}^{y}=\mathrm{Y} \wedge E=\mathrm{x}+\mathrm{Y} \\
= & \langle\text { Assume conjuncts } x=\mathrm{X} \text { and } y=\mathrm{Y}\rangle \\
& F_{E}^{y}=y \wedge E=x+y \\
= & \left\langle(3.84 \mathrm{a}) \text { Substitution }(e=f) \wedge E_{e}^{z} \equiv(e=f) \wedge E_{f}^{z}\right\rangle \\
& F_{x+y}^{y}=y \wedge E=x+y
\end{aligned}
$$

## A Logical Approach to Discrete Math

## Deriving sequential compositions

$$
\begin{aligned}
& \{x=\mathrm{X} \wedge y=\mathrm{Y}\} y:=E ; x:=F\{x=\mathrm{Y} \wedge y=\mathrm{X}+\mathrm{Y}\} \\
& F=y-x
\end{aligned}
$$

because
$F_{x+y}^{y}=F[y:=x+y]=(y-x)[y:=x+y]=x+y-x=y$
So, the program is
$y:=x+y ; x:=y-x$

## A Logical Approach to Discrete Math

## Invariant

## Invariant

An invariant is a conjunct that appears in both the precondition and the postcondition.

```
Example
int \(x, y, q, r\)
\(\{0 \leq r \wedge q \cdot y+r=x\}\)
\(q, r:=\) ?
\(\{0 \leq r \wedge q \cdot y+r=x \wedge r<y\}\)
    invariant
```

Abbreviation
P1: $0 \leq r \wedge q \cdot y+r=x$
int $x, y, q, r$
$\{P 1\}$
$q, r:=$ ?
$\{P 1 \wedge r<y\}$

## A Logical Approach to Discrete Math

Example

$$
\overline{P 1: \quad x}=(\Sigma k \mid 0 \leq k<i: b[k])
$$



We want to increment $i$ by 1 and to maintain the invariant.
Afterwords, we want $i=4$ and $x=b[0]+b[1]+b[2]+b[3]$
const int $n$
int $i, x, b[n]$
$\{P 1\} i, x:=i+1, E\{P 1\}$

## A Logical Approach to Discrete Math

$$
\begin{aligned}
& P 1: x=(\Sigma k \mid 0 \leq k<i: b[k]) \\
&\{P 1\} i, x:=i+1, E\{P 1\} \\
& w p .(i, x:=i+1, E) \cdot P 1 \\
&=\langle(\text { p. } 18) \text { and t.s. }\rangle \\
& E=(\Sigma k \mid 0 \leq k<i+1: b[k]) \\
&=\langle\text { Split off last term }\rangle \\
& E=(\Sigma k \mid 0 \leq k<i: b[k])+b[i] \\
&=\langle\text { Assume conjunct } P 1\rangle \\
& E=x+b[i] \\
&\{P 1\} i, x:=i+1, x+b[i]\{P 1\}
\end{aligned}
$$

## A Logical Approach to Discrete Math

## Program correctness

(p.19) Proof method for assignment:

To show that $x:=E$ is an implementation of $\{Q\} x:=?\{R\}$, prove $Q \Rightarrow R[x:=E]$.

## A Logical Approach to Discrete Math

Example
Prove the correctness of the following program. int $x, y$ $\{y=1\} x, y:=x+1, x+y\{x \geq y\}$
Use (p.4) and deduction.

$$
\begin{aligned}
& w p \cdot(x, y:=x+1, x+y) \cdot(x \geq y) \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& x+1 \geq x+y \\
= & \langle\text { Assume antecedent } y=1\rangle \\
& x+1 \geq x+1 \\
= & \langle\text { Math }\rangle \\
& \text { true // }
\end{aligned}
$$

## A Logical Approach to Discrete Math

## Example

Prove the correctness of the following program. int $x, y$ $\{x=\mathrm{X} \wedge y=\mathrm{Y}\} x:=x+y ; y:=x-y ; x:=x-y\{x=\mathrm{Y} \wedge y=\mathrm{X}\}$

$$
\begin{aligned}
& w p \cdot(x:=x+y ; y:=x-y ; x:=x-y) \cdot(x=\mathrm{Y} \wedge y=\mathrm{x}) \\
= & \langle(\mathrm{p} \cdot 14)\rangle \\
& w p \cdot(x:=x+y ; y:=x-y) \cdot(w p \cdot(x:=x-y) \cdot(x=\mathrm{Y} \wedge y=\mathrm{x})) \\
= & \langle(\mathrm{p} \cdot 18) \text { and t.s. }\rangle \\
& w p \cdot(x:=x+y ; y:=x-y) \cdot(x-y=\mathrm{Y} \wedge y=\mathrm{x}) \\
= & \langle(\mathrm{p} \cdot 14)\rangle \\
& w p \cdot(x:=x+y) \cdot(w p \cdot(y:=x-y) \cdot(x-y=\mathrm{Y} \wedge y=\mathrm{x}))
\end{aligned}
$$

## A Logical Approach to Discrete Math

$$
\begin{aligned}
& w p \cdot(x:=x+y) \cdot(w p \cdot(y:=x-y) \cdot(x-y=\mathrm{Y} \wedge y=\mathrm{x})) \\
= & \langle(\mathrm{p} \cdot 18) \text { and t.s. }\rangle \\
& w p \cdot(x:=x+y) \cdot(x-(x-y)=\mathrm{Y} \wedge x-y=\mathrm{x}) \\
= & \langle\text { Math }\rangle \\
& w p \cdot(x:=x+y) \cdot(y=\mathrm{Y} \wedge x-y=\mathrm{x}) \\
= & \langle(\mathrm{p} \cdot 18) \text { and t.s. }\rangle \\
& y=\mathrm{Y} \wedge x+y-y=\mathrm{x} \\
= & \langle\text { Math }\rangle \\
& y=\mathrm{Y} \wedge x=\mathrm{X} \\
= & \langle\text { Assume conjuncts } x=\mathrm{x} \text { and } y=\mathrm{Y}\rangle \\
& \text { true } \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

(p.19) Proof method for assignment:

To show that $x:=E$ is an implementation of $\{Q\} x:=?\{R\}$, prove $Q \Rightarrow R[x:=E]$.
(p.20) $\quad(x:=x)=$ skip
(p.21) $\quad I F G$ :
(p.21) is (10.6)
if $B 1 \rightarrow S 1$
[] $B 2 \rightarrow S 2$
[] $B 3 \rightarrow S 3$
fi
(p.22) Definition, $I F G: \quad$ wp.IFG.R $\equiv(B 1 \vee B 2 \vee B 3) \wedge$ $B 1 \Rightarrow w p . S 1 . R \wedge B 2 \Rightarrow w p . S 2 . R \wedge B 3 \Rightarrow w p . S 3 . R$
(p.23) Empty guard: if $\mathbf{f i}=$ abort

## A Logical Approach to Discrete Math

## The alternative statement

$$
\begin{array}{ll}
\text { (p.21) } & I F G: \\
& \text { if } B 1 \rightarrow S 1 \\
& \| B 2 \rightarrow S 2 \\
& \| B 3 \rightarrow S 3 \\
& \text { fi }
\end{array}
$$

There are two key points with the alternative statement.

- Execution aborts if no guard is true.
- If more than one guard is true, only one of them is chosen (arbitrarily) and its corresponding command is executed.


## A Logical Approach to Discrete Math

Example

$$
\begin{aligned}
& \text { if } a<18 \rightarrow t:=0 \\
& \text { [] } 18 \leq a<21 \rightarrow t:=5 \\
& \text { [] } 21 \leq a<65 \rightarrow t:=10
\end{aligned}
$$

$$
\mathrm{fi}
$$

Initial value of $a=15 \Rightarrow$ final value of $t=0$
Initial value of $a=20 \Rightarrow$ final value of $t=5$
Initial value of $a=30 \Rightarrow$ final value of $t=10$
Initial value of $a=70 \Rightarrow$ abort

## A Logical Approach to Discrete Math

Example

$$
\begin{aligned}
& \text { if } a<18 \rightarrow t:=0 \\
& \text { [] } a<21 \rightarrow t:=5
\end{aligned}
$$

$$
\mathrm{fi}
$$

Initial value of $a=15 \Rightarrow$ final value of $t=0$ or $t=5$
because both guards are true.
Initial value of $a=20 \Rightarrow$ final value of $t=5$
Initial value of $a=30 \Rightarrow$ abort

## A Logical Approach to Discrete Math

Example

$$
\begin{aligned}
& \text { if } a<18 \rightarrow t:=0 \\
& \text { ] } 18 \leq a<21 \rightarrow t:=5 \\
& \text { [ } 21 \leq a \rightarrow \text { skip } \\
& \text { fi }
\end{aligned}
$$

Cannot abort

## A Logical Approach to Discrete Math

(p.24) Proof method for $I F G$ :

To prove $\{Q\} I F G\{R\}$, it suffices to prove
(a) $Q \Rightarrow B 1 \vee B 2 \vee B 3$,
(b) $\{Q \wedge B 1\} S 1\{R\}$,
(c) $\{Q \wedge B 2\} S 2\{R\}$, and
(d) $\{Q \wedge B 3\} S 3\{R\}$.
(p.25) $\quad \neg(B 1 \vee B 2 \vee B 3) \Rightarrow I F G=$ abort
(p.26) One-guard rule: $\{Q\}$ if $B \rightarrow S \mathbf{f i}\{R\} \Rightarrow\{Q\} S\{R\}$
(p.27) Distributivity of program over alternation:
if $B 1 \rightarrow S 1 ; T] B 2 \rightarrow S 2 ; T \mathbf{f i}=\mathbf{i f} B 1 \rightarrow S 1[B 2 \rightarrow S 2 \mathbf{f i} ; T$

## A Logical Approach to Discrete Math

Example
Verify, the correctness of the following program.

$$
\begin{aligned}
& \text { int } x, y, z \\
& \{x>z\} \\
& \text { if } x>y \rightarrow x, y:=y, x \\
& \square y>z \rightarrow y, z:=z, y
\end{aligned}
$$

fi

$$
\{x \leq y \vee y \leq z\}
$$

By (p.24), must prove
(a) $x>z \Rightarrow x>y \vee y>z$
(b) $\{x>z \wedge x>y\} x, y:=y, x\{x \leq y \vee y \leq z\}$
(c) $\{x>z \wedge y>z\} y, z:=z, y\{x \leq y \vee y \leq z\}$

## A Logical Approach to Discrete Math

## Proof of (a)

$$
\begin{aligned}
& x>z \Rightarrow x>y \vee y>z \\
= & \langle\text { Contrapositive }\rangle \\
& \neg(x>y \vee y>z) \Rightarrow \neg(x>z) \\
= & \langle\text { De Morgan and math }\rangle \\
& x \leq y \wedge y \leq z \Rightarrow x \leq z \\
= & \langle\text { Math, transitivity of } \leq\rangle \\
& \text { true // }
\end{aligned}
$$

## A Logical Approach to Discrete Math

$$
\begin{aligned}
&\left.\frac{\text { Proof of }(\mathrm{b})}{\{x>z \wedge x>} y\right\} x, y:=y, x\{x \leq y \vee y \leq z\} \\
& w p \cdot(x, y:=y, x) \cdot(x \leq y \vee y \leq z) \\
&=\langle(\mathrm{p} .18) \text { and } \mathrm{t} . \mathrm{s} .\rangle \\
& y \leq x \vee x \leq z \\
&=\langle\text { Assume conjunct } x>z \text { and math }\rangle \\
& y \leq x \vee \text { false } \\
&=\langle(3.30) \text { Identity of } \vee\rangle \\
& y \leq x \\
&=\langle\text { Math }\rangle \\
&= y<x \vee y=x \\
&=\langle\text { Assume conjunct } x>y\rangle \\
&= \text { true } \vee y=x \\
&=\langle(3.29) \text { Zero of } \vee\rangle \\
& \text { true } / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

$$
\begin{aligned}
& \frac{\text { Proof of (c) }}{\{x>z \wedge y>z\}} y, z:=z, y\{x \leq y \vee y \leq z\} \\
& w p \cdot(y, z:=z, y) .(x \leq y \vee y \leq z) \\
&=\langle(\text { p.18) and t.s. }) \\
& x \leq z \vee z \leq y \\
&=\langle\text { Assume conjunct } x>z \text { and math }\rangle \\
& \text { false } \vee z \leq y \\
&=\langle(3.30) \text { Identity of } \vee\rangle \\
& z \leq y \\
&=\langle\text { Math }\rangle \\
& z<y \vee z=y \\
&=\langle\text { Assume conjunct } y>z\rangle \\
& \text { true } \vee z=y \\
&=\langle(3.29) \text { Zero of } \vee\rangle \\
& \text { true } / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

The alternative statement in the Promela language

```
active proctype P() {
byte a = 5, b = 5;
byte max, branch;
if
    :: a >= b -> max = a; branch = 1
    :: a <= b -> max = b; branch = 2
```

fi
\}

## A Logical Approach to Discrete Math

(p.28) $\quad D O: \quad$ do $B \rightarrow S$ od
(p.29) Fundamental Invariance Theorem.

Suppose

- $\quad\{P \wedge B\} S\{P\}$ holds-i.e. execution of $S$ begun in a state in which $P$ and $B$ are true terminates with $P$ true-and
- $\{P\}$ do $B \rightarrow S$ od $\{$ true $\}$-i.e. execution of the loop begun in a state in which $P$ is true terminates.
Then $\{P\}$ do $B \rightarrow S$ od $\{P \wedge \neg B\}$ holds.


## A Logical Approach to Discrete Math

```
Example
int \(x, i\)
\(x, i:=0,0\);
do \(i<4 \rightarrow i, x:=i+1, x+i\) od
```

| Guard $i<4$ | $i$ | $x$ | $x=(\Sigma k \mid 0 \leq k<i: k)$ |
| :---: | :---: | :---: | :---: |
| $?$ | $?$ | $?$ |  |
| true | 0 | 0 | $0=(\Sigma k \mid 0 \leq k<0: k)$ |
| true | 1 | 0 | $0=(\Sigma k \mid 0 \leq k<1: k)$ |
| true | 2 | 1 | $1=(\Sigma k \mid 0 \leq k<2: k)$ |
| true | 3 | 3 | $3=(\Sigma k \mid 0 \leq k<3: k)$ |
| false | 4 | 6 | $6=(\Sigma k \mid 0 \leq k<4: k)$ |
| Terminate |  |  |  |

What does the loop do?
It sets $x$ to $0+1+2+3$
That is, $x=(\Sigma k \mid 0 \leq k<4: k)$

## Question

What is the invariant of statement

$$
i, x:=i+1, x+i
$$

That is, what is $P 1$ in

$$
\{P 1\} i, x:=i+1, x+i\{P 1\}
$$

Answer

$$
x=(\Sigma k \mid 0 \leq k<i: k)
$$

Check by verifying $P 1$ at each step.

## A Logical Approach to Discrete Math

Check by correctness proof of:

$$
\begin{aligned}
& P 1: x=(\Sigma k \mid 0 \leq k<i: k) \\
& \{P 1\} i, x:=i+1, x+i\{P 1\}
\end{aligned}
$$

$$
\begin{aligned}
& w p .(i, x:=i+1, x+i) . P 1 \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& x+i=(\Sigma k \mid 0 \leq k<i+1: k) \\
= & \langle\text { Split off last term }\rangle \\
& x+i=(\Sigma k \mid 0 \leq k<i: k)+i \\
=\quad & \langle\text { Assume antecedent }\rangle \\
& x+i=x+i \\
= & \langle\text { Reflexivity of }=\rangle \\
& \text { true } \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

(p.30) Proof method for $D O$ :

To prove $\{Q\}$ initialization; $\{P\}$ do $B \rightarrow S$ od $\{R\}$, it suffices to prove
(a) $P$ is true before execution of the loop: $\{Q\}$ initialization; $\{P\}$,
(b) $P$ is a loop invariant: $\{P \wedge B\} S\{P\}$,
(c) Execution of the loop terminates, and
(d) $R$ holds upon termination: $P \wedge \neg B \Rightarrow R$.
(p.31) $\quad$ False guard: do false $\rightarrow S$ od $=$ skip

## A Logical Approach to Discrete Math

## The multiplication algorithm

(12.42) $\{Q: 0 \leq n\}$

$$
i, p:=0,0
$$

$$
\{P: 0 \leq i \leq n \wedge p=i \cdot x\}
$$

$$
\text { do } i \neq n \rightarrow i, p:=i+1, p+x \text { od }
$$

$$
\{R: p=n \cdot x\}
$$

Multiplication algorithm proof checklist
(a) Prove $0 \leq n \Rightarrow w p .(i, p:=0,0) . P$
(b) Prove $P \wedge(i \neq n) \Rightarrow w p \cdot(i, p:=i+1, p+x) \cdot P$
(c) Prove the loop terminates.
(d) Prove $P \wedge \neg(i \neq n) \Rightarrow p=n \cdot x$

## A Logical Approach to Discrete Math

Multiplication algorithm

$$
P: 0 \leq i \leq n \wedge p=i \cdot x
$$

(a) Prove $0 \leq n \Rightarrow w p .(i, p:=0,0) . P$

$$
\begin{aligned}
& w p .(i, p:=0,0) . P \\
= & \langle(\mathrm{p} .18) \text { and t.s. }\rangle \\
& 0 \leq 0 \leq n \wedge 0=0 \cdot x \\
= & \langle\text { Math }\rangle \\
& 0 \leq 0 \leq n \wedge \text { true } \\
= & \langle(3.39) \text { Identity of } \wedge\rangle \\
& 0 \leq 0 \leq n \\
= & \langle\text { Conjunctive meaning of } \leq\rangle \\
& 0 \leq 0 \wedge 0 \leq n \\
= & \langle\text { Assume antecedent } 0 \leq n,(3.39)\rangle \\
& \text { true } \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

Multiplication algorithm
$P: 0 \leq i \leq n \wedge p=i \cdot x$
(b) Prove $P \wedge(i \neq n) \Rightarrow w p .(i, p:=i+1, p+x) . P$

$$
\begin{aligned}
& w p .(i, p:=i+1, p+x) . P \\
= & \langle(p .18) \text { and t.s. }\rangle \\
& 0 \leq i+1 \leq n \wedge p+x=(i+1) \cdot x \\
= & \langle\text { Conjunctive meaning, math }\rangle \\
& 0 \leq i+1 \wedge i+1 \leq n \wedge p=i \cdot x \\
= & \langle\text { Assume conjunct } p=i \cdot x \text {, math }\rangle \\
& -1 \leq i \wedge i+1 \leq n \\
= & \langle\text { Assume conjunct } 0 \leq i\rangle \\
& i+1 \leq n \\
= & \langle\text { Assume conjuncts } i \leq n \text { and } i \neq n\rangle \\
& \text { true } \quad / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

Multiplication algorithm
(c) Prove the loop terminates.

By $Q: 0 \leq n, n$ cannot be negative.
By the initialization $i, p:=0,0$, the initial value of $i$ cannot be greater than $n$.
Each time through the loop, $i$ increases by 1 , and $n$ does not change.
Therefore, $i$ must eventually equal $n, i \neq n$ will be false, and the loop will terminate.

## A Logical Approach to Discrete Math

Multiplication algorithm
$P: 0 \leq i \leq n \wedge p=i \cdot x$
(d) Prove $P \wedge \neg(i \neq n) \Rightarrow p=n \cdot x$

$$
\begin{aligned}
& p=n \cdot x \\
&=\langle\text { Assume conjunct } p=i \cdot x\rangle \\
& i \cdot x=n \cdot x \\
&=\quad\langle\text { Assume conjunct } \neg(i \neq n) \text { and double negation }\rangle \\
& n \cdot x=n \cdot x \\
&=\quad\langle\text { Reflexivity of }=\rangle \\
& \text { true } / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

## The division algorithm

(12.46) $\{Q: b \geq 0 \wedge c>0\}$
$q, r:=0, b$;
\{invariant $P: b=q \cdot c+r \wedge 0 \leq r\}$
do $r \geq c \rightarrow q, r:=q+1, r-c$ od $\{R: b=q \cdot c+r \wedge 0 \leq r<c\}$

Division algorithm proof checklist
(a) Prove $b \geq 0 \wedge c>0 \Rightarrow w p .(q, r:=0, b) . P$
(b) Prove $P \wedge(r \geq c) \Rightarrow w p \cdot(q, r:=q+1, r-c) \cdot P$
(c) Prove the loop terminates.
(d) Prove $P \wedge \neg(r \geq c) \Rightarrow b=q \cdot c+r \wedge 0 \leq r<c$

## A Logical Approach to Discrete Math

Division algorithm
$P: b=q \cdot c+r \wedge 0 \leq r$
(a) Prove $b \geq 0 \wedge c>0 \Rightarrow w p .(q, r:=0, b) . P$

$$
\begin{aligned}
& w p \cdot(q, r:=0, b) . P \\
= & \langle(\text { p.18) and t.s. }\rangle \\
& b=0 \cdot c+b \wedge 0 \leq b \\
= & \langle\text { Math, (3.39) Identity of } \wedge\rangle \\
& 0 \leq b \\
= & \langle\text { Assume conjunct } 0 \leq b\rangle \\
& \text { true } / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

Division algorithm
$P: b=q \cdot c+r \wedge 0 \leq r$
(b) Prove $P \wedge(r \geq c) \Rightarrow w p .(q, r:=q+1, r-c) \cdot P$

$$
\begin{aligned}
& w p \cdot(q, r:=q+1, r-c) \cdot P \\
= & \langle(\text { p.18) and t.s. }) \\
& b=(q+1) \cdot c+r-c \wedge 0 \leq r-c \\
= & \langle\text { Math }\rangle \\
& b=q \cdot c+r \wedge c \leq r \\
= & \langle\text { Assume conjuncts } b=q \cdot c+r \text { and } r \geq c\rangle \\
& \text { true } / /
\end{aligned}
$$

## A Logical Approach to Discrete Math

Division algorithm
(c) Prove the loop terminates.

By $Q: b \geq 0 \wedge c>0, \quad c$ must be positive.
Regardless of the initial value of $r$, each time through the loop
it decreases by $c$, and c does not change.
Therefore, $r$ must eventually equal be less than $c, r \geq c$ will be false, and the loop will terminate.

## A Logical Approach to Discrete Math

Division algorithm
$P: b=q \cdot c+r \wedge 0 \leq r$
(d) Prove $P \wedge \neg(r \geq c) \Rightarrow b=q \cdot c+r \wedge 0 \leq r<c$

$$
\begin{aligned}
& b=q \cdot c+r \wedge 0 \leq r<c \\
= & \langle\text { Assume conjunct } b=q \cdot c+r\rangle \\
& 0 \leq r<c \\
= & \langle\text { Conjunctive meaning }\rangle \\
& 0 \leq r \wedge r<c \\
= & \langle\text { Assume conjunct } 0 \leq r\rangle \\
& r<c \\
= & \langle\text { Assume conjunct } \neg(r \geq c) \text { and math }\rangle \\
& \text { true } \quad / /
\end{aligned}
$$

